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Theoretical justification for the Gaussian
approximation of Vt

In the main text, we derived that the stochastic process Vt with initial condition V0 = 0
has mean κ1(t) = λv0

1
g (egt− 1) and variance κ2(t) = λv2

0
1
2g (e2gt− 1). We then assumed

that we could approximate the law (distribution) of Vt with N (κ1(t), κ2(t)), from which
we derived a probability distribution of the rebound time (see Materials and methods).
Here we will give some additional mathematical arguments to justify this approach. We
will first construct a stochastic differential equation (SDE) for Vt with jumps given by a
Poisson process with intensity λ. We then infer the master equation for the process Vt,
and use the Kramers-Moyal expansion to derive a Fokker-Planck equation for an
approximation of Vt. In the SDE for this approximation the Poisson process is replaced
by a Brownian motion with drift λ and diffusion

√
λ. The SDE for the approximation of

Vt can be solved explicitly, as it is the SDE for a transient Ornstein-Uhlenbeck (OU)
process. For more details about these techniques, see Van Kampen [1] and Steele [2].

The stochastic process Vt is the solution of the SDE

dVt = gVt dt+ v0 dNt (S1)

where Nt is a Poisson process with intensity λ. Let ρ(t, v) denote the distribution of Vt.
This distribution has a singular component as P[Vt = 0|V0 = 0] = e−λt 6= 0, i.e. the VL
is identically zero before the first recrudescence event. To avoid this complication, we
assume that v � v0. First, we derive the master equation for ρ. If Vt+h = v, and no
reactivation has occurred in the time interval (t, t+ h], then Vt must have been equal to
ve−gh. The probability that no reactivation happened within this time interval is
1− λh. On the other hand, if, with probability λh, a single reactivation did happen at
time T ∈ (t, t+ h], the viral load Vt was equal to ve−gh − v0e

g(t−T ). Conditional on
Nt+h = Nt + 1, the jump time T ∼ Uniform(t, t+ h). Taking into account that
probability is conserved, we get

ρ(t+ h, v) = ρ(t, ve−gh)e−gh(1− λh) + λh

∫ h

0

ρ(t, ve−gh − v0e
gs)e−gh

ds

h
+ o(h)
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Using the mean-value theorem for integrals, we get that for some s∗ ∈ (0, h)

ρ(t+ h, v)− ρ(t, v)

h
=
ρ(t, ve−gh)e−gh − ρ(t, v)

h

+ λe−gh
(
ρ(t, ve−gh − v0e

−gs∗)− ρ(t, ve−gh)
)

+
o(h)

h

and by taking the limit h→ 0, we find the master equation

∂

∂t
ρ(t, v) = −g ∂

∂v

[
vρ(t, v)

]
+ λ
(
ρ(t, v − v0)− ρ(t, v)

)
(S2)

As v0 is small compared to v, we can use the Kramers-Moyal expansion to approximate
the master equation. We first write

ρ(t, v − v0) = ρ(t, v)− ∂

∂v
ρ(t, v)v0 +

1

2

∂2

∂v2
ρ(t, v)v2

0 +O(v3
0)

and plug this into the master equation. When we ignore terms of order O(v3
0), this

results in the Fokker-Planck equation

∂

∂t
ρ(t, v) = −g ∂

∂v

[
(v + λv0

g )ρ(t, v)
]

+
1

2
λv2

0

∂2

∂v2
ρ(t, v)

Notice that this Fokker-Planck equation corresponds to the SDE

dVt = g
(
Vt + λv0

g

)
dt+

√
λv0 dBt (S3)

where Bt is a standard Brownian motion. Hence by taking the Kramers-Moyal
expansion, we have replaced the Poisson process in the initial SDE (Eq S1) with

√
λBt,

and we have added a drift term λv0dt. Eq S3 is up to a sign the SDE for the recurrent
OU process and can be solved in a similar fashion. Let Xt = e−gt

(
Vt + λv0

g

)
, then

dXt = e−gt
√
λv0dBt, which means that Xt = X0 +

√
λv0

∫ t
0
e−gsdBs. Therefore, Xt is

a Gaussian process with mean X0 and variance∫ t

0

(√
λv0e

−gs)2ds =
λv2

0

2g
(1− e−2gt)

Since Vt = egtXt − λv0
g , we find that Vt is a Gaussian process with mean

λv0
g (egt − 1) + V0e

gt = κ1(t) + V0e
gt and variance

λv20
2g (e2gt − 1) = κ2(t).

Alternatives to the diffusion approximation

Heuristically imposing a Gamma law

Above we have used the Kramers-Moyal expansion in the master equation for Vt to
justify replacing Vt with a transient OU process. This led to the approximate law
Vt ∼ N (κ1(t), κ2(t)). However, the third cumulant of the true process Vt is positive,
and hence Vt is right-skewed, whereas the normal distribution is not. This suggests that
we could improve the approximation of the rebound-time distribution by replacing
N (κ1(t), κ2(t)) with a right-skewed distribution. This approach is heuristic as it lacks
theoretical justification.

