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Supplementary Figure 1. Quality check for the 50 ATAC-seq data by their sequence depth, fragment 

distribution, QC score, and overlap with the public dataset. (A) The number of raw reads and percentile 

of uniquely aligned reads. The number of raw reads ranges from 80 to 260 Million for each ATAC-seq 

sample, and the percentiles of uniquely aligned reads across all samples is 45% on average. (B)  QC scores 

of all ATAC-seq samples. QC score is defined as the ratio of total reads count at TSS centered up- and 

down-stream 2-kb window to the randomly selected background [-3k,-2k] among all genes. All the 

samples reach the standard score 8, i.e., the fold change is large than 2, which shows the ATAC-seq signals 

are enriched in open chromatin regions such as promoters. (C) Insert size distribution of one example W-

1-1. The other 49 samples show a similar pattern. This fragment length distribution reveals a sharp peak 

at less than 100bp regions for nucleosome-free fragments, the second large peak is within 200bp for the 

mono-nucleosome fragment,  and more other peaks, which indicate good data quality.  (D) Correlations 

between 50 ATAC-seq samples in our hypoxia induction experiment and 40 DNase-seq samples from 

ROADMAP. Correlation is calculated as the Jaccard similarity between two open region lists, i.e., the total 

length of overlap regions divided by the length of merged regions. Fro all 50 samples, the public HUVEC 
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DNase sample (~30% similarity) ranks the first compared with other tissues. Source data are provided as 

a Source Data file. 

 

 

 

 

Supplementary Figure 2. Expression profiles of HUVECs cultured in normoxia for five days reveal 

responses to being in culture for different periods of time are insignificant and negligible compared to 
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the responses to hypoxia. (A) PCA of gene expression data of HUVECs cultured in normoxia and hypoxic 

conditions for 5 time points. After batch effect adjustment, the normoxia samples (solid circles) are close 

to the hypoxia 0h samples (red samples). The largest variance revealed by PC1 is the response to hypoxia. 

The variance between normoxia samples is relatively much smaller than the hypoxia ones (hollow shapes), 

especially in 3d and 5d (PC2 11% vs PC1 75%). (B) Comparison of the number of DEGs between adjacent 

time points in normoxia and hypoxia experiments. Red line indicates normoxia, while blue line represents 

hypoxia. The numbers of DEGs in hypoxia response, especially 1d vs 3d and 3d vs 5d, are significantly 

larger than in normoxia by more than 30 folds (1,000 vs 30). (C) Functional enrichment of 560 DEGs (Fold 

change >2) between 0h and 5d for the response to cell culture along time. The functional terms are 

significantly enriched in cell cycle and DNA replication ( p-value<10-40, hypergeometric test with 

Benjamini-Hochberg correction), which are not related to hypoxia response.   
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Supplementary Figure 3. Key TFs response to hypoxia by motif enrichment in chromatin accessibility 

peaks and dynamic expression levels. (A) Key TFs response to hypoxia. We listed top TFs based on their 

expression level (FPKM) and motif enrichment score (the production of -log10 p-value and fold change of 

each motif in each ATAC-seq peak list, p-values are calculated by Homer) along 5 time points. The motif 

scores are divided into 7 levels and shown by circle size, while the expression FPKM is grouped into 5 

levels with various colors. (B) Functional terms related to angiogenesis that are enriched by TFs in Fig. 1D. 

P-values are computed by hypergeometric test with Benjamini-Hochberg correction. Source data are 

provided as a Source Data file. 

 

 

 

 

 

Supplementary Figure 4. SNPs under selection in Tibetan are enriched in open regions of HUVEC and 

functional tissues of multiple tissues. (A) 111,182 SNPs under selection (FDR<0.05) are enriched in 

annotated regulatory regions such as enhancers and promoters in ENCODE. For each functional region 

set, we calculated the fold enrichment score of selection SNPs in these regions.  The below table listed 

the fold ratio and enrichment p-value. P-value is calculated using a binomial distribution with the 

distribution function (Methods). (B) Selected SNPs are enriched in peaks for all 50 ATAC-seq samples. The 

x-axis is the threshold of CMS score (defined as –log10(p-value), where p-values were calculated by Fisher’s 

method) that measures the selection status, and the y-axis denotes the fold enrichment computed by the 

ratio, defined as the number of SNPs above a certain threshold to all SNPs (threshold is 0) normalized by 
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region length (Methods). Each color refers to a time point (1-0h, 2-6h, 3-1d, 4-3d, and 5-5d), and solid 

lines are Tibetan (Adaptive (A)) samples, while dash lines are Han Chinese (Wildtype (W)). The sample 

name in legend box means population-*-time, for example, A-*-1 means the average fold enrichment 

score of all 5 adaptive samples in 0h. (C) SNPs under selection are highly enriched in HUVEC and a variety 

of cell types/tissues from ROADMAP. The FC score is calculated across 40 DNase-seq tissues from 

ROADMAP (Methods). More stringent thresholds give higher fold enrichment scores. Source data are 

provided as a Source Data file. 
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Supplementary Figure 5. Validation of vPECA predicted RE-TG regulations. (A) Distribution of the number 

of REs for each TG. Most of the genes have a small number of REs. About 5,000 genes have less than four 

