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Table S1. Seed values, true values, and SMAUG results for the four-term simulation described in 
Figs. 2 and S1. Total number of steps included is 13,636. 

Parameter Seed Values True Values SMAUG Results 

Number of 
Mobility 

States 
4 4 4 

Diffusion 
Coefficients 

(µm2/s) 
 

Standard 
Deviation 

0.005, 0.03, 0.09, 0.2  
 
 

N/A 

0.005, 0.03, 0.09, 0.2  
 
 

N/A 

0.0051, 0.0305, 0.836, 0.201  
 
 

0.0003, 0.0016, 0.0082, 0.0093  

Localization 
Noise (nm) 10 ± 5 10 ± 5 {5.7, 8.8, 9.6, 13.7} 

Weight 
Fractions 

 
Standard 
Deviation 

0.25,0.25,0.25,0.25  
 
 

N/A 

0.196, 0.301, 0.291,0.212  
 
 

N/A 

0.192, 0.322, 0.251, 0.235  
 
 

0.0076, 0.0223, 0.0234, 0.0235  

Transition 
Matrix 

0.8 0.1 0.1 0

0.1 0.8 0.1 0

0 0.1 0.8 0.1

0 0.1 0.1 0.8

 
 
 
 
 
 

 

.806 .104 .090 0

.107 .801 .092 0

0 .104 .801 .095

0 .097 .097 .806

 
 
 
 
 
 

 

.812 .132 .033 .023

.069 .776 .124 .031

.023 .166 .676 .134

.022 .047 .145 .785

 
 
 
 
 
 

 

 

 

 

Table S2. Seed values, true values, and SMAUG results for the rare-states simulation in Fig. S2. 
Total number of steps included is 13,832. 

Parameter Seed Values True Values SMAUG Results 

Number of Mobility 
States 2 2 2 

Diffusion Coefficients 
(µm2/s) 

 
Standard Deviation 

0.01, 0.05  
 

N/A 

0.01, 0.05  
 

N/A 

0.0098, 0.0506  
 

0.0001, 0.0006  

Localization Noise 
(nm) 5 ± 5 5 ± 5 {4.26, 5.18} 

Weight Fractions 
 

Standard Deviation 

0.05, 0.95  
 

N/A 

0.079, 0.921  
 

N/A 

0.089, 0.911  
 

.0064, .0064  

Transition Matrix 
0.99 0.01

0.01 0.99

 
 
 

 
0.996 0.004

0.025 0.975

 
 
 

 
0.985 0.015

0.143 0.857

 
 
 
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Table S3. Theoretical values and SMAUG results for the diffusing beads experiments in Fig. S3. 
The theoretical diffusion coefficient is calculated from the Stokes-Einstein Equation. The 
theoretical weight fraction is based on taking the fraction of number of steps that came from each 
bead in the total combined data set. The theoretical transition matrix includes no transitions as the 
beads cannot spontaneously change sizes. Total number of steps included is 31,949. 

Parameter Theoretical Values SMAUG Results 

Number of Mobility 
States 3 3 

Diffusion 
Coefficients (µm2/s) 

 
Standard Deviation 

{0.182, 0.319, 0.637} 
 

N/A 

0.168, 0.329, 0.675  
 

0.0027, 0.0083, 0.0166  

Weight Fractions 
 

Standard Deviation 

{0.411, 0.350, 0.239} 
 

N/A 

{0.423, 0.358, 0.219} 
 

0.0110, 0.0119, 0.0106  

Transition Matrix 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 

0.977 0.018 0.005

0.021 0.946 0.036

0.008 0.059 0.932

 
 
 
 
 
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Table S4. Summary of measurements for TcpP-PAmCherry mobility in V. cholerae (Fig. 3). Total 
number of steps in the original dataset is 11,403.  

*Bootstrapping was performed over 100 rounds. 6% of analysis rounds yielded a 2-state model, 77% gave 
3 states, 14% gave 4 states, and 3% gave 5 states.  

§ Mean and standard deviation values are constructed by using only the runs where K = 3. A new vector 
was created from the mean outputs of each of the 77 individual runs, and the mean and standard deviation 
of that vector are reported here.   

