
Supplementary - Additional Information

Abdur Rahman M. A. Basher, Ryan J. McLaughlin, and Steven J. Hallam

Here, we summarize the characteristics of different datasets used in testing (Section 1). Then, we explain
the equalized loss of accuracy metric (Section 2). Finally, additional experimental results, including features
analysis (Section 3.1), statistical analysis of pathway prediction algorithms (Section 3.2), pathway prediction
results against CAMI data (Section 3.3), and run-time performance of the inference algorithms (Section 3.4).
Please consult the primary text for the symbol definitions and the problem formulation.

1 Dataset Characteristics

We developed 12 benchmark datasets used in the experiments, with detailed characteristics summarized in
Table Dataset Characteristics. The 12 datasets cover a wide range of cases with diverse multi-label properties,
ranging from synthetic to single organism to multiple organisms.

For each dataset S, we use |S| and L(S) to represent the number of instances and pathway labels, respectively.
In addition, we also present some characteristics of the multi-label datasets, which are denoted as:

1. Label cardinality (LCard(S) = 1
n

∑i=n
i=1

∑j=t
j=1 I[Yi,j 6= −1]), where I is an indicator function. This denotes

the average number of pathways in S.

2. Label density (LDen(S) = LCard(S)
L(S) ). This is obtained by dividing LCard(S) with the number of total

pathways in S.

3. Distinct label sets (DL(S)). This notation indicates the number of distinct pathways in S.

4. Proportion of distinct label sets (PDL(S) = DL(S)
|S| ). This is obtained by dividing DL(.) with the number

of instances in S.

The notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) represent enzyme reaction level designations
as described above for pathways but for the E in S, and PLR(S) representing the ratio of L(S) to R(S). The
experimental multi-label datasets were selected to traverse the genomic information hierarchy encompassing
individual, population and community levels of cellular organization and can be compartmentalized based on
extent of manual curation and experimental validation. Datasets are ordered by increasing confidence in pathway
label information, as: 1)-golden (Section 1.1), 2)- symbiont data (Section 1.2), 3)-CAMI low complexity data
(Section 1.3), 4)- HOTS dataset (Section 1.4), and 5)- synthetic datasets (Section 1.5). The preprocessed
experimental datasets can be obtained from zenodo.org/record/3821137#.XzBSeXVKjeR

1.1 Golden Dataset

The golden dataset can be decomposed into two tiers following the structure of BioCyc. The T1 golden dataset
consisted of six PGDBs retrieved from biocyc website: EcoCyc (v21), HumanCyc (v19.5), AraCyc (v18.5),
YeastCyc (v19.5), LeishCyc (v19.5), and TrypanoCyc (v18.5). They were refined to include only those pathways
that intersect with the MetaCyc database v21 [1]. For each database, we extracted both the enzymatic reactions
and the associated pathways.

A composite golden dataset, referred to as SixDB, consisted of 63 permuted combinations of T1 PGDBs
constructed using the following formula:

|S| =
k=G∑
k=1

(
G

k

)
(1)

where |.| denotes the number of samples in S and G is the number of databases, which is 6. Although the
biological context of this data was excluded, the pathways were retained.

To better resolve the pathway set difference among the six datasets, we used UpSet [2, 3]. Figure Golden
Dataset summarizes the results where the columns of the matrix use binary circled-shaped patterns to define
the applied intersected datasets, and the bars, just above the matrix columns, represent the number of elements
in each intersection. The bars at the bottom left, plotted along the rows of the matrix, provide information
regarding the total intersection size of a dataset Figure Golden Dataset. LeishCyc contained the lowest unique
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Table A. Experimental dataset properties The notations |S|, L(S), LCard(S), LDen(S), DL(S), and
PDL(S) represent number of instances, number of pathway labels, pathway labels cardinality, pathway labels
density, distinct pathway labels set, and proportion of distinct pathway labels set for S, respectively. The
notations R(S), RCard(S), RDen(S), DR(S), and PDR(S) have similar meanings as before but for the enzymatic
reactions E in S. PLR(S) represents a ratio of L(S) to R(S). The last column denotes the domain of S.

Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain
EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707 Escherichia coli K-

12 substr.MG1655
HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370 Homo sapiens
AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337 Arabidopsis

thaliana
YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371 Saccharomyces

cerevisiae
LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397 Leishmania major

Friedlin
TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355 Trypanosoma bru-

cei
SixDB 63 37295 591.9841 0.0159 944 14.9841 210080 3334.6032 0.0159 1709 27.1270 0.1775 Composed from

six databases
Symbiont 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914 Composed of

Moranella and
Tremblaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388 Simulated mi-
crobiomes of low
complexity

HOT 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119 Metagenomic
Hawaii Ocean
Time-series (10m,
75m, 110m, and
500m)

Synset-1 15000 6801364 453.4243 0.00007 2526 0.1684 30901554 2060.1036 0.00007 3650 0.2433 0.2201 Synthetically
generated (uncor-
rupted)

Synset-2 15000 6806262 453.7508 0.00007 2526 0.1684 34006386 2267.0924 0.00007 3650 0.2433 0.2001 Synthetically gen-
erated (corrupted)

information content with 4 distinct pathways and 87 aggregate pathways intersecting other organismal genomes
in the T1 golden dataset (Table Dataset Characteristics). In contrast AraCyc data has the highest number in
both categories (271 distinct pathways and 510 aggregated pathways).

