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Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

1. For the purposes of enabling replication and to allow other researchers to use these valuable data 

sets in future, the authors should provide a spreadsheet listing all relevant donor characteristics that 

are typically reported in studies using human islets (donor ID, age, sex, BMI, HbA1c, diabetes status, 

diabetes duration, cause of death, cold ischemia time, islet prep purity, % viability). 

 

Note: Donor information, and genotyping and sequencing data files need to be labelled in such a 

manner as to: (1) allow other researchers to link genotyping and islet RNA-seq data with the 

respective donor information; (2) enable traceability = link each donor ID in this study with the donor 

ID originally assigned by the islet isolation facility/islet distribution programme where the islets were 

isolated. 

 

Point (2) is important as centres such as IsletCore and Nordic Islets perform quality control and 

functional assays on each islet prep and make these data available to reserachers. It is essential to be 

able to link such data with the genotyping and RNA-seq data provided in this study. 

 

In the same spreadsheet, the authors could also add the results of their “cell deconvolution analysis” 

shown in Figure SF3 (i.e. proportion of endocrine islet tissue, and estimated % of beta cells and non-

beta cells within the islet endocrine fraction). 

 

2. Can the authors comment on the power of this study, given the sample size, to identify a variant as 

an eQTL, depending on MAF? Also, Huang et al. (2018, Nucleic Acids Research) describe an adapted 

bootstrap method to correct for Winner’s Curse in eQTL studies. 
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3. Overlap between gene-eQTL and exon-eQTL? The authors mention that “exon-level analysis […] can 

capture the impact of variants influencing splicing”, but do not then comment on the findings or report 

on any specific variants that influence splicing. It would be useful if the authors could provide a table 

of exon-eQTLs that are not detected in the gene-eQTL analysis, as these are expected to indicate 

SNPs that affect expression of splice isoforms. One would expect that this list should only include 

alternatively spliced genes? 

 

4. ATAC-seq data: 

 

a. The authors refer to “ATAC-seq peaks previously identified from two human islet samples” (line 

674) but do not include a reference for this data. 

 

b. ATAC-seq data used in the manuscript came from the islets of only 2 donors. This is not due to lack 

of ATAC-seq data availability. Khetan et al. (Diabetes, 2016) generated ATAC-seq profiles from islets 

of 19 donors (14 non-diabetic). The preps used by Khetan et al. were of high purity (>80%) and high 

% viability. The current study’s last author (MIM) and other authors who contributed to this 

manuscript have themselves published ATAC-seq data from 5 non-diabetic human donor islet preps 

(Thurner et al., Stem Cell Reports, 2017) and then another 17 non-diabetic human donor islet preps 

(Thurner et al., Elife, 2018). 

 

c. Published ATAC-seq data are also available for FAC-sorted beta-cell populations (e.g. Ackermann et 

al., Mol Metab, 2016). 

 

5. Inevitably, islet samples from the different sources would have been treated differently: they were 

isolated, handled, cultured, extracted and sequenced in different centres each using a different 

protocol. The authors mention that they controlled for differences in islet handling across the different 

study sites, but no further details are provided. It would be useful if the authors could elaborate on 

how these complex variables were controlled for. 

 

6. Islet isolation and ex vivo culture subjects the tissues to many stresses. Have the authors checked 

and/or controlled for markers of stress? For example, a simple test would be to check for activation of 

well-known inflammatory and stress response pathways. 

 

7. Did the authors adjust for the following: cause of death, cold ischemia time, age, gender, BMI, 

race? Of these, only gender is mentioned in the manuscript. For low MAF SNPs, it is easy to see how a 

skew in the donor population can lead to an apparent correlation between SNP and gene expression. 

Race is particularly important here since MAFs will vary between ethnic groups. 

 

8. Most samples have high levels of contamination with exocrine. One possible concern is that many of 

the identified correlations between variant and gene expression are driven by the impure preps with 

high contamination of exocrine? The authors did look at the “impact of variation in purity between 

samples” and report that “more than 100 PCs were required to remove at least 50% of the variance. 

This indicates that some of the eQTLs here attributed to pancreatic islets may, in fact, reflect exocrine 

pancreatic contamination.” 

 

The authors use the argument that the overlap between GTEX whole pancreas eQTLs and the islet 

eQTLs identified in this study is not great, suggesting that this study has identified genuine islet eQTLs 
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that would be missed in whole pancreas. The authors also suggest that this relatively “poor” overlap is 

not due to low pancreas numbers in the GTEX data set, as other (unrelated) tissues with larger 

numbers can also show “poor” overlap. However, data presented in Figure 1A of the manuscript do 

show that there is a clear correlation between GTEX sample size and overlap with GTEX data, albeit 

not a linear one. One wonders how much higher the overlap between islet eQTLs identified here and 

whole pancreas GTEX eQTLs would be if GTEX had data from the pancreata of 400-500 donors instead 

of <150? 

 

Furthermore, islet purity has been reported to affect in vitro islet function, suggesting that the % of 

exocrine contamination will change beta-cell gene expression (perhaps due to digestive enzymes or 

other factors secreted by the exocrine pancreas). 

 

9. Are the eQTLs identified here more truly likely to lie within islet ATAC-seq peaks, TF motifs, and 

certain chromatin states compared to non-eQTL variants? To suggest this, the authors should present 

what % of the SNPs analysed, or proxy SNPs, that lie within 1 MB of genes expressed in pancreatic 

islets would overlap islet ATAC-seq peaks or TF motifs? This analysis would need to use variants within 

1 MB of islet-expressed genes to be meaningful, rather than the entire data set, as islet eQTLS can 

only be identified for islet-expressed genes. 

 

10. For eSNPs that colocalise with glycaemic traits, the authors use this as an argument in support of 

a role for pancreatic islet dysfunction in leading to dysglycaemia. An alternative explanation could be 

that a SNP of interest causes dysglycaemia through an effect on another tissue (e.g.: liver) and the 

altered blood glucose concentration in turn affects islet gene expression. 

 

a. Can the authors distinguish between these two scenarios? One option would be to calculate the 

overlap between eGenes whose eSNPs overlap with glycaemic trait GWAS signals, and genes whose 

expression is regulated by glucose in vitro (ref 47 in the manuscript). 

 

b. It would be ideal if the authors could adjust for HbA1c levels in their eQTL analyses. 

 

11. Functional validation, Figure 3F: an effect was only observed in mouse and rat beta-cell lines but 

not in the EndoC-betaH1 human beta-cell line. 

 

Minor comments: 

 

1. Given the complex design of the study and the large number of different bioinformatic pipelines 

used, it would be helpful if the authors included panels with diagrams of the experimental design/data 

processing steps employed to generate the different sets of data. Otherwise, it is rather hard to follow. 

 

2. Line 1143: os  of 

 

3. No journal info is listed for reference 74. It appears that this tool has only been published on 

BioRxiv in 2015 but has not been published in a peer-reviewed journal in the meantime. Did the 

authors mean to cite Brown et al. (2015, eLife), instead? 

 

4. Supplementary figure SF7: legend reads “A: Number of eQTL Islet eQTL overlapping with Islet 

chromatin states and stretch/typical enhancers.”  A: Number of eQTL Islet eQTL overlapping with 

Islet chromatin states and stretch/typical enhancers. 
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5. “803 Data access 

Genotype and sequence data have been deposited at the European Genome-phenome Archive 

(EGA; https://www.ebi.ac.uk/ega/) under the accession number EGAXXX (submission in process).” 

 

Have the data now been submitted? 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Vinuela et al present the largest eQTL study performed in pancreatic islets, comprising data from 420 

donors from several studies. 

 

The main findings are: (a), they demonstrate that some eQTLs are not identifiable in other tissues 

such as GTEx, indicating the importance of performing eQTLs in the disease target tissue (i. e. 

pancreatic islets for type 2 diabetes); (b) they show (expected) overlap between epigenome marks in 

pancreatic islets; (c) enrichment of eQTLs in variants implicated in islet dysfunction; (d) colocalization 

of islet eQTLs influencing T2D or related trait; (e) effector transcripts for 23 loci. 

 

This is an exceptional resource for those working on genetics and genomics of type 2 diabetes. 

However, in my opinion, the paper fails to reflect the huge relevance that this study has. 

 

Some major points include the following: 

 

- It is not clear to me, how this manuscript improves the discovery compared to other smaller eQTL 

studies that have been published? For example, does larger sample size improve the discovery of low-

frequency variants associated with expression in eQTLs? 

