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XGBOOST

XGBoost is an implementation of the gradient boosted machine algorithm, and we utilized the 

“xgbtree” setting, which is based on an ensemble of individual decision trees. A decision tree is 

an algorithm that partitions the data by using a series of discrete cut-points that best separate 

those individuals that have the event of interest vs. those who do not. In XGBoost, these 

individual trees are sequentially combined together in order to correct for errors of the 

incumbent trees in the model. Several hyperparameters can be tuned in order to alter the 

complexity and behavior of the algorithm, including how much each individual tree is weighted 

in the model (Eta), how large each tree is allowed to grow (Max depth), and how many trees are 

included in the final model (Nround). These hyperparameters are explained in more detail below:

Eta (learning rate): This hyperparameter represents the shrinkage at each boosting step when 

new trees are added and limits the rate of learning. Smaller eta results in fewer corrections at 

each step. Grids were created to seek an optimal eta between a range of 0.01 to 0.5.

Max_depth: This parameter dictates the size and complexity of the tree. Increasing the depth of 

the tree increases complexity of the model and risks overfitting. Grid search was conducted to 

seek an optimal maximum depth between 2 and 10.

Nround: This denotes the number of individual decision trees in the final model. Increasing the 

number of trees can increase the model complexity but also increases the risk of overfitting. Grid 

search was conducted to seek the optimal number of trees between 10 and 2000.
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Ten-fold cross-validation in the training datasets using the R package caret was used to seek the 

values for each hyperparameter that maximized the area under the receiver operating 

characteristic curve (AUC). All other hyperparameters were set at default setting. 

XGBoost offers several advantages over standard regression algorithms (e.g., logistic regression) 

in that it automatically includes non-linear associations and deep interactions between variables 

in the model. It has the advantage over other gradient boosted machine implementations due to 

the fact that it implements a system of parallel tree construction which allows rapid and efficient 

processing (i.e., the “extreme” in XGBoost (“eXtreme Gradient Boosting”) refers to its 

computational efficiency. Another advantage of XGBoost is its ability to handle missing values 

automatically. On the assumption that the values are missing at random, XGBoost models have 

a unified method of dealing with these data. When constructing individual decision trees, at each 

node, the direction for missing data is selected based on learning from the data such that 

algorithm performance is maximized.(1) The missing data in this study are summarized in Table 

E8.
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Figure E1: Differences in the plasma biomarker levels in the validation dataset (SAILS) at 

baseline in the hypo-inflammatory and hyper-inflammatory phenotypes as identified by the 

clinical-classifier model developed in the primary analysis. P-values represent the Wilcoxon 

rank sum test. E1A Intercellular adhesion molecule-1 (Y-axis upper limit restricted to 2000 with 

two hyper-inflammatory observations censored). E1B Plasminogen activator factor-1 (Y-axis 

upper limit restricted to 100 with seven hyper-inflammatory observations censored). 
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Table E1. Comparison of variables between the training dataset, composed of three 
component cohorts (ARMA, ALVEOLI, FACTT) and the validation dataset (SAILS). 

PEEP = Peak end-expiratory pressure  

Training Validation
Number of patients (n) 2022 745
Sex Female (n) 901 (45%) 380 (51%)
Race

White 1409 (70%) 590 (79%)
Other 613 (30%) 155 (21%)

Body mass index (kg/m2) 27.9  7.3 30.7  10
Age (years) 50  17 54  16
Temperature (C) 38.4  1.0 38.1  1.0
Systolic Blood Pressure (mmHg) 88  17 85  16
Heart rate (bpm) 125  22 118  23
PaO2/FiO2 ratio 131  61 139  64
Tidal Volume (mL) 518  139 413  87
Minute Ventilation (L/min) 12.5  4.0 10.8  3.2
PEEP (cm H2O) 10 (5 - 12) 10 (5 - 11)
PaCO2 (mmHg) 39.1  9.6 40.3  10.8
Respiratory rate (breath/min-1) 32 (26 - 40) 32 (27 - 38)
Haematocrit (%) 30  6 30  6
White Blood Cells (103/µL) 14.7  12 15.7  12.4
Platelets (103/µL) 183  125 186  125
Sodium (mmol/L) 137  6 138  5
Creatinine (mg/dL) 1.52  1.4 1.53  1.2
Glucose (mg/dL) 129  60 125  49
Albumin (g/dL) 2.2  0.6 2.2  0.6
Bilirubin (mg/dL) 0.8 (0.5-1.7) 0.8 (0.5-1.4)
Bicarbonate (mmol/L) 21.4  5.5 21.8  5.5
ARDS Risk Factors:

Trauma 178 (9%) 6 (1%)
Sepsis 478 (24%) 145 (19%)

Aspiration 305 (15%) 49 (7%)
Pneumonia 837 (41%) 529 (71%)

Other 224 (11%) 16 (2%)
Vasopressor at Enrollment (n) 647 (32%) 407 (55%)
Hyperinflammatory phenotype 591 (29%) 277 (37%)
Ventilator Free Days 17 (0 - 23) 20 (0 - 25)
Mortality at 90 days 575 (28%) 204 (27%)
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Table E2. 2 X 2 table comparing accuracy of phenotype classification derived by the clinical 
classifier model (Round 2) to latent class analysis (LCA) derived classification in the secondary 
analysis validation dataset (FACTT) using a probability cut-offs of  0.5 to assign phenotype. 

The presented LCA-assigned phenotypes are extracted from the merged dataset combining ARMA, ALVEOLI and 
FACTT.

LCA Assigned 
Hyper-inflammatory class 

LCA Assigned 
Hypo-inflammatory Class Total

Clinical-classifier derived
Hyper-inflammatory class

213
(Sensitivity 0.86) 109 322

Clinical-classifier derived
Hypo-inflammatory Class 36 642

(Specificity 0.85) 678

Total 249 751
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Table E3. 2 X 2 table comparing phenotype classification derived by the clinical classifier 
model (Round 3) to latent class analysis (LCA) derived phenotypes in the secondary analysis 
validation dataset (ALVEOLI) a probability cut-off of  0.5 to assign phenotype. 

The presented LCA-assigned phenotypes are extracted from the merged dataset combining ARMA, ALVEOLI and 
FACTT.

LCA Assigned 
Hyper-inflammatory class

LCA Assigned 
Hypo-inflammatory Class Total

Clinical-classifier derived
Hyper-inflammatory class

136
(Sensitivity 0.82) 41 177

Clinical-classifier derived 
Hypo-inflammatory Class 29 343

(Specificity 0.89) 372

Total 165 384
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Table E4 Area under the receiver operating characteristic curves (AUC) for classifier models 
comprising of the combined sparse variable groups in the validation cohort (SAILS) of the 
primary analysis. The groups were sequentially added starting with the group with the 
highest AUC followed by the next highest. 

Classifier Model Composition Area under the curve (CI)
Laboratory only 0.917 (0.90 – 0.94)
Laboratory and Vital Signs 0.944 (0.93 – 0.96)
Laboratory, Vital Signs, and Respiratory 0.946 (0.93 – 0.96)
Laboratory, Vital Signs, Respiratory and demographics 0.950 (0.94 – 0.96)

CI: Confidence Interval
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Table E5 Model performance and accuracy of clinical-classifier Secondary Model 1 over a range of probability cut-offs in the 
validation dataset (FACTT). For each phenotype, proportions of patients, mortality at day-90 and p-values for interaction term of 
phenotypes with randomized intervention (with mortality as outcome) are also presented.  

Total patients, n (%) Mortality at day 90, n (%)
Probability

Cut-off Sensitivity Specificity Accuracy
Hypo-

inflammatory
Hyper-

inflammatory
Hypo-

inflammatory
Hyper-

inflammatory

p-value for 
treatment 
interaction

 0.3 0.89 0.80 0.82 629 (63%) 371 (37%) 123 (20%) 161 (43%) 0.0128
 0.4 0.88 0.84 0.85 659 (66%) 341 (34%) 136 (21%) 148 (43%) 0.0068*
 0.6 0.83 0.88 0.87 705 (70%) 295 (30%) 155 (22%) 129 (44%) 0.0150*
 0.7 0.77 0.92 0.88 748 (75%) 252 (25%) 168 (22%) 116 (46%) 0.0090*

* Denotes p < 0.05
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Table E6 Model performance and accuracy of clinical-classifier Secondary Model 2 over a range of probability cut-offs in the 
validation dataset (ALVEOLI). For each phenotype, proportions of patients, mortality at day-90 and p-values for interaction term 
of phenotypes with randomized intervention (with mortality as outcome) are also presented.  

