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Here, we present analytical expression of mILGPR model in Section [I]

1 Mathematical Derivations

We outline the process of deriving the objective cost function. The target function in our proposed model is
the logistic regression, which represents the conditional probabilities through a non-linear logistic function f(.)
defined as:
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where y; ; is the j-th element of the label vector y; and 6; is a m-dimensional weight vector for the j-th
pathway that describes the space of f(.) mapping from R™ to 2¥ (a set of pathway space with ¢ possible
pathways). The ®(x;) is the (collective) transformation function that maps an instance x; from RY to a R™
dimensional vector. The Eq[I| can be written in more a compact form as:
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Given n training samples, the average likelihood of the j-th space parameters can be written as:
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where ®(X) = [®(x1), ®(x2), ..., P(x,,)]T € R"*™ represents the design matrix and Y = [y1,y2,..yn]  is
the label matrix. Taking the log-likelihood of the Eq [3|results in the following cost function:
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For t pathways, we define the models weights matrix © = [0y, 605, ...,0;] of size m x t, and is estimated by
maximizing the cost function from datasets. Thus, the Eq[d] can be generalized to ¢t pathways as:

c(e) = max (o) (5)

Because jointly estimating © of Eq [p| in a straightforward way is intractable, we rather solve each weight
vector 0; of ©, individually. This optimization process is referred to as a local optimization technique:

C(0;) = max 1(6;) (6)

After adding a regularization term Q(6;) into Eq |§| and dropping the maximized term for notations brevity,
the following objective function:

C(0;) = 1(6;) — AQ(6;) (7)
The €2(6;) penalty term is an elastic-net, which is composed of two regularizers, namely L; and Lo, and
plugging these two terms into Eq [7] we obtain:
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where [|6;]|3 represents the Lo regularizer while the term ||6;|]1 is L; regularizer. Both terms are controlled
by . The A > 0 is a hyper-parameter that controls the trade-off between [{(6;) and the two regularization
terms.



Now, we want to choose §; so as to maximize C(6;). There are many optimizers to solve the cost function
including coordinate descent algorithm (CD) [I]. However, we adopt mini-batch gradient descent (GD) (ascent
in our adopted definition) ([2]) that converges much faster than CD [3]. The GD starts with some initial random
guess for 6;, and repeatedly performs update to maximize the cost function C'(6;), until the algorithm converges
or reaches to a cutoff threshold:
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Here, 7 is called the learning rate and w represents the current step. The update is simultaneously performed
for all values of j, i.e., (6;1,6,2,....,68;,m). This is a very natural algorithm that repeatedly takes a step in the
direction of steepest maximizing C'(6;). To update the learning parameters, we take the partial derivatives on
the right-hand side of the above equation. However, the rightmost term in Eq [§] is non-differentiable, making
the equation non-smooth. As such, we resort to solve the Eq |8| with the L, and Lo penalties, separately. The
first two terms in the right part of Eq|8|are convex and differentiable. Let us denote the right part of Eq[8]as:
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Taking the first-order derivative with respect to 6; for Eq we obtain the following formula:
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Because 6; 1 # 0 in the rightmost term of Eq we use the following defintion to obtain the gradient [4]:
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Denoting sign(6,) as the sign of the parameter vector 6,, the first order derivative of the rightmost in Eq
can be revised as:

O(=Aallts[) = —\a sign(6;) (13)
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Replacing Eq |11 and [13]in Eq[8} the first order derivatives of the objective cost function with respect to 6;
is:
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Putting Eq[14] into Eq[0} we obtain the final update algorithm:
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