 

- The authors provide effector transcripts for 23 loci. Given that there exist around ~200 loci in 

Europeans, and the general believe that most of GWAS loci are driven by islet dysfunction, 23 seems a 

small percentage. How many of these 23 effector transcripts would not be found in GTEx or have not 

been found in previous eQTL studies? 

 

- Data sharing. The authors share the significant eQTL results, but I didn’t see in the manuscript any 

sign of how are the authors going to share the eQTL full summary statistics. Since this is such a 

valuable dataset, I think the authors should at least provide the full summary statistics of all the eQTL 

gene-pairs, such as GTEx does in its website. dbGaP or EGA access to raw genotype data RNA-seq 

data is also encouraged, but summary statistics of the association should be provided even if dbGaP 

access is provided so that investigators interested in a lookup do not have to re-invent the wheel and 

perform the whole eQTL meta-analysis again. 

 

- Tissue specific regulatory variation in islets. The authors use p-value enrichment between the eQTLs 

identified in pancreatic islets and other tissues. The authors show that there is a positive linear 

relationship between the sample size of each tissue, and the p-value enrichment. They then claim that 

pancreas does not seem a good surrogate. However, when seing figure 1 it seems to me that 

pancreas is one of the tissues that shows higher p value enrichment compared to others of similar 

sample size. The authors claim: “This does not reflect low sample size: the number of whole pancreas 
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samples is on a par with other tissues such as skin and spleen with comparable eQTL-sharing (π1 

0.67, 0.61 respectively).” I disagree with this statement as skin and spleen have way different sample 

sizes and they both have lower π1. Actually, the skin that shows has actually close to 300 samples, so 

almost double than Pancreas. Since I believe that this is a very relevant question, could the authors 

develop a new method for tissue sharing that does not depend us much on sample sizes, i. e. based 

on effect sizes, rather than sample sizes? Would, for example cross-phenotype LD-score regression 

type of analysis be suitable to assess that? 

 

- The study of cellular heterogeneity is quite interesting. They provide 18 islet cis-eQTL that are 

dependent on genotype-by-beta-cell proportion. Did the authors use this cellular proportion as a 

covariate for the eQTL analysis? 

 

- Overlap with T2D and glycemic GWAS variants. I was a bit surprised that only 78 lead GWAS SNPs 

from Fuchsberger et al (2016). There have been a number of larger GWAS studies, based on 

individuals of European ancestry, many of them lead by the same senior author of this study. Why did 

the authors not use any of the more updated version of GWAS hits? Despite that, the authors show 

that Glycemic T2D variants and T2D (beta-cell cluster) variants, only show enrichment in islet, but not 

in Pancreas or any other tissue. This is, in my opinion, the most relevant result and what convinced 

me that eQTLs in pancreatic islets are important. Perhaps mentioning that in the abstract is important. 

 

- Functional validation of DGKB locus. I do not have a lot of experience in EMSA, but I believe that this 

experimental validation and its interpretation the should be explained more in detail as it is hard to 

follow. 

 

- Overall, I feel that the writing could be less verbose and more specific, as some of the paragraphs 

are difficult to follow. I would recommend to thoroughly review the text to improve clarity and 

consistency. 

 

Methods: “Quality of genotyping from the shared SNPs in both arrays was assessed before imputation 

separately by removing SNPs as follows” Does that mean that only the overlapping SNPs were used 

before imputation? What was the number of overlapping SNPs between these two panels? 

 

- Where all the samples imputed together? Or by cohort, or by panel? 

 

 

Minor comments: 

 

- The naming of the suppl are difficult to follow, as the name does not correspond to the suppl table 

number. Also, the tables do not have caption, which would be appreciated. So I still do not know 

which table is which. 

- I miss in the discussion a section that tells out how much improvement was gained by augmenting 

the sample size. How much larger was the number of eQTLs identified? Was there an improvement in 

identifying eQTLs driven by low-frequency variants? How much did the number of candidate effector 

genes improve? 

 

 

 

Reviewer #3 (Remarks to the Author): 
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This manuscript describes a large eQTL dataset generated in pancreatic islets, the first such dataset I 

think that exists. It will be a useful resource for many researchers and the description of it in the 

manuscript is clear. The demonstration that cell type specificity of effects is important, and fits with 

other data in this area, and the match of cell type eQTL to previously assigned GWAS categories is a 

nice result. 

 

I have only minor comments: 

 

I was not familiar with the notion of p value enrichment analysis, nor the technique to perform it (p4). 

I had to go read the referenced paper, and I think it would be helpful if the authors were to include a 

brief outline of what the method intends to achieve, and how, before presenting their results. 

 

On page 5/6 eSNPs within stretch enhancers are described as having "smaller effects" (last line on 

p5). Then (top of p6) such eSNPs are described as requiring larger sample sizes for "equivalent effect 

size". This is confusing and needs clarifying. Presumably the two "effect size" used mean different 

things here (eg fold change vs variance explained?). 

 

When this effect is discussed later (p12) it is suggested that this means that a GWAS causal variant 

sitting in an islet stretch enhancer could be misassigned to a non-islet expressed gene because its 

effect on islets differs from its effect on bystander genes in other tissues. I don't think this is shown - 

the effects of stretch enhancer SNPs to non stretch enhancer SNPs is compared within islets, but the 

effects of islet stretch enhancer SNPs on islet genes vs non-islet genes (where the stretch enhancer is 

not operating as a stretch enhancer??) are not compared. Either I have misunderstood this argument 

and it needs making clearer, or additional data are needed to support the claim. 

 

p9, discussing colocalisation of PDE8B, the authors describe the existence of two signals, which 

violates the assumption of the coloc approach. They have the data, and can condition on one of the 

two signals for each trait to test for colocalistion of the "other" signal (so 4 tests in total). If only 

summary data are available, COJO enables this. 

 

I would encourage the authors to complete the deposition of the data in EGA, and editors to confirm 

deposition is complete, because the sharing of this dataset will enable the widest utility for the work. 

(These authors have a previously very good record of sharing data - I'm saying this only because 

previous papers I have reviewed by other authors with "deposition in progress" have not always 

resulted in an actually deposited dataset). 
 

Author rebuttal, first version:   

Reviewer #1 (Remarks to the Author): 

 

1. For the purposes of enabling replication and to allow other researchers to use these valuable data 
sets in future, the authors should provide a spreadsheet listing all relevant donor characteristics that are 
typically reported in studies using human islets (donor ID, age, sex, BMI, HbA1c, diabetes status, 
diabetes duration, cause of death, cold ischemia time, islet prep purity, % viability). 
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Note: Donor information, and genotyping and sequencing data files need to be labelled in such a 
manner as to: (1) allow other researchers to link genotyping and islet RNA-seq data with the respective 
donor information; (2) enable traceability = link each donor ID in this study with the donor ID originally 
assigned by the islet isolation facility/islet distribution programme where the islets were isolated. 

 

Point (2) is important as centres such as IsletCore and Nordic Islets perform quality control and 
functional assays on each islet prep and make these data available to researchers. It is essential to be 
able to link such data with the genotyping and RNA-seq data provided in this study. 

 

In the same spreadsheet, the authors could also add the results of their “cell deconvolution analysis” 
shown in Figure SF3 (i.e. proportion of endocrine islet tissue, and estimated % of beta cells and non-beta 
cells within the islet endocrine fraction). 

 

We agree with both the reviewer’s points and the objectives of the recent proposal to share relevant 
biological information from donors. However, many of the samples included in the present analysis 
predate those recommendations by several years, and the relevant data were not collected, or are 
inaccessible due to ethical constraints that are designed to preclude donor identification. We are happy 
to provide the limited data that we have, and this has been included with the EGA submission as 
covariate information and linked to the sample IDs used for genotype and expression data. These files 
contain principal components (PCs) from expression, PCs from genotypes and the proportion of cell types 
used in the analyses in addition to complete information about sex and T2D status. We also included the 
information we have regarding age (11 missing), BMI (87 missing), % of HbA1c (222 missing), islet 
viability (394 missing) and islet purity (166 missing). In addition, we have now included the following 
summary of the available information in the methods section (Page 13):  

 

The samples from 420 donors included 189 males and 231 females, with an age range 
of 16 to 81 years (median = 54 years, 11 not available (NAs)). Of the 420 individuals, 
37 were identified as diabetic. BMI information was available for 334 individuals 
(median, 26.3kgm-2), while HbA1c measurements were available for 198 (median, 
5.8%). Due to the historical nature of some of the samples used in this study, QC 
information about the pancreatic islet isolation was limited: 254 samples listed their 
purity (median, 75%) and 26 samples listed their viability (median, 93.5%). No other 
biological information was available in the historical records. This information is 
included in the covariate files included in the EGA submission. 
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2. Can the authors comment on the power of this study, given the sample size, to identify a variant as an 
eQTL, depending on MAF? Also, Huang et al. (2018, Nucleic Acids Research) describe an adapted 
bootstrap method to correct for Winner’s Curse in eQTL studies. 