As an example, we consider the Gamma distribution with density
v 7→ vk−1e−v/ηη−kΓ(k)−1, where Γ denotes the Gamma function. In order to match the
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first and second moments, we must have κ1 = kη and κ2 = kη2. We therefore get the
following expressions for k and η

k =
κ2

1

κ2
=

2λ

g
tanh

(
1
2gt
)
, η =

κ2

κ1
=
v0

2

(
egt + 1

)
(S4)

Here we have used the elementary identity e2gt − 1 = (egt − 1)(egt + 1).
Write κ̃3 = 2kη3 for the third cumulant of the Gamma distribution. Using our

expression for η, we find

κ̃3 = 2κ2η =
λv3

0

2g
(e2gt − 1)(egt + 1) 6= κ3

and therefore the third cumulants of Vt and the matched Gamma distribution do not
coincide. However, the relative difference between the two cumulants κ3 and κ̃3 is
bounded, as for all t ≥ 0 we have 3

2 ≤
κ̃3

κ3
< 2. In order to see this, we notice that

κ̃3

κ3
= 3

2

e2gt + 2egt + 1

e2gt + egt + 1
= 3

2

(
1 +

1

egt + 1 + e−gt

)
→
{

3
2 as t→∞
2 as t→ 0

and that egt + 1 + e−gt is a non-decreasing function of t.
Following the same steps as with the Gaussian case, we get the following survival

function S(t) for the rebound time

S(t;λ, g, v0, `) = γ
(

2λ
g tanh( 1

2gt), 2`v
−1
0 (egt + 1)−1

)
(S5)

where γ(a, x) = 1
Γ(a)

∫ x
0
e−ssa−1ds denotes the regularized incomplete Gamma function.

To prove that S is a proper survival function, we have to show that S is a
monotonically non-increasing function of t. The derivative of S is equal to

dS

dt
=
∂γ

∂a

dk

dt
+
∂γ

∂x

d

dt
`η−1

As η and k are monotonically increasing functions of t (see Eq S4), and γ is a
monotonically non-decreasing function of x, we only have to verify that γ as a function
of a is monotonically non-increasing. Using a change of variables s = ux, and splitting
the Gamma function into the sum of two integrals, we get the following expression for
the regularized incomplete Gamma function

γ(a, x) =
I1

I1 + I2
with I1 ≡

∫ 1

0

e−uxua−1 du and I2 ≡
∫ ∞

1

e−uxua−1 du

The integrand of I1 is a monotonically non-increasing function of a, because the
integration variable u ∈ [0, 1]. Conversely, the integrand of I2 is a monotonically
non-decreasing function of a. Hence, γ monotonically decreases as a function of a. This
shows that S is indeed monotonically non-increasing.

In S3 Fig, we compare the rebound-time distribution corresponding to survival
function (Eq S5) with simulations, using three different recrudescence rates λ.
Comparing Fig 2 and S3 Fig shows that the diffusion approximation and the
Gamma-based approximation perform equally well for λ = 5 d−1, and 1 d−1. When
successful reactivation events are rare (λ = 0.2 d−1), the approximation based on the
Gamma law outperforms the diffusion approximation. However, the Gamma-based
approximation is still unable to capture the exponential tail of the time-to-rebound
distribution that is visible in the simulations with a small recrudescence rate.
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The probability-density function of the time-to-rebound distribution is equal to
f(t) = − d

dtS(t). Using e.g. Mathematica [3], it is possible to obtain an expression for f
in terms of a variety of special functions, which are not available in many other software
packages. However, if the data of interest consists solely of interval- and right-censored
rebound times and subsequent VL observations are not used to estimate the exact
instance that the VL became observable, the density f is not required and the survival
function S can be used directly (cf. [4]) to calculate the likelihood of the data.

The WKB approximation of the master equation.

In addition to the heuristic attempt to improve the approximation of the rebound-time
distribution, we here explore a more advanced approach in which we replace the
Kramers-Moyal expansion of the master equation (Eq S2) with the
Wentzel-Kramers-Brillouin (WKB) ansatz. For details about this technique, we refer to
e.g. Friedlin and Wentzell [5]. Assuming that v0 is a small parameter, the WKB ansatz

suggests that we write ρ(t, v) ∝ e−v
−1
0 S(t,v) for some function S (not to be confused

with the survival function S). When we substitute ρ = Ce−v
−1
0 S in the master equation,

and divide everything by ρv−1
0 , we get

− ∂S
∂t = −gv0 + gv ∂S∂v + λv0

[
e−v

−1
0 (S(t,v−v0)−S(t,v)) − 1

]
(S6)