1.2 Symbiont Dataset

The symbiont dataset represents a nested bacterial symbiosis in the mealybug Planococcus citri consisting of
Candidatus Moranella endobia (GenBank NC-015735) living inside Candidatus Tremblaya princeps (GenBank
NC-015736) [4]. MetaPathways v2.5 and Pathway Tools version 21 were used to generate ePGDBs with the
default settings. The symbiotic Candidatus Moranella endobia and Candidatus Tremblaya princeps genomes
can be downloaded from GenBank under accession numbers NC-015735 and NC-015736).

1.3 CAMI Dataset

The CAMI (Critical Assessment of Metagenome Interpretation) low complexity dataset [5] is a simulated dataset
from 40 low complexity genomes. The dataset has various purposes related to evaluating the performance of
assembly, profiling, and binning applications. This dataset is placed in a lower order of purity than the previous
golden samples because it constitutes a synthetic mock community of microbiomes. MetaPathways v2.5 and
Pathway Tools version 21 were used to generate ePGDBs with the default settings. The simulated CAMI low
complexity dataset can be obtained from edwards.sdsu.edu/research/cami-challenge-datasets/.

1.4 HOTS Dataset

The the Hawaii Ocean Time-series (HOTS) dataset is composed of complex microbial communities from 25m,
75m, 110m (sunlit) and 500m (dark) ocean depth intervals [6]. Unassembled whole genome shotgun DNA
pyrosequences from HOTS (10m, 75m, 110m, and 500m) can be obtained from the NCBI Sequence Read
Archive under accession numbers SRX007372, SRX007369, SRX007370, SRX007371. MetaPathways v2.5 and
Pathway Tools version 21 were used to generate ePGDBs with the default settings.

1.5 Synthetic Samples Generation

The in silico synthetic dataset was constructed by selecting a list of pathways and then creating instances
to curate a dataset. This dataset is used to train and evaluate mlLGPR’s predictive performance. The data
generation process can be summarized in three phases:
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Figure A. Matrix layout for all possible intersections among EcoCyc, HumanCyc, AraCyc, Yeast-
Cyc, LeishCyc, and TrypanoCyc dataset. Brown circles in the matrix indicate sets that are part of the
intersection and their distributions are shown as a vertical bar above the matrix while the aggregated number
of pathways from intersected sets for each sample is represented by a horizontal bar at the bottom left.
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• Phase 1: Specifying Pathways. All available pathways from the MetaCyc database and T1 data are
collected. A list of pre-specified pathways is selected while truncating the rest. The selected pathway list
Ŷ is used for training and performance evaluation.

• Phase 2: Generation Process. We construct an instance by randomly selecting a subset of pathways
from Y, i.e., Ŷi ⊂ Y. Given Ŷi, we perform mapping onto MetaCyc to retrieve a list of enzymatic
reactions with abundances so as to generate an instance x(i). Together (x(i),y(i)) forms a synthetic sample.
Replicating this process n times results in a dataset S = {(x(i),y(i))|1 < i ≤ n}. The enzymatic reactions
are indicated by the EC (Enzyme Commission) numbers, which denote the numerical classification of
enzymes based on the reactions they catalyze. In the experiment, we consider all EC numbers, including
the incomplete ones, such as EC 1.2.3.-.

• Phase 3: Corruption Process. The corruption is explicitly applied by first selecting a sample
(x(i),y(i)), uniformly, from a newly created S. Then, for each pathway yj ∈ y(i), one of the three
options is selected: i)- retain yj , ii)- remove a list of enzymatic reactions associated with yj , or iii)- insert
a list of false enzymatic reactions to yj . This process is replicated for each individual pathway and for
every sample in S with four specific constraints (reflecting the rules definitions in PathoLogic [7]):

1. If only a single enzymatic reaction is attached to yj , we retain that pathway.

2. If a set of enzymatic reactions is unique to yj , we do not remove those unique reactions.

3. If yj is a biosynthesis pathway, we do not remove the last two enzymatic reactions from that pathway.

4. If yj is a biodegradation pathway, we do not remove the first two enzymatic reactions from yj .
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Because the set of pathways, as defined in the MetaCyc database, is unique, distinct, and reflects only
a subset of the earth’s still unexplored organismal diversity, the pathway corruption technique is adopted to
create various forms of true pathways that might be encountered in the experimental data due to the errors
propagated from the upstream data analysis. In creating the synthetic dataset, the above procedure neglects
completely the true biological rules; nonetheless, this dataset will provide a separate unbiased measurement on
the performance of mlLGPR. We created two synthetic datasets: Synset-1 that follows Phase 1 and 2 of the
generation process while the Synset-2 includes Phase 3. The number of expected pathways for both datasets is
assumed to follow the Poisson distribution with mean value equal to 500, aligning with the previous work [8].