 

All eQTL studies are limited by sample size: however this is the best powered RNAseq study in pancreatic 
islets to date. Ongoing efforts to gather more samples will undoubtedly increase the potential for 
discovery both of weaker effects (for common variants), but also enhance the potential to uncover eQTLs 
arising from low frequency variants. In the current analysis, we limit our analyses to SNPs with MAF>1%.  

 

In relation to the reviewer’s comment about a “winner’s curse” issue in eQTL studies, as we understand 
it, the method proposed by Huang et al. was designed to evaluate studies with much smaller sample 
sizes, where this may be a significant issue. Given that our sample size appreciably exceeds those for 
which the approach was designed, there seems to be no basis for reanalysis using the method proposed. 

 

3. Overlap between gene-eQTL and exon-eQTL? The authors mention that “exon-level analysis […] can 
capture the impact of variants influencing splicing”, but do not then comment on the findings or report 
on any specific variants that influence splicing. It would be useful if the authors could provide a table of 
exon-eQTLs that are not detected in the gene-eQTL analysis, as these are expected to indicate SNPs that 
affect expression of splice isoforms. One would expect that this list should only include alternatively 
spliced genes? 

 

We have now included two lists with exon-eQTLs and gene-eQTLs that were not significant in the other 
analysis. These include 57 genes with gene-eQTLs but no significant exon-eQTLs (Supplemental table 3), 
and 3,863 genes that had no significant gene-eQTLs but had exon-eQTLs (Supplemental table 4). In our 
view, the gene- and exon-level analyses are complementary and discrepancies between the two are not 
the most reliable means to capture splicing effects. These related phenotypes have different properties 
and slightly different power to identify different types of expression effects. Both phenotypes are 
expected to include eQTLs associated with changes in absolute expression and with splicing. We agree 
that, in general, gene level quantifications are more likely to miss splice-eQTLs, as the phenotype used 
(RPKM) averages the expression of all the exons, and can mask changes in expression that affect only 
one exon (e.g. exon-skipping events). On the other hand, exon-level quantifications come with a 
substantial increase in multiple testing burden (N exon phenotypes = 168,833, N gene phenotypes = 
22,169), and a SNP altering the expression of the whole gene may not be significant after correction if 
the overall effect is low. However, it is also possible to think of scenarios where splicing events are only 
seen in the gene-level RPKM values (e.g. alternative promoter, but small overall change in expression).  
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4. ATAC-seq data: 

 

a. The authors refer to “ATAC-seq peaks previously identified from two human islet samples” (line 674) 
but do not include a reference for this data. 

 

We thank the reviewer for pointing this out. We have included the reference on page 6 with the updated 
list of samples now used (see next point). 

 

b. ATAC-seq data used in the manuscript came from the islets of only 2 donors. This is not due to lack of 
ATAC-seq data availability. Khetan et al. (Diabetes, 2016) generated ATAC-seq profiles from islets of 19 
donors (14 non-diabetic). The preps used by Khetan et al. were of high purity (>80%) and high % 
viability. The current study’s last author (MIM) and other authors who contributed to this manuscript 
have themselves published ATAC-seq data from 5 non-diabetic human donor islet preps (Thurner et al., 
Stem Cell Reports, 2017) and then another 17 non-diabetic human donor islet preps (Thurner et al., 
Elife, 2018). 

 

We thank the reviewer for their constructive feedback. We downloaded the islet ATAC-seq data (raw 
fastq files) for 14 non-diabetic donors from Khetan et al. (DOI 10.2337/db18-0393) and 17 non-diabetic 
donors from Thurner et al. (DOI 10.7554/eLife.31977) and processed these uniformly along with the two 
non-diabetic samples (DOI 10.1073/pnas.1621192114) included in the initial submission of our 
manuscript. Since these 33 samples were obtained from different studies, we sought to obtain the set of 
peaks that were reproducible. We subsampled each ATAC-seq sample bam file to the minimum read 
depth across samples of 27,994,993 reads, merged these subsampled bam files and called peaks using 
(1) the merged bam file that uniformly represents each sample and (2) each individual sample bam file. 
We then selected peaks from the merged bam file that were reproducibly called across the majority (at 
least 17) of the 33 individual samples, resulting in 64,129 peaks.  

 

We re-ran all analyses in our manuscript involving ATAC-seq data using this new set of reproducible 
peaks and present the updated results in revised figure 2 (2B, 2C and 2D) and Supp Figs. 12 to 16. These 
new results are consistent with our previously reported results: 

1. In agreement with our initial submission, we observe that islet eQTLs show enrichment of 
overlap with ATAC-seq peaks (fold enrichment = 2.17, P = 3.78x10-206), and that effect sizes of 
eQTLs occurring in ATAC-seq peaks in stretch enhancer states are lower than those occurring in 
ATAC-seq peaks in the active TSS chromatin states (P = 0.0034).  
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2. For analyses involving TF footprint motifs, we originally utilized the union of footprint motifs 
across two islet samples. We have now subsetted the footprint motifs selecting occurrences 
within the new set of reproducible ATAC-seq peaks. We again observe that overlaying eQTL data 
with ATAC-seq-informed TF footprint motifs reveals in vivo motif directionalities (Figure 2D).  

3. Twenty-three  motifs pass the 10% FDR threshold after the binomial test for motif directionality 
for significant deviation from 0.5, which is more than we observed previously (N = 8 significantly 
deviated at 10% FDR).  

4. Additionally, the correlation of motif directionality with MPRA data increased (previous 
Spearman’s R = 0.64, p = 8.1x10-13; updated Spearman’s R = 0.73, p = 1.5x10-17) when using the 
new subsetted peak results.  

 

Collectively, these results indicate that the reproducible peaks identified from 33 islet ATAC-seq datasets 
made our analyses more robust. We thank the reviewer for this recommendation, which has 
strengthened our manuscript. 

 

 

c. Published ATAC-seq data are also available for FAC-sorted beta-cell populations (e.g. Ackermann et 
al., Mol Metab, 2016). 

 

We thank the reviewer for this suggestion. Here, we reasoned that because we utilize ATAC-seq data 
along with eQTLs which were identified using RNA-seq from bulk islet tissue, ATAC-seq data obtained 
from bulk islet samples would be more relevant then data from FAC-sorted beta cells. For these reasons, 
we have followed feedback from comment 4.b above and included bulk islet ATAC-seq data from 33 non-
diabetic donors.   

 

5. Inevitably, islet samples from the different sources would have been treated differently: they were 
isolated, handled, cultured, extracted and sequenced in different centres each using a different 
protocol. The authors mention that they controlled for differences in islet handling across the different 
study sites, but no further details are provided. It would be useful if the authors could elaborate on how 
these complex variables were controlled for. 

 

We apologize for the oversight in this point and we have now expanded the text describing how this is 
done (METHODS: “RNAseq quality assessments and data normalization”, Page 15 main text, and Page 7 
Supplemental methods note). In short, all the differences are grouped in a variable identifying the lab of 
origin of the samples. Since, as the reviewer pointed out, each institution handled samples in a different 
way with different processing and sequencing protocols, such a variable will capture all those 
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differences. In addition, and to control for global and unknown variables that may influence a subset of 
samples not controlled using a “lab-level” variable, we used principal component analysis and selected 
the first 25 principal components of expression (PCs) as covariates for the eQTL analysis, a standard, and 
widely-used approach for eQTL analyses. Supplemental figure 1 shows that the comparison of PC1 and 
PC2 can successfully identify batch effects internal to samples from one specific lab e.g. for OXF samples 
and LUN samples. Since cis-eQTLs have a local effect in expression, controlling for PCs as covariates in a 
linear model removes unwanted global variation not relevant for cis-genetic effects in expression. In 
addition, and to control for potential population stratification effects and sex differences, we included 3 
PCs derived from the genotypes summarizing the genetic variability of the samples and sex. Finally, we 
performed a further permutation test where samples were permuted within each lab to preserve the lab 
effect: with 25 PCs, eQTL discovery was flat, meaning that the lab differences were not generating false 
positive eQTLs.  

 

6. Islet isolation and ex vivo culture subjects the tissues to many stresses. Have the authors checked 
and/or controlled for markers of stress? For example, a simple test would be to check for activation of 
well-known inflammatory and stress response pathways. 