 

 

  

Parameter 
SMAUG Results 

(All data) 

 
Parameter Bootstrap Results* 

Number of 
mobility states 3 

 Number of runs 
with K = 3 77% 

Diffusion 
Coefficients 

(µm2/s) 
 

Standard 
Deviation 

0.0054, 0.046,0.383  
 
 

0.0009, 0.0025, 0.0168  

 Mean Diffusion 
Coefficients§ 

(µm2/s) 
 

Standard 
Deviation 

0.0053, 0.043,0.355  
 
 

0.0011, 0.0043, 0.0181  

Weight 
Fractions 

 
Standard 
Deviation 

0.193, 0.537, 0.270  
 

0.0095, 0.0094, 0.0079  

 Mean Weight 
Fractions§ 

 
Standard 
Deviation 

0.171, 0.540, 0.289  
 

0.0195, 0.0164, 0.0133  

Transition 
Matrix 

.839 .122 .039

.046 .810 .145

.025 .291 .684

 
 
 
 
 

 

 
Mean Transition 

Matrix§ 

.872 .108 .020

.042 .799 .159

.016 .329 .655

 
 
 
 
 
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Figure S1. Full SMAUG analysis for simulated data. A) Estimates of the weight fraction for each 
term (sorted in order of increasing diffusion coefficient) as the algorithm progresses. Black lines are 
the simulation true values (Table S1). B – E) Histograms of the diffusion coefficient estimates for each 
of the 4 terms over the back half of iterations. F – I) Histograms of the estimates of the localization 
noise for each of the 4 terms over the back half of iterations. J – M) Histograms of the estimates of the 
weight fractions for each of the 4 terms over the back half of iterations. N – Q) Histograms of the 
estimates for the transition matrix elements giving the probability that a step in Term 1 is followed by 
a step in Term 1 on the next step (N), that a step in Term 1 transitions to a step in Term 2 (O), that a 
step in Term 1 transitions to a step in Term 3 (P), or that a step in Term 1 transitions to a step in Term 
4 (Q). Black arrows in B – Q are the true simulation values (Table S1).   
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Figure S2. Full SMAUG analysis for the rare states simulation. A) Estimated mobility states 
over the course of the analysis run. SMAUG quickly converges to the correct value of K = 2, but 
continues to explore alternative hypotheses stochastically. B) Diffusion coefficient and weight 
fraction estimates for each saved iteration in the back half of the analysis run that also meets the 
K = 2 criterion. Black dots are the true simulation values. C – D) Histograms for the estimated 
diffusion coefficient values for the simulation. E – F) Weight fraction estimates. Black arrows are 
the true simulation values (Table S2).  
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Figure S3. Full SMAUG analysis of the beads diffusing in glycerol in vitro experiments. A) 
Diffusion coefficient estimates for the analysis run. Black lines are the theoretical values for 
diffusion of beads in 50% glycerol. B) Weight fraction estimates for the analysis. Black lines are 
the true value of the number of steps from each size of bead. C) Diffusion coefficient and weight 
fraction estimates for each saved iteration in the back half of the analysis run that also meets the 
K = 3 criterion. Black dots correspond to the black lines in ‘A’ and ‘B’. D – F) histograms for the 
diffusion coefficient estimates. Black arrows represent the theoretical values (Table S3).  
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Figure S4 (previous page). Comparisons with other analysis methods in the field applied to 
the 4-state test described in the main text. A) Diffusion coefficient and weight fraction estimates 
from SMAUG analysis as in Fig. 2D. The black dots in all panels are the true simulation input 
values. B) CPD Global fit of the same dataset to K = 4 states (green dots). Smaller color-coded 
dots are the fit values from 50 bootstrapped runs of the data. C) The pEM analysis incorrectly 
determines that the system has K = 6 states. Red dots correspond to the diffusion coefficient and 
weight fraction for each of the determined 6 states. D) Results for pEM analysis as in ‘C’ but with 
K constrained to K = 4. E) vbSPT analysis of the dataset (blue points). Error bars indicate twice 
the output error from this method. F) True values and the best estimates or fits for all the methods 
presented.  