Total patients, n (%) Mortality at day 90, n (%)
Probability

Cut-off Sensitivity Specificity Accuracy
Hypo-

inflammatory
Hyper-

inflammatory
Hypo-

inflammatory
Hyper-

inflammatory

p-value for 
treatment 
interaction

 0.3 0.90 0.80 0.83  324 (59%) 225 (41%) 62 (19%) 86 (38%) 0.0490*
 0.4 0.86 0.85 0.85 349 (64%) 200 (36%) 67 (19%) 81 (41%) 0.0567
 0.6 0.76 0.93 0.88 397 (72%) 152 (28%) 79 (20%) 69 (45%) 0.0061*
 0.7 0.66 0.95 0.86 419 (76%) 130 (24%) 87 (21%) 61 (47%) 0.0533

* Denotes p < 0.05
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Table E7 Model performance and accuracy of sparse model (composed of vital signs and laboratory variables) over a range of 
probability cut-offs. For each phenotype, proportions of patients, mortality at day-90 and p-values for interaction term of 
phenotypes with randomized intervention (with mortality as outcome) are also presented. A: Round 1 with SAILS as the 
validation dataset. B: Round 2 with FACTT as the validation dataset. C: Round 3 with ALVEOLI as the validation dataset.    

Total patients, n (%) Mortality at day 90, n (%)
Probability

Cut-off Sensitivity Specificity Accuracy
Hypo-

inflammatory
Hyper-

inflammatory
Hypo-

inflammatory
Hyper-

inflammatory

p-value for 
treatment 
interaction

A: Primary Analysis: SAILS as validation 
 0.3 0.85 0.88 0.87 455 (61%) 290 (39%) 95 (21%) 109 (38%) 0.9989
 0.4 0.75 0.92 0.86 497 (67%) 248 (33%) 112 (23%) 92 (37%) 0.5107
 0.6 0.60 0.98 0.84 571 (77%) 174 (23%) 133 (23%) 71 (41%) 0.1447
 0.7 0.49 0.99 0.80 602 (81%) 143 (19%) 147 (24%) 57 (40%) 0.3368

B: Secondary Analysis Model 1: FACTT as validation 
 0.3 0.87 0.79 0.81 625 (62%) 375 (38%) 135 (22%) 149 (40%) 0.0688
 0.4 0.84 0.83 0.84 665 (66%) 335 (34%) 140 (21%) 144 (43%) 0.0449*
 0.6 0.80 0.89 0.87 719 (72%) 281 (28%) 163 (23%) 121 (43%) 0.0159*
 0.7 0.76 0.91 0.87 742 (74%) 258 (26%) 171 (23%) 113 (44%) 0.0351*

C: Secondary Analysis Model 2: ALVEOLI as validation 
 0.3 0.86 0.86 0.86 355 (65%) 194 (35%) 75 (21%) 73 (38%) 0.0392*
 0.4 0.79 0.90 0.87 379 (69%) 170 (31%) 81 (21%) 67 (39%) 0.0162*
 0.6 0.67 0.95 0.87 420 (77%) 129 (23%) 86 (20%) 62 (48%) 0.0375*
 0.7 0.56 0.98 0.85 450 (82%) 99 (18%) 95 (21%) 53 (54%) 0.0136*
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Table E8. Summary of the number of missing observations in the variables used as predictors 

for the classifier models in the cohorts used in the analysis. For the primary analysis, Merge 
served as the training dataset and SAILS as the validation dataset.

ARMA ALVEOLI FACCT Merge SAILS
Number of patients 473 549 1000 2022 745
Body mass index 32 44 84 160 2
Temperature 0 1 2 3 0
Systolic Blood Pressure 1 1 2 4 0
Heart rate 0 1 2 3 0
PaO2/FiO2 ratio 1 0 0 1 0
Tidal Volume 146 42 121 309 213
Minute Ventilation 4 5 27 36 43
PEEP 0 3 4 7 22
PaCO2 34 25 39 98 12
Respiratory rate 0 1 2 3 4
Haematocrit 3 1 5 9 1
White Blood Cells 26 4 13 43 1
Platelets 5 5 8 18 0
Sodium 9 1 3 13 0
Creatinine 27 2 5 34 1
Glucose 10 4 20 34 1
Albumin 62 35 220 317 96
Bilirubin 45 33 268 346 92
Bicarbonate 4 1 15 20 5
Vasopressor at Enrollment 0 0 0 0 1
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