 

There was no specific control for markers of stress, but our expectation is that differences in stress levels 
are global effects affecting multiple genes, and as such this is precisely the kind of effect that can be 
captured and removed by controlling for PCs (see above). To evaluate this specific point, we examined 
the most informative 500 exons from each of the first 5 PCs of expression, which explain 56.9% of the 
variance in expression in the whole dataset. We then investigated if there was any functional enrichment 
of these top genes associated to stress. For most PCs, the top genes are associated with phosphorylation 
and signal transduction, with PC3 showing enrichment for genes associated to apoptosis (KEGG 
pathway, p-value enrichment 1.5e-5), all of which may be considered stress signals (Nadal et al, Nat Gen. 
Rev., 2011) These results supports our expectations that with PCs as covariates we controlled, at least 
partially, for stress induced responses that may differ across samples.   

   

7. Did the authors adjust for the following: cause of death, cold ischemia time, age, gender, BMI, race? 
Of these, only gender is mentioned in the manuscript. For low MAF SNPs, it is easy to see how a skew in 
the donor population can lead to an apparent correlation between SNP and gene expression. Race is 
particularly important here since MAFs will vary between ethnic groups. 

 

As the information for most of those potential co-founders was not available due to the historical nature 
of the samples, direct adjustment for these factors was not possible. In such circumstances, where 
relevant covariates may not be fully measured (or even measured at all), principal component analysis 
provides the most appropriate (and widely used) solution. By using PCs as covariates we control for any 
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factors, measured or not, that might have a global impact on expression, and which might therefore 
increase the risk of false positives by artificially grouping samples based on specific factor exposures. In 
addition, we included 3 PCs from the genotypes, controlling therefore for the specific case possibility of 
population structure effects affecting our analysis.  

 

8. Most samples have high levels of contamination with exocrine. One possible concern is that many of 
the identified correlations between variant and gene expression are driven by the impure preps with 
high contamination of exocrine? The authors did look at the “impact of variation in purity between 
samples” and report that “more than 100 PCs were required to remove at least 50% of the variance. This 
indicates that some of the eQTLs here attributed to pancreatic islets may, in fact, reflect exocrine 
pancreatic contamination.” 

 

The authors use the argument that the overlap between GTEX whole pancreas eQTLs and the islet eQTLs 
identified in this study is not great, suggesting that this study has identified genuine islet eQTLs that 
would be missed in whole pancreas. The authors also suggest that this relatively “poor” overlap is not 
due to low pancreas numbers in the GTEX data set, as other (unrelated) tissues with larger numbers can 
also show “poor” overlap. However, data presented in Figure 1A of the manuscript do show that there is 
a clear correlation between GTEX sample size and overlap with GTEX data, albeit not a linear one. One 
wonders how much higher the overlap between islet eQTLs identified here and whole pancreas GTEX 
eQTLs would be if GTEX had data from the pancreata of 400-500 donors instead of <150? 

 

Furthermore, islet purity has been reported to affect in vitro islet function, suggesting that the % of 
exocrine contamination will change beta-cell gene expression (perhaps due to digestive enzymes or 
other factors secreted by the exocrine pancreas). 

 

We thank the reviewer for mentioning this point, giving us the chance to clarify our arguments here. Two 
issues need clarification: the effect of exocrine contamination on the discovery of islet eQTLs, and the 
influence of sample size on the ability to identify islet eQTLs.    

 

The influence of exocrine contamination is further described in the Supplemental Methods Note (pages 2 
and 3), addressing the specific point made by the reviewer. There, we evaluated the replication rate of 
eQTLs from 100 randomly selected whole pancreas GTEx samples in two sets of results: i) eQTLs derived 
from 100 islet samples with the largest proportion of exocrine component and ii) 100 islets samples with 
the lowest proportion of exocrine component. Our analyses showed that samples with higher exocrine 
contributions show higher degree of similarity (pi1 = 0.75) with whole pancreas eQTLs than do samples 
with a lower proportion of exocrine (pi1 = 0.64). This analysis supports our point that differences 
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between whole pancreas and islet eQTLs are partially driven by cell-specific effects, while similarities 
between both are driven by shared genetic effects and exocrine contamination in islet samples. 

 

In relation to the sample size influence on eQTL discovery, current knowledge indicates that with larger 
eQTL studies, more tissue or cell specific eQTLs are likely to be identified. This is certainly the case for 
larger multi-tissue studies such as GTEx which are now tending to find lower percentages of shared 
signals across tissues than previously (when sample sizes were lower). We would expect, by analogy, that 
with additional samples, the overall percentage of shared signals would decrease. However, we agree 
with the reviewer that an evaluation of the influence of sample size differences in the discovery of shared 
genetic signals was missing in the manuscript.  

 

As we cannot increase our sample size, we repeated the eQTL analysis and tissue comparison of eQTLs 
with a reduced islet dataset to show a fair comparison of whole pancreas eQTLs with islet eQTLs. The 
figure below shows the same analysis as that presented in Figure 1A when we randomly downsample the 
number of islet samples to 149 (to match that of GTEx whole pancreas) and compare against data from 
all the GTEx samples (up to 382 samples). With islet eQTLs calculated from the downsampled islets, we 
observe that multiple tissues capture high proportions of shared eQTL signals with islets including 
adipose (0.89), pancreas (0.84), LCLs (0.84) and esophagus (0.84). The overall proportion of islet eQTL 
signals identified in other tissues increased to a range of 0.53 to 0.89 (compared to the range of 0.40-
0.73 seen in the full islet data set). These findings support the expectation that even larger sample size 
eQTL studies in islets will increase the capacity to detect a higher proportion of tissue or cell specific 
signals (decreasing even more the range of shared signal across tissues).  

  

Overall, both our results indicate that some tissues are better proxies for non-accessible tissues than 
other tissues: whole pancreas and adipose are better proxy tissues for islets than skeletal muscle. But we 
find no support to the notion that, in the absence of the effect of exocrine contamination in the islets, 
whole pancreas is a better proxy than other tissues.  
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9. Are the eQTLs identified here more truly likely to lie within islet ATAC-seq peaks, TF motifs, and 
certain chromatin states compared to non-eQTL variants? To suggest this, the authors should present 
what % of the SNPs analysed, or proxy SNPs that lie within 1 MB of genes expressed in pancreatic islets 
would overlap islet ATAC-seq peaks or TF motifs? This analysis would need to use variants within 1 MB 
of islet-expressed genes to be meaningful, rather than the entire data set, as islet eQTLS can only be 
identified for islet-expressed genes. 

 

We thank the reviewer for this comment. We present eQTL enrichment results in ATAC-seq peaks, 
chromatin states and TF footprint motifs performed using the GREGOR tool (DOI 
10.1093/bioinformatics/btv201) in Figure 2C and Supp. figures S5 and S7. GREGOR identifies a set of 
control SNPs based on MAF, distance to the nearest gene and number of SNPs in LD within the provided 
threshold matched with the input eQTL SNPs. Here, the reviewer raised a good point that for eQTL 
enrichments, the control SNPs should also be selected from within 1Mb of islet-expressed genes for 
which eQTLs were tested. Here, we address this question from two complementary perspectives. First, 
we checked if the control SNPs from the GREGOR method meet the criterion to be around islet expressed 
genes. We found that: 

 Since the insPIRE dataset includes RNA-seq data for >400 samples, a large number of genes 
(exon QTL scan included 21,319 unique genes) could be quantified and tested for eQTL. 
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 Looking at the set of control SNPs from the GREGOR analysis, we find that out of the total set of 
6,031,279 control SNPs, 98.6% (5,949,654) of SNPs occur within 1Mb of TSS for genes for which 
exon level eQTLs were tested. 

 Based on the above two points, we believe our enrichment testing was reasonable because the 
vast majority (98.6%) of control SNPs were selected from within 1Mb of islet expressed and eQTL 
tested genes. 

 

Second, to further independently verify our enrichment results, we used a different tool - fenrich (DOI 
10.1038/ncomms15452) - to test for eQTL enrichments. Importantly, fenrich takes into account the space 
of expression-quantified (tested) genes when calculating enrichments. Using fenrich, we still observed 
eQTL enrichment in chromatin features such as islet ATAC-seq peaks, active TSS and active enhancer 
chromatin states, and depletion in repressed polycomb chromatin states (see reviewer figure below, 
error bars represent 95% confidence intervals). 

 

 



 
 

 

16 
 

 

 

 

 

Collectively, these observations indicate that our original enrichment results are robust and not biased by 
improper proxy SNP selection. We have elaborated on this point in the methods section “Enrichment of 
genetic variants in genomic features” (Page 19 main text, Page 11 Supplemental methods note).  