2 ELA metric

To evaluate the effects of noise on the robustness of mlLGPR performance we employed the equalized loss of
accuracy (ELA) metric based on the work of Saez and colleagues [9] to describe the expected behavior of a
model against noise. This can be expressed as:

ELAρ = RLAρ + s(M0)

where RLAρ =
M0 −Mρ

M0
and s(M0) =

1−M0

M0

(2)

The ELA metric combines both concepts: i)- the robustness of a model, computed by RLAρ at a controlled
noise threshold ρ and ii)- the performance of a model without noise, i.e., s(M0), where 1 represents the base
accuracy.

3 Experiments

In this section, we demonstrate the performance of mlLGPR on several experiments, extending the works in
the main text. These include feature analysis, statistical results of pathway inference algorithms, pathway
prediction outputs on CAMI data, and run-time performance of all algorithms.

3.1 Analysis of Features

Features engineering for each example in a genomic dataset can be considered as a transformation process from
a raw vector, encoding enzymatic reactions, to a high-dimensional representation of data, incorporating a large
number of traits that may be well established to the domain experts, but, the relevance of these features to
a given example are often left with little/no information. To properly capture and interpret patterns from
a genomic dataset, we introduced many candidate features. Our expectation is that only a handful set of
features can characterize a specific target pathway while the majority of candidate features may be irrelevant or
redundant that do not contribute in predicting a target pathway. Since mlLGPR incorporates logistic regression
with regularization that has built-in feature selection property, we can attain a small subset of candidate relevant
features using regression coefficients associated with these features, where a higher regression value entails strong
relevancy of the associated feature to a target pathway.

In what follows, we apply a group-based features analysis using the Synset-2 training set to run a series
of ablation experiments, in a reverse manner, starting by reaction abundance features, and then incrementally
aggregating additional feature set while recording the overall predictive performance of mlLGPR-EN on a suite
of 7 T1 golden data. We use the same configurations and settings as described in the main manuscript for all
parameters in mlLGPR-EN. Note that the group-based features study is a tractable approach as opposed to
the individual feature investigation that is practically prohibitive for the multi-label learning. The results of
features ablation experiments are outlined in Table Experiments.

3.1.1 Enzymatic Reaction Abundance Features (AB)

This is the most fundamental and straightforward feature set covering enzymatic reactions with their abun-
dances. Table Experiments indicates that by incorporating this feature set, mlLGPR achieves the highest aver-
age recall on EcoCyc with a score of 0.9511 and a comparable F1-score of 0.6952. Figure Enzymatic Reaction
Abundance Features (AB) shows that this feature set (50 randomly picked) exhibit non-uniform representations
across 100 randomly selected pathways, where a darker entry entails a strong relevancy of the associated feature
to a pathway. We extend this experiment to explore features relevancy by arbitrarily picking 5 pathways with
their top 5 AB features according to regression values.

From Table Enzymatic Reaction Abundance Features (AB), the regression scores for relevant ECs to each
pathway usually tend to be high. For example, the relevant ECs for the following pathways have high scores:
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Table B. Ablation tests of mlLGPR-EN trained using Synset-2 on T1 golden datasets. AB:
abundance features, RE: reaction evidence features, PP: possible pathway features, PE: pathway evidence
features, and PC: pathway common features. mlLGPR is trained using a combination of features, represented
by mlLGPR-*, on Synset-2 training set. For each performance metric, ‘↓’ indicates the lower score is better
while ‘↑’ indicates the higher score is better.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR+AB 0.1013 0.0887 0.1025 0.0907 0.1124 0.1073 0.1412
mlLGPR+AB+RE 0.0788 0.0697 0.1101 0.0558 0.0447 0.0598 0.1348
mlLGPR+AB+PP 0.2835 0.2922 0.2898 0.2724 0.2553 0.2759 0.2842
mlLGPR+AB+PE 0.1017 0.0835 0.1002 0.0891 0.1172 0.1089 0.1387
mlLGPR+AB+PC 0.1041 0.0938 0.1409 0.0879 0.1081 0.0899 0.1844
mlLGPR+AB+RE+PP 0.2815 0.2882 0.2961 0.2648 0.2526 0.2759 0.2825
mlLGPR+AB+RE+PE 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281
mlLGPR+AB+RE+PC 0.0966 0.0732 0.1394 0.0677 0.0515 0.0625 0.1793
mlLGPR+AB+PE+PC 0.1029 0.0899 0.1441 0.0914 0.1148 0.0903 0.1820
mlLGPR+AB+RE+PE+PP 0.2019 0.2070 0.2142 0.1876 0.1884 0.1880 0.2299
mlLGPR+AB+RE+PE+PP 0.2894 0.2993 0.2953 0.2736 0.2530 0.2755 0.2838
mlLGPR+AB+RE+PE+PC 0.0954 0.0816 0.1441 0.0673 0.0451 0.0641 0.1806
mlLGPR+AB+RE+PE+PP+PC 0.2003 0.2063 0.2209 0.1924 0.1924 0.1928 0.2317