We now take a first-order Taylor expansion of S(t, v − v0) = S(t, v)− v0
∂S
∂v (t, v) +O(v2

0)
around v and when we ignore terms of order O(v0), we can write

exp
(
−v−1

0 (S(t, v − v0)− S(t, v))
)
≈ exp

(
∂S
∂v

)
Again ignoring terms of order O(v0), Eq S6 simplifies to

− ∂S
∂t = gv ∂S∂v + λv0

[
exp
(
∂S
∂v

)
− 1
]

(S7)

Here we have to assume that λ−1 = O(v0) as v0 → 0, but below we will see that our
results hold for small λ as well. Hence, we have replaced the master equation for Vt,
which is both a functional and partial differential equation, with the first-order
non-linear PDE in Eq S7, which can be solved with the method of characteristics. Eq S7
has the form of a Hamilton-Jacobi equation −∂S∂t = H

(
v, ∂S∂v

)
with Hamiltonian

H(v, p) = gvp+ λv0(ep − 1) and we find the canonical equations (see e.g. [6])

dv
dt = ∂H

∂p = gv + λv0e
p

dp
dt = −∂H∂v = −gp

which can be solved explicitly. First, we find that p(t) = p0e
−gt, and we get a first order

ODE for v with time-dependent parameters and initial condition v(0) = 0. This ODE
has solution

v(t; p0) =
λv0

gp0
egt
(
ep0 − ep0e

−gt
)

(S8)

If we take the limit p0 → 0 in Eq S8, we get v(t; 0) = λv0
g (egt − 1), which is the

trajectory of the expectation of Vt. A solution of the PDE in Eq S7 can now we derived
by integrating the Lagrangian associated with H along the characteristic paths v(t; p0).
This Lagrangian L is given by

L(v, v̇) = pv̇ −H(v, p) = λv0

(
ep0e

−gt

(p0e
−gt − 1) + 1

)
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Here we write v̇ to denote the time-derivative of v. Hamilton’s principal function is then
given by the integral of the Lagrangian along a characteristic path {v(s; p0) : s ∈ [0, t]},
i.e.

S(t; p0) ≡
∫ t

0

L
(
v(s; p0), v̇(s; p0)

)
ds

= λv0t+
λv0

g

(
ep0 − ep0e

−gt

− Ei(p0) + Ei(p0e
−gt)

)
where Ei(x) ≡

∫ x
−∞ ess−1ds denotes the exponential integral. In order to find a solution

S(t, x) of Eq S7, we have to find a p0 = p0(t, x) such that v(t, p0(t, x)) = x. Then
S(t, x) = S(t; p0(t, x)).

It turns out that as an approximation of the rebound time, we can simply take

f(t;λ, g, v0, `) ∝ exp
(
−v−1

0 S(t, `)
)

(S9)

which can be made precise using the theory of large deviations [5]. In S4 Fig, we have
compared the rebound-time distribution derived using the WKB approximation with
simulated rebound times. Comparing this with Fig 2 and S3 Fig, we find a significant
improvement in the accuracy when λ is small. Hence, the WKB approximation is much
better at describing the exponential tail of the rebound-time distribution that is due to
the exponential waiting time of the first successful reactivation.

However, in order to apply this method, we have to solve the equation v(t; p0) = `
for p0, and find a constant that normalizes f in Eq S9. Both of these problems have to
be solved numerically, which makes the method difficult to implement in a
parameter-inference framework. We can somewhat simplify the equations by taking two
limits. First, the process Vt is nearly deterministic above the detection limit. This is
reflected by the fact that the Lagrangian vanishes as t becomes large. So instead of
integrating the Lagrangian from 0 to t (assuming that v(t; p0) = `), we might as well
integrate from 0 to ∞, as the contribution from the interval (t,∞) is negligible. In this
case, Hamilton’s principal function is given by

S(p0) =
λv0

g
(ep0 − 1 + Ein(−p0)) (S10)

where the function Ein(x) ≡
∫ x

0
(1− e−s)s−1ds can be expressed in terms of other

exponential integrals.
Second, we can make use of an asymptotic symmetry which is again due to the near

determinism as Vt becomes large. Let L > ` be some VL level much larger than the
LoD `. As Vt grows exponentially, it takes about 1

g log(L/`) days to reach level L

starting at LoD `. This means that the parameter p0 that solves ` = v(t; p0) must be
nearly identical to the solution of L = v

(
t+ 1

g log(L/`); p0

)
. The latter equation can be

re-arranged as

L =
λv0

gp0
egt

L

`

(
ep0 − ep0e

−gt `
L

)
After dividing by both sides of the equation by L, we can take the limit L→∞, and we
get the following equation for p0

p0 =
λv0

g`
egt(ep0 − 1) (S11)