 

10. For eSNPs that colocalise with glycaemic traits, the authors use this as an argument in support of a 
role for pancreatic islet dysfunction in leading to dysglycaemia. An alternative explanation could be that 
a SNP of interest causes dysglycaemia through an effect on another tissue (e.g.: liver) and the altered 
blood glucose concentration in turn affects islet gene expression. 

 

The reviewer proposes an alternative route whereby colocalization between a T2D GWAS signal and an 
islet cis-eQTL is mediated not through islets alone, but through regulatory impacts on other tissues (such 
as liver or fat). Whilst we agree that this could be contributing at some loci, evidence presented within 
the manuscript suggests this is not likely to be the dominant explanation for our findings. The strong 
enrichment for active islet regulatory regions (Figure 3E), and the overlap of islet cis-eQTLs with T2D 
GWAS signals (which becomes more pronounced in terms of effect size in the subset of loci acting 
through insulin secretion) indicates that most of the GWAS/islet cis-eQTL overlap is likely to be mediated 
through direct islet effects. 

 

a. Can the authors distinguish between these two scenarios? One option would be to calculate the 
overlap between eGenes whose eSNPs overlap with glycaemic trait GWAS signals, and genes whose 
expression is regulated by glucose in vitro (ref 47 in the manuscript). 

 

We interpreted this reviewer comment as asking whether eGenes co-localizing with glycemic traits may 
be mediating their activity through response to glucose stimulation, and not necessarily through direct 
effects on islet. We had already performed an analysis of the overlap between eGenes for glycemic traits 
and genes whose expression is regulated by glucose in vitro in ref 47, and these are provided in 
supplementary table 21 and page 9 of the manuscript. For example, the eGenes G6PC2, DGKB and 
GPSM1 are differentially expressed between islets from T2D donors compared to non-T2D. The 
expression of multiple genes is altered upon glucose treatment of islets from normoglycemic donors 
including STARD10, RDH5, WARS, WDR25, SIX2, SIX3, NKX6-3. Furthermore, the expression of SIX3 was 
also altered after high glucose treatment of islets from type 2 diabetic donors. We also checked MRbase 
and can confirm that none of the gene-SNP pairs were reported to have causal effects in the liver. 
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b. It would be ideal if the authors could adjust for HbA1c levels in their eQTL analyses. 

 

Due to the historical origin of the samples, HbA1c levels were only available for 198 individuals, making it 
impossible to include these data directly in the model. As discussed above, the appropriate and 
commonly used remedy in such a situation is to use the PC-based approach: we included 25 principal 
components of expression as covariates to capture global effects without the need for their specific 
identification. To confirm that we control for potential differences in HbA1c, we performed two tests. 
First, we evaluated the association of the available measurements with the principal components for 
expression included in the eQTL analysis. Of the 25 PCs used in the analysis, PCs 16 and 20 were both 
associated (linear model association with P value < 0.05) with HbA1c levels, indicating we control for 
global effects related to differences in HbA1c on expression by including PCs of expression as covariates 
for the eQTL association analysis. Second, we tested for association of all exons with the available HbA1c 
values after controlling for 25PC of expression, 3 PCs for genotypes, lab of origin, and sex, as we did for 
the eQTL analysis. Of all exons tested (169,820), 194 (0.11%) were significantly associated with HbA1c at 
a 1% FDR. Given this low number, we believe possible differences in HbA1c had a negligible effect on the 
eQTL discovery given the procedures we used.     

 

11. Functional validation, Figure 3F: an effect was only observed in mouse and rat beta-cell lines but not 
in the EndoC-betaH1 human beta-cell line. 

 

The experiments shown in Figure 3F in three beta cell lines rigorously evaluate whether the candidate 
haplotype affects transcriptional activity in a direction consistent with the eQTL. These experiments 
assume that transcription factor binding site motifs are conserved across species, as is frequently 
observed (PMID 25779349). Notably, we observed the same direction of differences between haplotypes 
across all three cell lines. Although we observed that the relative luciferase reporter levels were lowest 
for EndoC-βH1, these cells are also the hardest to grow and transfect and generated the lowest levels of 
transcriptional activity. We believe the less marked difference observed in EndoC-βH1 cells may be 
related to the lower level of transcriptional activity observed in these cells, but other explanations are 
possible. 

 

We revised this text to better describe the results (page 10). 

 

The T2D-risk haplotype showed higher expression than the non-risk haplotype in 
832/13 (P=1.9×10-4) and MIN6 (P=1.1×10-6) (Figure 3F), which is consistent with 
the eQTL direction (Figure 3D). Equivalent data for the human EndoC-βH1 cell 
line was directionally-consistent but not significant (Figure 3F).  
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Minor comments: 

 

1. Given the complex design of the study and the large number of different bioinformatic pipelines used, 
it would be helpful if the authors included panels with diagrams of the experimental design/data 
processing steps employed to generate the different sets of data. Otherwise, it is rather hard to follow. 

 

We have now added diagrams along the supplemental methods notes to the improved descriptions 
(Supplemental methods note).  

 

 

2. Line 1143: os  of 

 

This has now been corrected in the text. 

 

3. No journal info is listed for reference 74. It appears that this tool has only been published on BioRxiv 
in 2015 but has not been published in a peer-reviewed journal in the meantime. Did the authors mean 
to cite Brown et al. (2015, eLife), instead? 

 

The correct citation is used here. The tool cited is a fast implementation of the already existing R package 
qvalue and while the author felt it had sufficient value to be used by others, he did not consider it 
warranted a peer-review publication. It is reported here for reproducibility reasons as a full description of 
the tool is provided in the preprint as well as the link to the source code. The software provides the same 
results as the qvalue R implementation, which is also cited.  

4. Supplementary figure SF7: legend reads “A: Number of eQTL Islet eQTL overlapping with Islet 
chromatin states and stretch/typical enhancers.”  A: Number of eQTL Islet eQTL overlapping with Islet 
chromatin states and stretch/typical enhancers. 

 

We thank the reviewer for pointing this out. We corrected this in Page 7 of the supplemental figures. 

 

5. “803 Data access 
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Genotype and sequence data have been deposited at the European Genome-phenome Archive 

(EGA; https://www.ebi.ac.uk/ega/) under the accession number EGAXXX (submission in process).” 

 

Have the data now been submitted? 

 

 

Yes, all data have now been submitted with the following accession numbers for the different datasets: 
Genotype, technical and biological covariates, and sequence data have been deposited at the European 
Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/) under the following accession numbers: 
EGAS00001003997; EGAS00001004042; EGAS00001004044; EGAS00001004056. Complete summary 
statistics for eQTL associations have been deposited and are accessible in the following link: 
https://zenodo.org/record/3408356 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ebi.ac.uk/ega/
https://www.ebi.ac.uk/ega/
https://www.ebi.ac.uk/ega/
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Reviewer #2 (Remarks to the Author): 

 

Vinuela et al present the largest eQTL study performed in pancreatic islets, comprising data from 420 
donors from several studies. 

 

The main findings are: (a), they demonstrate that some eQTLs are not identifiable in other tissues such 
as GTEx, indicating the importance of performing eQTLs in the disease target tissue (i. e. pancreatic islets 
for type 2 diabetes); (b) they show (expected) overlap between epigenome marks in pancreatic islets; (c) 
enrichment of eQTLs in variants implicated in islet dysfunction; (d) colocalization of islet eQTLs 
influencing T2D or related trait; (e) effector transcripts for 23 loci. 

 

This is an exceptional resource for those working on genetics and genomics of type 2 diabetes. However, 
in my opinion, the paper fails to reflect the huge relevance that this study has. 

 

Some major points include the following: 
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1) It is not clear to me, how this manuscript improves the discovery compared to other smaller eQTL 
studies that have been published? For example, does larger sample size improve the discovery of low-
frequency variants associated with expression in eQTLs? 

 

A larger sample size allows for the discovery of more eQTLs, but more importantly it allowed us to 
explore independent secondary eQTL signals per gene. Sample size and the analysis of secondary 
independent signals allowed us to identify 7,741 eQTLs, which is a substantial improvement from the 
~4,000 eQTLs previously discovered in Varshney at el, 2017. That study reported eQTLs only from SNPs 
with MAF>5% after performing a meta-analysis, while van de Bunt et al (2015) reported eQTLs results 
using MAF>1%, but discovered only 2,341 eQTLs in total. We report here 1,045 eQTLs with lead variants 
with 1%>MAF<5%. We chose not to explore variants with MAF below 1% as the sample size precludes 
robust eQTL identification from such rare SNPs. In addition, in the present study, we also explore issues 
of tissue-specificity and performed an extensive analysis of functionally relevant annotation for islet 
eSNPs using the more detailed regulatory annotations now available. All this, together with the updated 
GWAS results for T2D now presented in the manuscript provides, we believe, a substantial advance in our 
of knowledge the genetic regulation of gene expression in pancreatic islets with implications for our 
understanding of the genetics of T2D and other glycemic traits.     