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR+AB 0.5478 0.5610 0.7390 0.5000 0.2316 0.3873 0.7323
mlLGPR+AB+RE 0.6205 0.6373 0.7275 0.6410 0.4293 0.5414 0.7412
mlLGPR+AB+PP 0.2755 0.2508 0.3926 0.2303 0.1037 0.1855 0.4300
mlLGPR+AB+PE 0.5473 0.5773 0.7495 0.5048 0.2257 0.3843 0.7402
mlLGPR+AB+PC 0.5618 0.5673 0.7810 0.5113 0.2265 0.4217 0.7650
mlLGPR+AB+RE+PP 0.2795 0.2536 0.3845 0.2375 0.1081 0.1885 0.4322
mlLGPR+AB+RE+PE 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561
mlLGPR+AB+RE+PC 0.6019 0.6926 0.7992 0.6330 0.3862 0.5362 0.7761
mlLGPR+AB+PE+PC 0.5681 0.5844 0.7645 0.4969 0.2188 0.4223 0.7727
mlLGPR+AB+RE+PE+PP 0.3241 0.3000 0.4730 0.2761 0.1309 0.2283 0.5122
mlLGPR+AB+RE+PE+PP 0.2706 0.2482 0.3870 0.2301 0.1068 0.1873 0.4309
mlLGPR+AB+RE+PE+PC 0.6065 0.6466 0.7744 0.6277 0.4237 0.5291 0.7715
mlLGPR+AB+RE+PE+PP+PC 0.3299 0.2997 0.4580 0.2701 0.1285 0.2244 0.5084

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR+AB 0.9511 0.9068 0.7608 0.9258 0.9770 0.9429 0.6775
mlLGPR+AB+RE 0.9055 0.8566 0.7275 0.8734 0.9080 0.8971 0.6774
mlLGPR+AB+PP 0.8176 0.8280 0.7961 0.8559 0.8391 0.8800 0.7696
mlLGPR+AB+PE 0.9414 0.9104 0.7569 0.9170 0.9885 0.9486 0.6795
mlLGPR+AB+PC 0.6515 0.6344 0.4196 0.6900 0.8851 0.8000 0.3827
mlLGPR+AB+RE+PP 0.8339 0.8280 0.7765 0.8690 0.8736 0.9029 0.7768
mlLGPR+AB+RE+PE 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904
mlLGPR+AB+RE+PC 0.6059 0.6057 0.4137 0.6026 0.8391 0.7200 0.3820
mlLGPR+AB+PE+PC 0.6384 0.6452 0.4137 0.6900 0.9080 0.8229 0.3923
mlLGPR+AB+PP+PC 0.6091 0.6559 0.5333 0.6594 0.7931 0.7200 0.5053
mlLGPR+AB+RE+PE+PP 0.8143 0.8423 0.7922 0.8603 0.8621 0.8914 0.7758
mlLGPR+AB+RE+PE+PC 0.6124 0.5771 0.4039 0.6332 0.8621 0.6743 0.3776
mlLGPR+AB+RE+PE+PP+PC 0.6287 0.6487 0.5137 0.6594 0.7931 0.7257 0.5074