This equation can be solved in terms of the Lambert W function. We used Eq S11
together with Eq S10 to plot the curves in S4 Fig. Despite these simplifications, using
this method for inference would still be difficult due to the unknown normalizing
constant in Eq S9.
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Incorporating within-host variation in the
exponential growth rate

In the models described above, we have assumed that the exponential growth rate g is
constant within a host. Here we generalize the model so that we can incorporate
variation in this growth rate. We assume again that recrudescence happens according to
a Poisson process at constant rate λ. At each recrudescence time Ti, a realization of the
random variable Gi is sampled, which determines the growth rate of the i-th
successfully reactivating clone. For mathematical tractability, we have to assume that
the Gi are independent from each other and from Ti and identically distributed. In
reality, this is not necessarily true, as the growth rate is related to viral fitness and
clones with a higher fitness are more likely to reactivate successfully. The viral load
process Vt at time t after treatment interruption is now given by

Vt = v0

∞∑
i=1

1[Ti,∞)(t)e
Gi(t−Ti) (S12)

Example realizations of this process are shown in S5 Fig. As before, we can derive the
cumulant-generating function K(θ) = logE[exp(θVt)], but now we have to take into
account that the growth rates Gi are random variables. We first condition on Nt = n as
before, and get

E[exp(θVt)] =

n∏
i=1

E
[
exp

(
θv0e

Gi(t−Ti)
)]

=

(
1

t

∫ t

0

E[exp(θv0e
Gs)]ds

)n
Here the expectations are conditional on Nt = n and G is identically distributed as any
one of the Gi. Now, we sum over all possible n and take the logarithm to get

K(θ) = logE[exp(θVt)] = λ

∫ t

0

E[exp(θv0e
Gs)]ds− λt (S13)

Notice that we now require that the moment generating function of v0 exp(Gs) exists,
which is true when e.g. G is bounded, but not the case for arbitrary distributions of G.
Now we can again extract the first and second cumulant by evaluating the first and
second derivative of K(θ) at θ = 0:

κ1 = λv0

∫ t

0

E[exp(Gs)]ds , κ2 = λv2
0

∫ t

0

E[exp(2Gs)]ds (S14)

Here we require that the distribution of G is well-behaved enough such that we can
interchange differentiation and taking the expectation. Again, this is true when we
make the biologically plausible assumption that G is bounded.

To proceed from here, we have to choose a probability distribution for the growth
rate G. As an example, we choose a convenient distribution that results in simple
elementary expressions for κ1 and κ2. We hypothesize that clones with a higher growth
rate (fitness) constitute a larger part of the reservoir, for instance because they could
have been more common during acute infection. The most common clone in the
reservoir has the growth rate g, and all other clones are less fit and have growth rates h
in the interval [g − u, g], with likelihood proportional to h. Hence, the distribution of G
is given by the PDF fG(h) = h

u(g−u/2)1[g−u,g](h) (see the inset of S5 Fig). The variance

of G is equal to σ2
G ≡

u2(g2−gu+u2/6)
12(g−u/2)2 and can be adjusted by choosing the width u of

the domain of G.
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With this choice for the distribution of G, we get

κ1 =
λv0

u(g − u/2)

∫ t

0

∫ g

g−u
ehshdhds =

λv0

u(g − u/2)

∫ g

g−u
(eht − 1) dh

=
λv0

g − u/2

(
egt

1− e−ut

ut
− 1

) (S15)

Notice that the factor h in the first integrand ensures that we get an elementary
expression for κ1. Similarly, we get

κ2 =
v2

0λ

2g − u

(
e2gt 1− e−2ut

2ut
− 1

)
(S16)

Now that we have expressions for the mean (κ1) and variance (κ2) of Vt, we can again
construct an approximate probability density function of the rebound time τ by
approximating the distribution of Vt with a convenient probability distribution that has
the same mean and variance. In this case, we can not take the normal distribution, as
the z-score `−κ1√

κ2
of the LoD ` is not a monotone, decreasing function of t. However, we

can still use the our heuristic Gamma law instead of a normal distribution, with

parameters k =
κ2
1

κ2
and η = κ2

κ1
. Although we could not mathematically prove that this

method resulted in a well-defined survival function and PDF, we verified numerically
that for biologically plausible parameters and time windows the survival function is
monotonically non-increasing, and that the PDF is non-negative. The resulting PDF
and survival function are compared to simulated rebound times in S6 Fig. In the same
figure, we have repeated the approximate rebound time distributions derived from the
model with a fixed growth rate g (S6 Fig, gray curves). This shows clearly that viral
rebound is delayed in the case of a variable growth rate. This is to be expected, because
the first clones that reactivate might have a smaller exponential growth rate (between
g − u and g), and take longer to reach the limit of detection. Eventually, a clone with a
growth rate close to g will successfully reactivate.
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