 

2) The authors provide effector transcripts for 23 loci. Given that there exist around ~200 loci in 
Europeans, and the general believe that most of GWAS loci are driven by islet dysfunction, 23 seems a 
small percentage. How many of these 23 effector transcripts would not be found in GTEx or have not 
been found in previous eQTL studies? 

 

We are now reporting in Supplemental table 20 a summary of the previous findings from other eQTL 
studies regarding co-localization of GWAS variants associated to T2D. In addition and following the 
recommendations in point 6, we have updated the list of GWAS variants included in the colocalization 
analysis. This has increased the number of identified effector transcripts to 23 loci (24 signals) with 
strong evidence and an additional 24 signals supported only by one colocalization method (57 in total). 
This still represents only around 10% of the total number of T2D and glycemic trait GWAs signals.  

 

Several factors are likely to be contributing to this. First, whilst most GWAS signals for these traits do 
appear to operate through changes in insulin secretion, there are many that do not. Second, not all islet-
mediated effects will be visible in eQTL studies of basal expression in adult islets (such as those acting 
during development, or through transcriptional effects only revealed by stimulation). Third, there are 
issues of power to be considered, especially in the case of transcriptional effects that are mediated 
through minority cell populations within the islet. Fourth, there are issues related to data processing that 
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modify the information available for the colocalization analysis (the MTNR1B cis-eQTL is a case in point – 
see page 8, 4th paragraph). Fifth, we had strict requirements for colocalization and used statistical 
methods that were not used in previous studies, allowing us to be more confident about our findings. 
Above and beyond these, it is also possible that cis-effects on expression may not be the primary 
mechanism of action of some GWAS variants, as highly regulated genes are less likely to show the large 
transcriptional variations observed in cis effects and may be acting as trans regulators.  

 

3) Data sharing. The authors share the significant eQTL results, but I didn’t see in the manuscript any 
sign of how are the authors going to share the eQTL full summary statistics. Since this is such a valuable 
dataset, I think the authors should at least provide the full summary statistics of all the eQTL gene-pairs, 
such as GTEx does in its website. dbGaP or EGA access to raw genotype data RNA-seq data is also 
encouraged, but summary statistics of the association should be provided even if dbGaP access is 
provided so that investigators interested in a lookup do not have to re-invent the wheel and perform the 
whole eQTL meta-analysis again. 

 

All data have now been submitted to EGA with the following accession numbers for the different 
datasets: Genotype, technical and biological covariates, and sequence data have been deposited at the 
European Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/) under the following accession 
numbers: EGAS00001003997; EGAS00001004042; EGAS00001004044; EGAS00001004056. Complete 
summary statistics for eQTL associations have been deposited and are accessible in the following link: 
https://zenodo.org/record/3408356 

 

4) Tissue specific regulatory variation in islets. The authors use p-value enrichment between the eQTLs 
identified in pancreatic islets and other tissues. The authors show that there is a positive linear 
relationship between the sample size of each tissue, and the p-value enrichment. They then claim that 
pancreas does not seem a good surrogate. However, when seing figure 1 it seems to me that pancreas is 
one of the tissues that shows higher p value enrichment compared to others of similar sample size. The 
authors claim: “This does not reflect low sample size: the number of whole pancreas samples is on a par 
with other tissues such as skin and spleen with comparable eQTL-sharing (π1 0.67, 0.61 respectively).” I 
disagree with this statement as skin and spleen have way different sample sizes and they both have 
lower π1. Actually, the skin that shows has actually close to 300 samples, so almost double than 
Pancreas. Since I believe that this is a very relevant question, could the authors develop a new method 
for tissue sharing that does not depend us much on sample sizes, i. e. based on effect sizes, rather than 
sample sizes? Would, for example cross-phenotype LD-score regression type of analysis be suitable to 
assess that? 

 

https://www.ebi.ac.uk/ega/
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To create an estimate of enrichment that is not biased by sample size, we limited ourselves to those GTEx 
tissues with more than 149 samples, randomly chose 149 samples for each of those, and repeated the 
eQTL mapping. To calculate confidence intervals for our pi1 estimates, we then bootstrapped the eQTL p 
values 1000 times, shown in the figure below. This analysis found pancreas to be the third most similar 
tissue (right of the plot), after adipose visceral and aorta, but the wide overlapping confidence intervals 
mean that these tissue differences were not significant. In addition, it is possible that exocrine 
contamination of islet preparations biases our similarity estimates towards pancreas and islets being 
more similar that they are would be had we pure samples of each (see supplementary methods note, 
page 2 and 3).   

 

Therefore, we stand by our conclusions that there is no evidence to suggest that whole pancreas is a 
better proxy tissue for islets than other tissues that show similar degree of sharing.  

Figure showing pi1 enrichment analysis with confidence intervals with eQTL comparisons from 
downsized samples (n < 149).  

 

 

5) The study of cellular heterogeneity is quite interesting. They provide 18 islet cis-eQTL that are 
dependent on genotype-by-beta-cell proportion. Did the authors use this cellular proportion as a 
covariate for the eQTL analysis? 
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No, we control using PCs for expression and genotype, which is currently the standard approach used by 
the field for eQTL mapping.  

 

6) Overlap with T2D and glycemic GWAS variants. I was a bit surprised that only 78 lead GWAS SNPs 
from Fuchsberger et al (2016). There have been a number of larger GWAS studies, based on individuals 
of European ancestry, many of them lead by the same senior author of this study. Why did the authors 
not use any of the more updated version of GWAS hits? Despite that, the authors show that Glycemic 
T2D variants and T2D (beta-cell cluster) variants, only show enrichment in islet, but not in Pancreas or 
any other tissue. This is, in my opinion, the most relevant result and what convinced me that eQTLs in 
pancreatic islets are important. Perhaps mentioning that in the abstract is important. 

 

We used the opportunity, whilst preparing this revision, to update our analyses to accommodate the 
larger number of GWAS signals that have become available since our original analysis. These results are 
now described on pages 8 and 9.  

 

7) Functional validation of DGKB locus. I do not have a lot of experience in EMSA, but I believe that this 
experimental validation and its interpretation the should be explained more in detail as it is hard to 
follow. 

 

We have revised the text to clarify the different experiments performed to assess the functional role of 
eSNPs associated to DGKB (Page 9 to 11, and Supplemental methods page 13 and 14).  

 

8) Overall, I feel that the writing could be less verbose and more specific, as some of the paragraphs are 
difficult to follow. I would recommend to thoroughly review the text to improve clarity and consistency. 

 

We have revised the manuscript extensively to address this issue 

 

Methods: “Quality of genotyping from the shared SNPs in both arrays was assessed before imputation 
separately by removing SNPs as follows” Does that mean that only the overlapping SNPs were used 
before imputation? What was the number of overlapping SNPs between these two panels? Where all 
the samples imputed together? Or by cohort, or by panel? 
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We have included this information in the methods: Genotype imputation (page 15).  

 

 

Minor comments: 

 

- The naming of the suppl are difficult to follow, as the name does not correspond to the suppl table 
number. Also, the tables do not have caption, which would be appreciated. So I still do not know which 
table is which. 

 

We apologize for the confusion. We have now added full descriptions of the table in a supplemental note 
and corrected the numbering of the tables.  

 

- I miss in the discussion a section that tells out how much improvement was gained by augmenting the 
sample size. How much larger was the number of eQTLs identified? Was there an improvement in 
identifying eQTLs driven by low-frequency variants? How much did the number of candidate effector 
genes improve? 

 

We have extended our discussion to add this context and information (Page 12, 1st paragraph pf 
Discussion. 
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Reviewer #3 (Remarks to the Author): 

 

This manuscript describes a large eQTL dataset generated in pancreatic islets, the first such dataset I 
think that exists. It will be a useful resource for many researchers and the description of it in the 
manuscript is clear. The demonstration that cell type specificity of effects is important, and fits with 
other data in this area, and the match of cell type eQTL to previously assigned GWAS categories is a nice 
result. 

 

I have only minor comments: 

 

1)I was not familiar with the notion of p value enrichment analysis, nor the technique to perform it (p4). 
I had to go read the referenced paper, and I think it would be helpful if the authors were to include a 
brief outline of what the method intends to achieve, and how, before presenting their results. 