 

 

 

 

 
Figure S5. A) CtxB levels in culture supernatants after 24 h in LB media (pH 6.5, 30 ºC) show 
that LD51 expresses the same amount of CtxB protein as wild-type (WT) V. cholerae cells. B) 
Growth of WT and LD51 cells in LB (pH 6.5, 30 ºC). OD600 nm values are an average of three 
biological replicates.  
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Figure S6 (previous page). Full cluster analysis for the BCR, LAT2 and LYN molecules. A – 
F) SMAUG analysis of the diffusion coefficients and weight fractions for BCR-SiR. ‘A’ 
corresponds to the ‘Pre’ bar in Figure 4D, ‘B – E’ correspond to the middle bars, and ‘F’ 
corresponds to End. ‘A’ and ‘F’ are the same as in Figure 4C. G – L) SMAUG analysis of the 
diffusion coefficient and weight fraction for the LAT2. G corresponds to the ‘Pre’ bar in Figure 
4E, ‘H – K’ correspond to the middle bars and L corresponds to End. M – R) SMAUG analysis of 
the diffusion coefficient and weight fraction for LYN. ‘M’ corresponds to the ‘Pre’ bar in Figure 
4F, ‘N – Q’ correspond to the middle bars and ‘R’ corresponds to End. 

 

 

 

 

Figure S7. SMAUG analysis for single-molecule motion in a second B cell. A) Super-resolution 
reconstruction image of BCR-SiR (magenta) and LAT2-mEos3.2 (green) in a representative B cell 
pre-stimulation. Scale bar: 2 µm. B) Super-resolution image of the cell in ‘A’ 12.8 min post-
stimulation. Scale bar: 2 µm. C) Diffusion coefficient and weight fraction estimates for BCR 
molecules pre-stimulation and at the end of the measurement. D) Bar graphs showing the mean 
weight fraction of each identified state as a function of time for the BCR dataset. The bars labeled 
“Pre” and “End” correspond to the data in ‘C’. All other bars are labeled with the time post-
stimulation. Identified mobility states are states whose estimates overlap in diffusion coefficient 
and weight fraction. E) The bar graphs for the weight fractions of LAT2. F) The bar graphs for the 
weight fractions of Lyn. Analysis shows similar results to the cells used in Figure 4.  
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Figure S8. SMAUG results for estimating diffusion coefficients within a “continuous” 
distribution. We simulated 25 diffusive states with overlapping step size distributions and equal 
weight fractions. SMAUG, which assumes discrete populations, estimates eight clusters with 
roughly equal weight fractions; the diffusion coefficient estimates span the range of simulated 
diffusion coefficients.  
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Supplementary Note 1. Constructing simulated datasets  

The simulations used for the validation of the SMAUG algorithm have several built-in 

assumptions. Here, we discuss how these datasets are created.  

The construction of each trajectory begins by determining its length, N, by pulling a random 

number from a geometric distribution with expected value equal to 10 steps. The first step of each 

N-step trajectory is given a random diffusive state by assigning it a random integer from 1 to K. 

Steps 2 through N are assigned a diffusive state in sequence by pulling a random value from the 

uniform (0,1) range and switching into the diffusive states according to the row of the input 

transition matrix that corresponds to the state of step before. For example, if the transition matrix 

for a state indicates 50% probability of staying and 50% probability of switching, then a random 

value pull that is less that 0.5 would indicate that the next step remains in the same state as the step 

before, whereas a pulled value above 0.5 would indicate a switch. Once all steps in a trajectory 

have been separately assigned a diffusive state, the (x,y) coordinates are constructed by pulling an 

N × 2 vector of random values from a zero-mean normal with variance equal to 2DiΔt where Di is 

the converted value for D in units of pixels for our camera of the diffusive coefficient for the ith 

diffusive state.  

Summing these step size vectors constructs a basic trajectory, in a centered reference frame, that 

represents the “infinite” signal-to-noise trajectory of the simulated molecule. Next localization 

noise, is added to each set of (x,y) coordinates by adding random values (pulled from the 

distribution outlined in Berglund et al.; main text reference [17]) to the coordinate locations, using 

a pair of input values that correspond to the mean and variance of the localization noise. Finally, 

values accounting for the motion blur that occurs with an always-open acquisition window are 

added to the coordinate values as well.  

 