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR+AB 0.6952 0.6932 0.7498 0.6493 0.3744 0.5491 0.6754
mlLGPR+AB+RE 0.7364 0.7309 0.7275 0.7394 0.5830 0.6753 0.6938
mlLGPR+AB+PP 0.4122 0.3850 0.5259 0.3630 0.1846 0.3065 0.5386
mlLGPR+AB+PE 0.6922 0.7065 0.7532 0.6512 0.3675 0.5470 0.6802
mlLGPR+AB+PC 0.6033 0.5990 0.5459 0.5874 0.3607 0.5523 0.4683
mlLGPR+AB+RE+PP 0.4186 0.3882 0.5143 0.3730 0.1924 0.3119 0.5422
mlLGPR+AB+RE+PE 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098
mlLGPR+AB+RE+PC 0.6039 0.6463 0.5452 0.6174 0.5290 0.6146 0.4853
mlLGPR+AB+PE+PC 0.6012 0.6133 0.5369 0.5777 0.3527 0.5581 0.4779
mlLGPR+AB+PP+PC 0.4231 0.4117 0.5014 0.3892 0.2248 0.3466 0.4857
mlLGPR+AB+RE+PE+PP 0.4062 0.3834 0.5199 0.3631 0.1901 0.3095 0.5407
mlLGPR+AB+RE+PE+PC 0.6094 0.6098 0.5309 0.6304 0.5682 0.5930 0.4805
mlLGPR+AB+RE+PE+PP+PC 0.4327 0.4100 0.4843 0.3832 0.2212 0.3428 0.4847
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Figure B. Heatmap representing regression values for 50 randomly selected enzymatic reaction
abundance features with their associated 100 randomly selected pathways. The entries is color-coded
on a gradient scale within [−1, 1] interval, where a higher intensity entry entails a higher coefficient score, and
vice versa. The horizontal axis indicates the indices of pathways, while the vertical axis represents the indices
of features.

Table C. Arbitrarily selected 5 pathways with their top 5 features according to coefficient values.
For each metric, ↑ indicates the higher score is better. Note, the underlined text represents irrelevant features.

MetaCyc Pathway # EC Coefficient ↑

TCA cycle I
(prokaryotic)

1 EC-1.1.5.4 371.7255
2 EC-6.2.1.5 183.7094
3 EC-1.3.5.1 107.8370
4 EC-1.1.1.42 81.7021
5 EC-2.3.3.1 59.3995

pregnenolone
biosynthesis

1 EC-1.3.1.29 28.5392
2 EC-2.8.3.20 22.1299
3 EC-2.4.2.44 20.9005
4 EC-5.4.99.58 20.1949
5 EC-3.5.2.10 20.0073

4,5-dichlorocat-
echol
degradation

1 EC-3.1.1.45 214.7650
2 EC-1.13.11.M6 178.4025
3 EC-5.5.1.7 145.1341
4 EC-1.14.13.55 32.2769
5 EC-1.13.11.M3 29.4273

diphthamide
biosynthesis I
(archaea)

1 EC-2.1.1.98 824.8856
2 EC-2.5.1.108 548.2827
3 EC-6.3.1.14 545.2099
4 EC-2.1.1.239 47.1502
5 EC-1.11.2 46.1283

D-gluconate
degradation

1 EC-2.7.1.12 525.4430
2 EC-3.2.1.157 32.0726
3 EC-3.5.99 31.9282
4 EC-1.1.1.346 31.5193
5 EC-4.2.1.11 31.2862
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Figure C. Heatmap representing regression values for 68 enzymatic reaction evidence features
with their associated 100 randomly selected pathways. The entries is color-coded on a gradient scale
within [−1, 1] interval, where a higher intensity entry entails a higher coefficient score, and vice versa. The
horizontal axis indicates the indices of pathways, while the vertical axis represents the indices of features.

TCA cycle I (prokaryotic), 4,5-dichlorocatechol degradation, and diphthamide biosynthesis I (archaea). Since
ECs were not associated with pregnenolone biosynthesis pathway, all the corresponding ECs are considered
irreverent.

Based on these results, we confirm that mlLGPR was able to retrieve the top 5 relevant ECs to pathways.
Furthermore, the AB feature set is demonstrated to be the most essential to recovering pathways. However,
solely relying on this feature set may enforce mlLGPR to neglect pathways that have low number or no enzymatic
reactions. A potential solution is to aggregate additional features as examined in the following sections.

3.1.2 Adding Enzymatic Reaction Evidence Features (+RE)

The enzymatic reaction evidence (RE) features describe the properties of enzymatic reactions participating in
pathways, as encoded in MetaCyc v21. A total of 68 features were defined. Some RE features test the fraction
of ECs present in pathways while other features compute the fraction of some ECs being present in either at the
beginning of specific pathways (e.g. biodegradation pathways) or at the rear of some pathways (e.g. biosynthesis
pathways). We refer readers to the supplementary file for the full description of this feature set. As shown in
Table Experiments, the addition of RE features on top of AB features resulted in substantial improvements of
mlLGPR on YeastCyc, LeishCyc, and TrypanoCyc, recording average F1 scores of 0.7394, 0.5830, and 0.6753,
respectively. While mlLGPR+AB+RE marginally outperformed mlLGPR+AB on EcoCyc, HumanCyc, and
SixDB, its performance on AraCyc data was reduced, resulting in an average F1 score of 0.7275. The coefficients
of this feature set are seen to have a uniform representation across pathways as indicated in Figure Adding Enzy-
matic Reaction Evidence Features (+RE). Moreover, 6 RE features (fraction-total-possible-pathways-to-distinct-
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Table D. Arbitrarily selected 5 pathways with their top 5 RE features values. For each metric, ↑
indicates the higher score is better.