 

We have added text clarifying the nature of the analysis in the results before presenting the results (Page 
3, last paragraph).  

 

2) On page 5/6 eSNPs within stretch enhancers are described as having "smaller effects" (last line on 
p5). Then (top of p6) such eSNPs are described as requiring larger sample sizes for "equivalent effect 
size". This is confusing and needs clarifying. Presumably the two "effect size" used mean different things 
here (eg fold change vs variance explained?). 

 

We thank the reviewer for suggesting this clarification. We edited the text (pages 5/6) to address this. 

Briefly, we note the inverse relationship between the eQTL effect size and the number of samples 
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required to identify a significant association. Below we include a reviewer figure that shows the result of 

a power analysis to illustrate this point. As an example, if we hold power constant at 80% and MAF 

constant at 0.2, we can see that a SNP with an eQTL effect size of 0.12 can be detected with ~100 

samples, whereas a SNP with eQTL effect size of 0.08 would take >250 samples to detect. We have 

modified the original text that was on pages 5 and 6 to clarify our initially confusing phrasing and we 

thank the reviewer for pointing this out. The figure below was generated using 

https://github.com/sterding/powerEQTL. 

 

 

 

3) When this effect is discussed later (p12) it is suggested that this means that a GWAS causal variant 
sitting in an islet stretch enhancer could be misassigned to a non-islet expressed gene because its effect 
on islets differs from its effect on bystander genes in other tissues. I don't think this is shown - the 
effects of stretch enhancer SNPs to non stretch enhancer SNPs is compared within islets, but the effects 
of islet stretch enhancer SNPs on islet genes vs non-islet genes (where the stretch enhancer is not 
operating as a stretch enhancer??) are not compared. Either I have misunderstood this argument and it 
needs making clearer, or additional data are needed to support the claim. 

 

We agree with the reviewer here that our analyses do not directly test if the SNPs in non stretch 
enhancer regions in non-islet tissues might be identified as eQTL for ‘bystander’ genes in other tissues. 
For this reason, we have removed this aspect from the discussion.  

https://github.com/sterding/powerEQTL
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4) p9, discussing colocalisation of PDE8B, the authors describe the existence of two signals, which 
violates the assumption of the coloc approach. They have the data, and can condition on one of the two 
signals for each trait to test for colocalistion of the "other" signal (so 4 tests in total). If only summary 
data are available, COJO enables this. 

 

For GWAS hits, the RTC approach does account for secondary signals, and we report colocalization 
results with two levels of evidence: 1) consensus between two methods, which we agree favors primary 
signals; and 2) colocalizing signals supported with just one method, which reports any possible secondary 
signals, as those are evaluated by RTC and included in the list. In addition, we have repeated the 
colocalization analysis using the latest and most up to date T2D GWAS study available (Mahajan, 2018). 
In this study only one GWAS association is reported for the ZBED3 locus. For this signal, we find again 
evidence for colocalization (COLOC = 0.99) between the eQTL for PDE8B (rs335628), and the lead GWAS 
variant (rs4457053). RTC again failed to report evidence for colocalization.  

 

5)I would encourage the authors to complete the deposition of the data in EGA, and editors to confirm 
deposition is complete, because the sharing of this dataset will enable the widest utility for the work. 
(These authors have a previously very good record of sharing data - I'm saying this only because 
previous papers I have reviewed by other authors with "deposition in progress" have not always 
resulted in an actually deposited dataset). 

 

We have now deposited all data with the following accession numbers for the different datasets: 
Genotype, technical and biological covariates, and sequence data have been deposited at the European 
Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/) under the following accession numbers: 
EGAS00001003997; EGAS00001004042; EGAS00001004044; EGAS00001004056. Complete summary 
statistics for eQTL associations have been deposited and are accessible in the following link: 
https://zenodo.org/record/3408356 

 

 

Reviewer comments, second version: 
Reviewer #1 (Remarks to the Author): 

 

The authors have probably done the best they could to reply to the reviewers. My only addition is that 

the authors should provide please a detailed comparison of the paper by Rai et al: 

https://www.sciencedirect.com/science/article/pii/S2212877819309573 

 

What extra information/advantages are provided by the results under submission? 

 

https://www.ebi.ac.uk/ega/
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This comparison will be very valuable for the field. 

 

 

Reviewer #4 (Remarks to the Author): 

 

I think the authors have mostly addressed all the comments. But I have some minor concerns: 

 

• Figure 2B p-values: the authors wrote in the figure legend “eQTL SNPs in ATAC-seq peaks in stretch 

enhancers have significantly lower effect sizes than SNPs in ATAC-seq peaks in active TSS and typical 

enhancer states”, but the p-value of differences in absolute effects sizes between eQTLs in stretch 

enhancers and typical enhancers, according to the figure included in the manuscript, is p=0.13. Of 

note, main figures that were provided separated from the manuscript show different p-values than the 

text -see Page 5- and merged figures: p (stretch enhancers vs typical enhancers) = 0.0298 (0.13 in 

manuscript text/figures), p(stretch enhancers vs active TSS)=0.0058 (0.0034 in manuscript 

text/figures), and p(active TSS vs typical enhancer)=0.6036 (0.88 in manuscript text/figures). Please 

clarify this. 

 

• Overall results from Figure 2B and following discussion. The authors show in Figure 2B that eQTLs 

overlapping stretch enhancers had significant lower effect sizes than those in active TSS sites 

annotations. They linked these results to previous observations of regulatory elements showing 

robustness to regulatory variation. Stretch enhancers could encompass long stretches of DNA, parts of 

which do not include accessible chromatin regions that are likely to contain regulatory sequences, 

which could alter the distribution of eQTL effect sizes. The authors should assess if their conclusions 

hold true when analyzing eQTL effect sizes among other tissue-specific enhancer grouping definitions 

such as enhancer clusters or super-enhancers, or by integrating enhancer definitions using higher-

resolution accessible chromatin such as those provided by Miguel-Escalada et al. 2019. This could 

provide further support to their notion of enhancer redundancy as the most plausible underlying cause 

of low eQTL effect sizes in these enhancer domains. Thus, this might require more systematic 

analyses or toning down the Discussion. 

 

• Figure 3G: the EMSA figure does not clearly show which bands exhibit specific high binding affinity. 

Please explain which are interpreted as specific and which are not, and why. 

 

Other comments: 

• SuppTable1 corresponds to eQTLs from exon-level analysis and has 9,068 lines (9,069 with the 

header). However, in the manuscript, the authors reported 7,741 independent exon-QTLs. Please 

resolve this. 

• Page 3, is “6p” correct? “set of 7.741 exone-level islet eQTLs overlapped eQTLs detected in 44 

tissues (n > 70) version 6p of GTEx”. 

• Page 5, “interactions between genotype and cellular fraction estimates, controlling for technical 

variables (Methods)”. I was not able to find this in the Methods section, I assumed that “technical 

variables” are the same used in the eQTL mapping but this could be easily clarified. 

• Page 8. “We detected evidence for colocalization (using either method) for islet eQTLs at 46 GWAS 

loci (47 independent signals, Supp. File 1)”. SuppTable19 comprises all joint results for colocalization 

based on coloc and/or RTC and reports 53 loci (see also New_Loci_Index column). Are these the final 

results or did the authors applied additional filters? If not, this is not consistent with the text. In 

addition, the sheet’s name is not informative (the authors might double check the rest of excel 

supplementary tables). 
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• Page 11: “Three (rs7798124, rs7798360, rs7781710, Figure 3D, “Element 1”)”. Figure 3D shows 

normalized DGKB genes expression relative to allele dosage of lead eQTL. This could correspond to 

Figure 3E. 

• REF 57 is now published, no longer a preprint in biorxiv: 

https://www.sciencedirect.com/science/article/pii/S0002929720300124 

• REF 81 is wrong see: “(!!! INVALID CITATION !!! 35)”. 
  

 

Author rebuttal, second version: 

 

 Reviewer #1 (Remarks to the Author): 

 

The authors have probably done the best they could to reply to the reviewers. My only 

addition is that the authors should provide please a detailed comparison of the paper by 

Rai et al:  

https://www.sciencedirect.com/science/article/pii/S2212877819309573 

 

What extra information/advantages are provided by the results under submission? 

This comparison will be very valuable for the field. 

