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Here, we present analytical expression of mlLGPR model in Section 1.

1 Mathematical Derivations

We outline the process of deriving the objective cost function. The target function in our proposed model is
the logistic regression, which represents the conditional probabilities through a non-linear logistic function f(.)
defined as:

f(θj ,Φ(xi)) = p(yi,j = 1|Φ(xi); θj) =
exp(θ>j Φ(xi))

exp(θ>j Φ(xi)) + 1
(1)

where yi,j is the j-th element of the label vector yi and θj is a m-dimensional weight vector for the j-th
pathway that describes the space of f(.) mapping from Rm to 2Y (a set of pathway space with t possible
pathways). The Φ(xi) is the (collective) transformation function that maps an instance xi from Rd to a Rm
dimensional vector. The Eq 1 can be written in more a compact form as:

p(yi,j |Φ(xi); θj) = f(θj ,Φ(xi))
yi,j (1− f(θj ,Φ(xi)))

1−yi,j (2)

Given n training samples, the average likelihood of the j-th space parameters can be written as:

l(θj) = p(Y|Φ(X); θj)

=
1

n

n∏
i=1

p(yi,j |Φ(xi); θj)

=
1

n

n∏
i=1

(f(θj ,Φ(xi))
yi,j )(1− f(θj ,Φ(xi))

1−yi,j )

(3)

where Φ(X) = [Φ(x1),Φ(x2), ...,Φ(xn)]> ∈ Rn×m represents the design matrix and Y = [y1,y2, ...yn]> is
the label matrix. Taking the log-likelihood of the Eq 3 results in the following cost function:

ll(θj) =
1

n

n∑
i=1

(yi,jθ
>
j Φ(xi)− log(1 + exp(θ>j Φ(xi))) (4)

For t pathways, we define the models weights matrix Θ = [θ1, θ2, ..., θt] of size m × t, and is estimated by
maximizing the cost function from datasets. Thus, the Eq 4 can be generalized to t pathways as:

C(Θ) = max
Θ

ll(Θ) (5)

Because jointly estimating Θ of Eq 5 in a straightforward way is intractable, we rather solve each weight
vector θj of Θ, individually. This optimization process is referred to as a local optimization technique:

C(θj) = max
θj

ll(θj) (6)

After adding a regularization term Ω(θj) into Eq 6 and dropping the maximized term for notations brevity,
the following objective function:

C(θj) = ll(θj)− λΩ(θj) (7)

The Ω(θj) penalty term is an elastic-net, which is composed of two regularizers, namely L1 and L2, and
plugging these two terms into Eq 7 we obtain:

C(θj) = ll(θj)− λ(
1− α

2
||θj ||22 + α||θj ||1) (8)

where ||θj ||22 represents the L2 regularizer while the term ||θj ||1 is L1 regularizer. Both terms are controlled
by α. The λ > 0 is a hyper-parameter that controls the trade-off between ll(θj) and the two regularization
terms.
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Now, we want to choose θj so as to maximize C(θj). There are many optimizers to solve the cost function
including coordinate descent algorithm (CD) [1]. However, we adopt mini-batch gradient descent (GD) (ascent
in our adopted definition) ([2]) that converges much faster than CD [3]. The GD starts with some initial random
guess for θj , and repeatedly performs update to maximize the cost function C(θj), until the algorithm converges
or reaches to a cutoff threshold:

θu+1
j = θuj + η(

∂

∂θj
C(θj)) (9)

Here, η is called the learning rate and u represents the current step. The update is simultaneously performed
for all values of j, i.e., (θj,1, θj,2, ..., θj,m). This is a very natural algorithm that repeatedly takes a step in the
direction of steepest maximizing C(θj). To update the learning parameters, we take the partial derivatives on
the right-hand side of the above equation. However, the rightmost term in Eq 8 is non-differentiable, making
the equation non-smooth. As such, we resort to solve the Eq 8 with the L1 and L2 penalties, separately. The
first two terms in the right part of Eq 8 are convex and differentiable. Let us denote the right part of Eq 8 as:

Cs(θj) = ll(θj)− λ
1− α

2
||θj ||22 (10)

Taking the first-order derivative with respect to θj for Eq 10, we obtain the following formula:

∂

∂θj
Es(θj) =

∂

∂θj
(ll(θj)− λ

1− α
2
||θj ||22)

=
∂

∂θj
(

1

n

n∑
i=1

(yi,jθ
>
j Φ(xi)− log(1 + exp(θ>j Φ(xi))))

− λ(1− α)θj

=
1

n

n∑
i=1

(
∂

∂θj
(yi,jθ

>
j Φ(xi)− log(1 + exp(θ>j Φ(xi))))

− λ(1− α)θj

=
1

n

n∑
i=1

Φ(xi)(yi,j − f(θj ,Φ(xi)))− λ(1− α)θj

(11)

Because θj,k 6= 0 in the rightmost term of Eq 8, we use the following defintion to obtain the gradient [4]:

∂(−λα||θj ||1)

∂θj
=

{
λα if θj,k > 0
−λα if θj,k < 0

(12)

Denoting sign(θj) as the sign of the parameter vector θj , the first order derivative of the rightmost in Eq 12
can be revised as:

∂(−λα||θj ||1)

∂θj
= −λα sign(θj) (13)

Replacing Eq 11 and 13 in Eq 8, the first order derivatives of the objective cost function with respect to θj
is:

∂

∂θj
C(θj) =

1

n

n∑
i=1

Φ(xi)[yi,j − f(θj ,Φ(xi))]− λ[(1− α)θj + α sign(θj)] (14)

Putting Eq 14 into Eq 9, we obtain the final update algorithm:

θu+1
j = θuj + η(

1

n

n∑
i=1

Φ(xi)[yi,j − f(θj ,Φ(xi))]− λ[(1− α)θj + α sign(θj)]) (15)
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