REs associated with them. Only a few genes have dozens of REs.  (B) Functional enrichment of selected 

REs with differential accessibility in local time points. Functions such as stress response and metabolic 

process rank at the top. P-values were calculated by hypergeometric test with Benjamini-Hochberg 

correction. (C) The regulatory map for NQO1 shows many weakly selected SNPs are located in  REs. (D) 

NQO1's dramatic expression changes along time point and the down-regulation pattern. Data are 

presented as mean values +/- standard error (n=5). (E) Detection of new candidate genes under selection 

based on distal RE. Among vPECA predicted selected RE and TG pairs, we selected those REs with 

Pr(S=1)>0.99 and at least contains one selection SNP (Fst>0.1). Then identified distal RE, i.e., the distance 

between RE and TSS is longer than 10-kb. Finally, those genes that are not identified by current studies 

are listed. The genes are ranked by their functional score, defined as the following formulation. FS=log10 

(p of DEG)×log10 (p of DO) ×(Gene expression)×(Openness of RE)×(RE-TG correlation). NQO1 is one 

interesting gene related to oxidoreductase. (F) vPECA predicted RE-TG pairs are validated by eQTL. eQTL 

data in 44 tissues from the GTEx database are used to validate vPECA predicted pairs. Sensitivity, i.e., the 

number of predicted pairs overlap with eQTL divided by the total number of eQTL supported pair, is 

calculated as a measurement to compare two randomly selected background. The blue null distribution 

is a random selection of the same number of REs nearby expressed genes [-300k,+300k] for 1,000 times. 

The orange distribution is selected from the blue one by following the distance distribution of vPECA 

predicted RE-TG pairs. The sensitivity of vPECA predicted pairs (red dots) are significantly higher than 

randomly selected ones across all tissues (black boxplot). Boxplots are represented by minima, 25% 

quantile, median, 75% quantile, and maxima (n=1000). Source data are provided as a Source Data file. 
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Supplementary Figure 6.  The chromatin accessibility dynamics of EPAS1's REs and regulatory role 

revealed by linear regression. (A) The regulation landscape of PRKCE and EPAS1. (B)  The chromatin 

accessibility dynamics of all 23 EPAS1's REs. Red lines indicate Tibetans and blue lines are Hans. P-value 

was calculated by two-sided t-test (n=25). Data are presented as mean values +/- standard error (n=5). (C) 

Explained variance of four REs selected by linear regression of enhancer openness. Blue bars refer to the 

explained variance of EPAS1 expression by each RE independently, and the red line represents 

accumulative explained variance by the combination of REs.  E12 gains 34%  variance and E21 

complements another 20% variance. (D) Adding 4 TFs binding to the REs increases the R-square of linear 

regression from 55% to 68%. (E)  H3K27ac signals of 23 REs across 48 tissues in ROADMAP. The color bar 

demonstrates the maximal fold change of H3K27ac peaks overlap with each RE. The column bar 

"log2_EPAS1_Expr" shows EPAS1 expression in each tissue. The row "Regr_coeff" is the regression 

coefficients of RE's H3K27ac signals to gene expression, while the "Corr" row gives the cross tissue 

correlation between the H3K27ac signal of each RE and gene expression. RE specificity cross tissues is 

defined as the number of tissues that RE is active (overlap with H3K27ac peaks), and is shown in the 

"Specificity" indicator bar. Generally, higher EPAS1 expression tissues tend to have more active REs. vPECA 

predicted active REs E12 and E21 are clustered together. Source data are provided as a Source Data file. 
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Supplementary Figure 7. The HiC data for EPAS1’s active REs E7, E12, and E21. They all show RE-
promoter's interaction as the strongest signal.  
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Supplementary Figure 8. EPAS1's SNPs under positive selection and their LD linkages network. (A) SNPs 

under selection in EPAS1's active REs show differentially opened signals between two populations. The 

openness value is calculated within a 100bp bin around each SNP. Red bar indicates the samples of all 

time points with adaptive carrying genotype, while blue ones represent all wildtype homozygous samples. 

All SNPs selected as experiment candidates are differentially opened between two genotypes measured 

by t-test. Three SNPs rs141366568, rs10206434, and rs569774785  are significantly different with p-value 

<  10-3 (n=25 samples, one-sided t-test). Boxplots are represented by minima, 25% quantile, median, 75% 

quantile, and maxima. (B) Allele frequencies of rs3768729 in global populations in 1000 Genomes (Phase 

3). CDX: Chinese Dai in Xishuangbanna, CHB: Han Chinese in Beijing, CHS: Southern Han Chinese, JPT: 

Japanese in Tokyo, and KHV: Kinh in Ho Chi Minh City. (C) SNP rs141366568 may change the motif binding 

strength of SOX17. The adaptive allele G will weaken the binding score compared with wildtype. (D) 

Adaptive allele C of rs569774785 may weaken the binding strength of RORA. (E) SNP LD network in HUVEC 