 

We thank the editor for this suggestion. The Rai ei al paper1 presented pancreatic islet single-

cell-combinatorial-indexing ATAC-seq (sci-ATAC-seq) data that included chromatin 

accessibility profiles in islet alpha and beta cell clusters. In our manuscript, the islet eQTLs 

were identified from RNA-seq in bulk islets and compared to integrated ATAC-seq data across 

33 bulk islet samples. For comparison with single nuclei chromatin profiles, we initially 

included beta cell ATAC-seq tracks in the current Fig. 4D. To expand on this, we now include 

two additional comparisons to the sci-ATAC data. First, we compute eQTL enrichments in the 

sets of peaks from the bulk islet and single nuclei islet alpha and beta cell clusters, which is 

represented as current Supplementary Figure 7F (also copied below). This new eQTL 

enrichment analysis is complementary and adds new information relative to the GWAS 

enrichment analysis we performed in the Rai et al. paper. Second, in the Supplementary Data 

1 file, we now also indicate if the eQTL lead SNP overlaps ATAC-seq peaks in bulk islets, alpha, 

and beta cells. 

 

Supplementary Figure 7F: eSNP fold enrichment in ATAC-seq peaks in islets and islet alpha 

and beta cells. 

https://www.sciencedirect.com/science/article/pii/S2212877819309573
https://www.zotero.org/google-docs/?0qKqwN


 
 

 

31 
 

 

 

 

 

 

 

Reviewer #4 (Remarks to the Author): 

 

I think the authors have mostly addressed all the comments. But I have some minor 

concerns: 

 

• Figure 2B p-values: the authors wrote in the figure legend “eQTL SNPs in ATAC-seq peaks 

in stretch enhancers have significantly lower effect sizes than SNPs in ATAC-seq peaks in 

active TSS and typical enhancer states”, but the p-value of differences in absolute effects 

sizes between eQTLs in stretch enhancers and typical enhancers, according to the figure 

included in the manuscript, is p=0.13. Of note, main figures that were provided separated 

from the manuscript show different p-values than the text -see Page 5- and merged figures: 

p (stretch enhancers vs typical enhancers) = 0.0298 (0.13 in manuscript text/figures), 

p(stretch enhancers vs active TSS)=0.0058 (0.0034 in manuscript text/figures), and 

p(active TSS vs typical enhancer)=0.6036 (0.88 in manuscript text/figures). Please clarify 

this.  

 

We apologize that different versions of figures were mistakenly uploaded. We have now 

updated the manuscript text and figure versions so that they are synced and consistent.  

 

• Overall results from Figure 2B and following discussion. The authors show in Figure 2B 
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that eQTLs overlapping stretch enhancers had significant lower effect sizes than those in 

active TSS sites annotations. They linked these results to previous observations of 

regulatory elements showing robustness to regulatory variation. Stretch enhancers could 

encompass long stretches of DNA, parts of which do not include accessible chromatin 

regions that are likely to contain regulatory sequences, which could alter the distribution of 

eQTL effect sizes. The authors should assess if their conclusions hold true when analyzing 

eQTL effect sizes among other tissue-specific enhancer grouping definitions such as 

enhancer clusters or super-enhancers, or by integrating enhancer definitions using higher-

resolution accessible chromatin such as those provided by Miguel-Escalada et al. 2019. This 

could provide further support to their notion of enhancer redundancy as the most plausible 

underlying cause of low eQTL effect sizes in these enhancer domains. Thus, this might 

require more systematic analyses or toning down the Discussion. 

 

We thank the reviewer for these suggestions. We note our analyses focused on open 

chromatin, defined by islet ATAC-seq, within the chromatin state annotations, including 

stretch enhancers. We labeled the x-axis of Fig. 2B to indicate this. So, the effect size 

distributions we observe arise strictly from open chromatin regions and do not represent any 

DNA segments that may contain regulatory sequences in inaccessible chromatin. We believe 

this is comparable to the “enhancer definitions using higher-resolution accessible 

chromatin” suggestion made above.  

 

We additionally performed analyses based on the datasets suggested above. Miguel-Escalada 

et al 20192 identified a ‘robust’ set of ATAC-seq peaks and partitioned these into groups such 

as active promoters, and three enhancer classes (Active Enhancer I, II and III). We also 

considered islet super enhancer segments overlapping islet robust ATAC-seq peaks presented 

in their work. We compared effect sizes of eSNPs occurring in these ATAC-seq peak 

annotations and observed that the eSNP effect sizes in accessible super enhancers are 

significantly lower than eSNP effect sizes in accessible active promoters (P=0.041), which is 

consistent with the trend  observed with stretch enhancers in Fig. 2B. We did not observe 

significant differences with the three ATAC-seq peak enhancer classes. We have included these 

comparisons in Supplementary Figure 7E (also copied below).  

 

https://www.zotero.org/google-docs/?4R0GRp
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Supplementary Figure 7E: Absolute effects sizes of eSNPs occurring in islet ATAC-seq ‘robust’ 

peak annotations such as active promoters, active enhancers I, II and III, and accessible super 

enhancers obtained from Miguel-Escalada et al 20192. The number of eSNP overlaps in each 

annotation are shown in parentheses. P values are from Wilcoxon rank sum tests.  

• Figure 3G: the EMSA figure does not clearly show which bands exhibit specific high 

binding affinity. Please explain which are interpreted as specific and which are not, and 

why.  

https://www.zotero.org/google-docs/?U3ZqFM
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We thank the reviewer for pointing out the need for clarification here. In our EMSA 

experiment, proteins that bind to probes in a non-allele-specific manner may bind to 

sequences in the probe that do not contain the variant allele, or they may bind non-

discriminately to oligonucleotides.  We have modified Fig. 3G by adding filled arrowheads that 

point to allele-specific high binding affinity and open arrowheads that point to non-allele-

specific binding.  We further edited the figure legend and text to describe the arrowheads. 

 

Figure legend editions: F) Electrophoretic mobility shift assay (EMSA) for probes 

with risk and non-risk alleles at the four SNPs overlapping the regulatory element 

validated in (E) using nuclear extract from MIN6 cells. Filled arrows, allele-

specific binding; open arrows, non-allele-specific binding of proteins to 

probes. 

Main text editions: (Figure 4F, filled arrows).  

Note: after the reviews, Figure 3 is now Figure 4.  

 

Other comments: 

 

• SuppTable1 corresponds to eQTLs from exon-level analysis and has 9,068 lines (9,069 

with the header). However, in the manuscript, the authors reported 7,741 independent 

exon-QTLs. Please resolve this. 

We apologize, there was an error during the formatting of the final file. The table has now 

being corrected. 

• Page 3, is “6p” correct? “set of 7.741 exone-level islet eQTLs overlapped eQTLs detected in 

44 tissues (n > 70) version 6p of GTEx”.  

Yes, this is correct. After the release of version 6 for internal analyses, the GTEx consortia 

modified the quantification pipeline to correct for some issues that were identify at the time. 

Since both versions are still available for some researchers, we believe is important to specify 

that our analyses were done in the final released version. This version is called 6p in the GTEx 

internal documentation. 

• Page 5, “interactions between genotype and cellular fraction estimates, controlling for 

technical variables (Methods)”. I was not able to find this in the Methods section, I assumed 

that “technical variables” are the same used in the eQTL mapping but this could be easily 

clarified.  
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We thank the reviewer for identifying this oversight from our part. The methods of that 

analysis was entirely missing. These are now fully described in the methods. 

• Page 8. “We detected evidence for colocalization (using either method) for islet eQTLs at 

46 GWAS loci (47 independent signals, Supp. File 1)”. SuppTable19 comprises all joint 

results for colocalization based on coloc and/or RTC and reports 53 loci (see also 

New_Loci_Index column). Are these the final results or did the authors applied additional 

filters? If not, this is not consistent with the text. In addition, the sheet’s name is not 

informative (the authors might double check the rest of excel supplementary tables).  

We apologize for the confusion, the table included 3 loci with discordant results between 

methods that were discussed in an earlier version of the manuscript. Those have been now 

removed from the table. We have also revised the file names, we hope they are more 

informative now. 

• Page 11: “Three (rs7798124, rs7798360, rs7781710, Figure 3D, “Element 1”)”. Figure 3D 

shows normalized DGKB genes expression relative to allele dosage of lead eQTL. This could 

correspond to Figure 3E.  

We have now corrected the text. These now belong to Figure 4. 

• REF 57 is now published, no longer a preprint in biorxiv:  

https://www.sciencedirect.com/science/article/pii/S0002929720300124 

The reference has now been updated.  

• REF 81 is wrong see: “(!!! INVALID CITATION !!! 35)”.  

We have now corrected the formatting error.  

 

 

Reviewer comments, third version:   

 

  

 

Author rebuttal, third version: 

 

https://www.sciencedirect.com/science/article/pii/S0002929720300124