MetaCyc Pathway # Enzymatic Reaction Evidence Feature Coefficient ↑

TCA cycle I
(prokaryotic)

1 fraction-total-ecs-act-as-final-reactions 0.3512
2 fraction-total-ec-act-in-biosynthesis-pathway 0.3362
3 fraction-total-ecs-act-as-initial-reactions 0.3016
4 num-distinct-reactions-present-or-orphaned-in-pathways 0.1983
5 fraction-ec-contributes-in-subpathway-over-total-pathways 0.1642

pregnenolone
biosynthesis

1 fraction-total-ecs-contribute-in-subpathway-as-inside-superpathways 2.6116
2 fraction-total-ecs-act-as-initial-and-final-reactions 1.6005
3 has-distinct-ecs-present-in-pathways 0.2216
4 majority-of-ecs-present-in-pathways 0.2096
5 fraction-total-distinct-ecs-act-as-initial-reactions 0.1860

4,5-dichlorocat-
echol
degradation

1 fraction-total-ecs-act-in-deg-or-detox-pathway 0.3034
2 fraction-total-ecs-to-total-reactions 0.2434
3 fraction-total-ecs-act-as-initial-and-final-reactions 0.2273
4 majority-of-ecs-absent-in-pathways 0.2202
5 fraction-total-ecs-contribute-in-subpathway-as-inside-superpathways 0.1965

diphthamide
biosynthesis I
(archaea)

1 fraction-total-ecs-act-as-initial-reactions 0.6000
2 fraction-total-ecs-act-as-final-reactions 0.4972
3 fraction-total-ec-act-in-biosynthesis-pathway 0.4559
4 fraction-ec-contributes-in-subpathway-over-total-pathways 0.2704
5 majority-of-ecs-present-in-pathways 0.2676

D-gluconate
degradation

1 fraction-total-ecs-act-as-final-reactions 0.6994
2 fraction-total-ecs-act-as-initial-reactions 0.6768
3 fraction-total-ec-contribute-in-unique-reaction 0.5939
4 fraction-total-ec-act-in-biosynthesis-pathway 0.5577
5 fraction-total-ecs-to-ecs-mapped-to-single-pathways 0.4574

pathways, fraction-total-pathways-over-total-ecs, fraction-total-pathways-over-distinct-ec, fraction-total-distinct-
pathways-over-distinct-ec, fraction-total-reactions-over-distinct-pathways, fraction-distinct-reaction-over-distinct-
pathways) are distinctly associated with 5 pathways (polyhydroxybutanoate biosynthesis, oligomeric urushiol
biosynthesis, pyruvate fermentation to acetone, cob(II)yrinate a,c-diamide biosynthesis I (early cobalt inser-
tion), and dimethylsulfoniopropanoate degradation II (cleavage)), which are all found to be relevant.

Similar to the previous section, Table Adding Enzymatic Reaction Evidence Features (+RE) shows the
5 selected pathways with their associated top RE features, where mlLGPR+AB+RE was able to retrieve
top 5 relevant features associated with these pathways, thereby, supporting our previous observation. For
example, the fraction-total-ec-act-in-biosynthesis-pathway feature for the TCA cycle I (prokaryotic) pathway
is ranked third with a score of 0.3362. This feature describes fractions of total ECs contributing to this
biosynthetic pathway. For 4,5-dichlorocatechol degradation pathway, its top 4 features (fraction-total-ecs-act-
in-deg-or-detox-pathway, fraction-total-ecs-to-total-reactions, fraction-total-ecs-act-as-initial-and-final-reactions,
and majority-of-ecs-absent-in-pathways) are all relevant. These results demonstrate that by incorporating RE
features on top of AB features the performance of mlLGPR was improved.

3.1.3 Adding Pathway Evidence Features (+PE)

The pathway evidence (PE) features include both categorical and numerical features, which are expected to
capture various properties of pathways, as defined in MetaCyc v21. A total of 32 PE features were defined.
The description about this feature set is provided in the supplementary file. As before, we train mlLGPR-EN
model by incorporating PE features on top of AB features while evaluating the model’s performance. From
Table Experiments, we exhibit a similar trend as with mlLGPR+AB+RE, except for LeishCyc where the
performance of mlLGPR+AB+PE model drops drastically recording an average F1 score of 0.3675 which is
similar to mlLGPR+AB. This suggests that PE features are as effective as RE features for some samples while
shares the strengths of AB features for other data (see Figure. Adding Pathway Evidence Features (+PE)
for non-uniform scores representation of PE features). Moreover, the top 10 PE features span across many
pathways, as shown in Table Adding Pathway Evidence Features (+PE). In summary, the PE feature set shares
similar behaviors as RE features, implying fusing AB, RE, and PE features may escalate pathway prediction
performance as discussed in Section Gradually Aggregating All Possible Combinations of Previous Features.
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Figure D. Heatmap representing regression values for 32 pathway evidence features with their
associated 100 randomly selected pathways. The entries is color-coded on a gradient scale within [−1, 1]
interval, where a higher intensity entry entails a higher coefficient score, and vice versa. The horizontal axis
indicates the indices of pathways, while the vertical axis represents the indices of features.