(up) and ESC (down). 180 SNPs are selected in the body of EPAS1, among them 23 red SNPs are recognized 

as high Fst SNPs (Fst>0.5) and other 167 SNPs are in purple. The SNPs located in the open regions (DHS) 

are shown. If two SNPs have LD r2>0.8, there is an edge between them (white dots represent other SNPs 

in LD of 180 SNPs but not in them). There are more SNPs in open chromatin regions of HUVEC than in ESC, 

and the high Fst SNPs tend to be in a large LD region. (F) The number of selected SNPs in REs is positively 

correlated with gene expression levels across tissues. 9 genes with PCC>0.5 are listed. The fold change is 

defined as the number of high Fst SNPs per kb in context active region. Source data are provided as a 

Source Data file. 
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Supplementary Figure 9.   Validation of EPAS1’s downstream 621 TGs. (A)  The distribution of the distance 

between TG and RE in EPAS1's downstream subnetwork. Almost all REs are within the 300-kb region from 

TSS. (B) TGs of EPAS1 are enriched in DEGs (two-sided t-test FDR p<0.05 between knock-out and control) 

of lung and heart in heterozygous EPAS1 knock-out experiments in mouse 1. P-values (hypergeometric 

test) are 0.018 (37 overlap) and 0.010 (30 overlap).  (C) 621 TGs tend to be positively selected in Tibet and 

the Andean population (hypergeometric test p-value 0.025 (25 overlap) and 0.087 (17 overlap)). Genes 

under selection in the two populations are searched from 2. (D) 621 TGs tend to be enriched in 

differentially expressed genes in d5 after hypoxia pressure. DEGs at each time point are calculated by t-

test between 5 Hans and 5 Tibetans. Genes with p-value <0.05 are identified. (E) Regulatory map for NRP2. 
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(F) NRP2 promoter and enhancer regulations are validated by HiC’s chromatin interaction data between 

REs and promoter. Source data are provided as a Source Data file. Source data are provided as a Source 

Data file. 
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Supplementary Figure 10. Hypoxia oriented adaptation regulatory network and its functional 

enrichment. (A) Functional enrichment of EPAS1 oriented network. Top terms include interleukin, 

oxidative stress, and cardiac muscle tissue growth, etc. (B) Hypoxia-oriented network (refer to 

Supplement Method for the network reconstruction). The size and shape meaning of nodes is the same 

as Fig. 5.  (C) Functional enrichment of hypoxia oriented network. Top enriched terms are respiratory 

systems development, circadian clock, vasculature development, cell cycle (p-value<10-5) and other terms. 

(D) Regulatory map for G protein-coupled estrogen receptor (GPER1), which is far from the EPAS1 in the 

network. Source data are provided as a Source Data file. 

 

 

 

 

 

Supplementary Figure 11. 80 genes in the EPAS1 oriented subnetwork are positively selected at least in 
one other organism of high-altitude adaptation. Node size is proportional to the number of organisms. 
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Supplementary Figure 12. Combinatorial regulation model of active REs and active selected REs explains 

the blunted effect mechanism at the expression level. (A) Cartoon plot for the 

"Static/Unchangeable"(canonical enhancer) and "Dynamic/Changeable"(adapted enhancers) enhancers 

and their cooperation to generate down-regulation patterns. (B) Regulatory maps for NOS3, BCL6, GCH1, 

and BNIP3 show blunted expression due to both active and active selected REs. The p-values were 

calculated by two-sided t-test (n=25 samples).  Data are presented as mean values +/- standard error (n=5). 

Source data are provided as a Source Data file.  

 

 

 

 

 

Supplementary Figure 13. Mutual feedback regulation of HIF1A and EPAS1 via active REs and their 

dynamic expression pattern. The p-values were calculated by two-sided t-test (n=25 samples).  Data are 

presented as mean values +/- standard error (n=5). Source data are provided as a Source Data file. 

 

HIF1A

EPAS1

HIF1A

HIF2A

chr2_46589710_46594828

E1:chr14_61997512_62000587
E2:chr14_62213227_62222610
E3:chr14_61936485_61947129
E4:chr14_61989784_61995791

E1

E22

E2 E3 E4



Xin et al. 

 

 22 

 

Supplementary Figure 14. High-quality Hi-C samples checked by the proportion of duplicate reads and 
different contact ranges. For each sample, we removed duplicated reads, and then divided remaining 
valid reads into cis long-range (>200k), cis short-range (<200k), and trans contacts, which are 
demonstrated by a different color. (A) The proportion of duplicate reads and contact ranges in 8 original 
samples. (B) The proportion of duplicate reads and contact ranges in 4 merged samples. For each 
population (Tibetan and Han) in each time point (0h and 3d), two replicates are merged together. 
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Supplementary Figure 15. Enhancer-promoter interactions detected by the Hi-C loops for (A) SOX17, (B) 

SNAI2, and (C) IL6. 
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Supplementary Figure 16. Expression profile of TMEM247 in (A) ENCODE, (B) GTEx, and (C) 

developmental data across 6 major tissues in human 3. From the above three datasets, TMEM247 is 

mainly expressed in testis, but not in other tissues or cell lines. 
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