Table E. Most common 10 PE features shared among 2526 pathways.

Pathway Evidence Feature Number of Pathways
majority-of-ecs-absent-in-pathway 851
all-initial-ecs-present-in-deg-or-detox-pathway 832
ecs-mostly-present-in-pathway 828
all-initial-and-final-ecs-present-in-pathway 818
prob-ecs-mostly-present-in-pathway 808
all-ecs-present-in-pathway 807
one-ec-present-but-in-minority-in-pathway 803
has-distinct-ecs-present-in-pathway 800
most-ecs-absent-not-distinct-in-pathway 800
fraction-reactions-present-or-orphaned-distinct-in-pathway 799

3.1.4 Adding Possible Pathway (+PP) and Pathway Commmon (+PC) Features

The possible pathway (PP) features capture the likeliness of pathways being present in samples (conditioned
on true mappings of ECs onto pathways) while the pathway common features are designated to recognize (mis-
)matches between a list of ECs from samples and the true mappings of pathways to ECs. The purpose here is
of twofold: i)- if a set of pathways exceeding a specific threshold (0.5 in this experiment) then these pathways
are more likely to occur in a sample and ii)- for any pathway, if its true ECs are found to be present then that
pathway may also be present in a given example.

By training mlLGPR-EN with +AB+PP and +AB+PC features, separately, on top of AB features, the two
models are observed (Table Experiments) to degrade their overall performances on T1 golden data. For example,
both models recorded average F1 scores of 0.3850 (mlLGPR+AB+PP) and 0.5990 (mlLGPR+AB+PC) on
HumanCyc sample which are significantly worse than the score obtained for mlLGPR+AB (0.6932). These
results indicate that both features are irrelevant to pathways, hence, they do not contribute in learning and
neither in prediction.

3.1.5 Gradually Aggregating All Possible Combinations of Previous Features

After individual assessment of each feature set, we study the impact of aggregating all possible combinations of
features sets on mlLGPR-EN’s performances. The objective of this experiment is obtain a minimum subset of
feature categorizes that will result in the most predictive gain of mlLGPR on T1 golden datasets. From Table
Experiments, we observe that mlLGPR+AB+RE+PE achieves the best overall performances on all metrics.
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Figure E. Comparison of seven methods against each other with the Nemenyi test using CD
diagrams. Groups of methods that are not significantly different (at τ = 0.05) are connected. (a)- CD
diagram for Hamming loss. (b)- CD diagram for average precision score. (c)- CD diagram for average recall
score.(d)- CD diagram for average F1 score.

In particular, mlLGPR+AB+RE+PE ranks first with regard to average F1 scores on HumanCyc (0.7468),
LeishCyc(0.6220), TrypanoCyc (0.6768), and SixDB (0.7078). Therfore, we recommend this composition of
features in the pathway prediction task.

3.2 Statistical Analyses of Pathway Prediction Algorithms

mlLGPR performance was compared to four additional prediction methods including BASELINE, Näıve v1.2
[10], MinPath v1.2 [10] and PathoLogic v21 [7] and the results of pathway prediction were compared and ranked
using the Friedman test [11]. Let rji denote the rank of the m-th of C algorithms, based on a performance
metric discussed in the main manuscript, on the i-th of |S| dataset. Also, let Rm = 1

|S|
∑
i r
m
i be the average

rank for the m-th algorithm under the null-hypothesis that states “all algorithms are equally likely to perform”.
Then, the Friedman statistic is distributed according to the F-distribution with C − 1 and (C − 1)(|S| − 1)
degrees of freedom:

FF =
(|S| − 1)χ2

F

|S|(C− 1)− χ2
F

where χ2
F =

12|S|
C(C + 1)

[
∑
m

R2
m −

C(C + 1)2

4
]

(3)

The results of this test are summarized in Table Statistical Analyses of Pathway Prediction Algorithms.
With 7 algorithms and 7 datasets, the critical value of FF (6, 36) at significance level τ = 0.05 is 2.3638, so we
reject the null-hypothesis in terms of all metrics because their FF values are higher than the critical value.

Table F. Summary of the Friedman statistics FF for 7 algorithms and 7 datasets. The critical value
τ is set to 0.05 significance level.

Metric FF Critical value (τ = 0.05)
Hamming Loss 41.4783

2.3638
Average Precision 111.3000
Average Recall 57.5250
Average F1 32.1111

Consequently, we proceed with a Nemenyi (post-hoc) [11] test to analyze the relative performance among
the pathway prediction algorithms where the mlLGPR-EN is treated as the control algorithm:

Critical Difference (CD) = qτ

√
C(C + 1)

6|S|
(4)
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where qτ = 2.949 at significance level τ = 0.05, hence, the critical difference (CD) = 3.4052 (C = 7, |S| = 7)
(see the paper [11]). This means the performance of mlLGPR-EN in compare to the remaining pathway inference
algorithm is considered to be significantly different if the average ranking based on a performance metric on 7
datasets differs by more than 3.4052 CDs. Figure Statistical Analyses of Pathway Prediction Algorithms shows
the CD diagrams for four evaluation metrics at 0.05 significance level, where the average rank of each comparing
algorithm is marked along the axis. In each sub-figure, methods that are not considered significantly different
are interconnected with a thick line. In summary, among 49 comparisons (7 methods ×7 datasets), all variants
of mlLGPR statistically outperformed the other methods in terms of Hamming loss and average F1 metrics.
With regard to average precision, all variants of mlLGPR achieve statistically comparable performances with
PathoLogic, however, both mlLGPR-EN and mlLGPR-L1 have similar rankings as BASELINE, Näıve, and
MinPath in terms of average recall. These observations indicate the competitive performance of mlLGPR-EN,
against the rest of the pathway prediction algorithms, in all of the evaluation metrics.

3.3 Pathway Prediction on CAMI data

we evaluated the pathway prediction performance of mlLGPR (using elastic net penalty with reaction and
pathway evidence features) on CAMI low complexity data. Table Pathway Prediction on CAMI data shows
performance scores for mlLGPR-EN (+AB+RE+PE) on the CAMI dataset. Although recall was high (0.7827)
precision and F1 scores were low when compared to the T1 golden datasets.

Table G. Predictive performance of mlLGPR-EN with AB, RE and PE feature sets on CAMI
low complexity data.

Metric mlLGRPR-EN (+AB+RE+PE)
Hamming Loss (↓) 0.0975
Average Precision Score (↑) 0.3570
Average Recall Score (↑) 0.7827
Average F1 Score (↑) 0.4866

3.4 Run-Time Performance of Pathway Prediction Algorithms

In this section, we perform time complexity analysis of the following pathway prediction algorithms: BASE-
LINE, Näıve, MinPath, PathoLogic, and mlLGPR-EN (+AB+RE+PE). We divide our analysis according to:
preprocessing (including feature engineering), learning, and prediction time on SixDB data. Since BASELINE,
Näıve, MinPath, and PathoLogic do not incorporate learning, their associated time performances were not
reported. For PathoLogic, the preprocessing and building features are its intrinsic properties, hence, we only
report the inference time. For mlLGPR-EN, we document the learning time based on Synset-2 training set
while both preprocessing and prediction time are recorded on SixDB. The experiment was conducted using pa-
rameters settings, described in the main manuscript, on a workstation that has a 3.4-GHz Intel CPU processor
and 32GB RAM, running MAC-OS version 10 with a single threaded process.

Table H. Run-time performance (mean ± std. deviation in seconds) of each pathway prediction
method on SixDB dataset. The (–) symbol means the task is not applicable for the associated method.

Methods Preprocessing Learning Inference Total
BASELINE 49.2293± 0.3076 – 54.8320± 1.1618 104.0613± 1.4694
Näıve 50.5800± 0.3176 – 125.4297± 5.7900 176.0097± 6.1076
MinPath 50.5800± 0.3176 – 125.4297± 5.7900 176.0097± 6.1076
PathoLogic – – 14063.2027± 25.1462 14112.4320± 25.4538
mlLGPR-EN (+AB+RE+PE) 116.2113± 0.6935 51102.8850± 297.6997 2.8927± 0.0127 51221.9890± 298.4060

Table Run-Time Performance of Pathway Prediction Algorithms shows the resulted time performances
analysis. BASELINE, MinPath, and Näıve algorithms achieve comparable preprocessing and inference times,
yielding 49 − 50 and 54 − 126 seconds, respectively. PathoLogic algorithm is observed to have the worst
inference time (14063.2027 ± 25.1462), perhaps, it employs an exhaustive search over the biologically defined
rules to predict a set of true-positive pathways. For mlLGPR-EN (+AB+RE+PE), the learning is always the
slowest task consuming 51102.8850 seconds while the prediction task is considerably fast (∼ 2.8927 seconds).
Based on these results, mlLGPR has the best overall prediction time in contrast to PathoLogic which has a less
optimal prediction time.
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