
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This manuscript presents a valiant effort to provide a biological interpretation for the signals of 

selection observed in Tibetan populations, particularly as they apply to the EPAS1 locus. To that 

end, they gather new data on transcript levels and chromatin dynamics in Tibetan and Han 

HUVECs exposed to hypoxia for increasing time lengths. Some of this data is then used in 

conjunction with an extension (vPECA) of a previously developed method to interpret the likely 

targets of selected regulatory elements in the Tibetan genome. This article presents a wealth of 

new data and data analysis that the authors rightly point out is key to better understanding and 

interpreting non-coding variation in human adaptation. However, this manuscript seems to fall 

apart in its attempt to apply their analytical approach to the EPAS1 locus. Several major concerns 

exist with regard to their experimental set up, the application of the method and the functional 

validation of regulatory elements. This article may hold promise as a resource or methods 

development paper, but it should not suitable for publication in Nature Communications as written. 

Major concerns: 

1.) The experimental set up for the RNAseq and ATACseq data is based on culturing cells in 

hypoxic conditions for increasing lengths of time including the 0h time point. Transcriptional or 

chromatin accessibility responses are then measured relative to different time points. This is not 

the standard set up for hypoxia response experiments where cells are cultured in parallel in 

normoxia and hypoxia for the same lengths of time. The experimental design used in this 

manuscript cannot distinguish between responses to hypoxia and responses to being in culture for 

different periods of time, which greatly complicates the interpretation of results. 

2.) With regard to the Hi-C data, it is well established that Hi-C without promoter capture identifies 

TAD boundaries, but does not have the resolution to identify actual enhancers. While the Hi-C data 

generated by the authors is valuable in its own right and may be useful in the PECA modeling, it 

cannot be used as a validation of specific enhancers, as presented – for example – in Fig. 3A. 

Incidentally, this figure is misleading because they do not represent other genes, besides EPAS1, 

that are also present within the same TAD (eg PRKCE). Also, it is unclear why in some analyses 

they use Hi-C data from previous publications and in others they use their own data. 

3.) No information is provided with regard to subjects that donated the umbilical blood cords other 

than the hospital and their self-reported ethnicity. Were they all born and raised at high altitude? 

Did the entire pregnancy take place at high altitude? Did they visit low altitude locations during the 

pregnancy or during the past 6 months? Transcript levels and chromatin conformation are 

molecular phenotypes that can be modified by environmental exposure especially in the context of 

hypoxic conditions. Was the ancestry of the donors verified by genetic analyses? 

4.) While the authors focus on a single SNP (rs3768729) and region (E22-1) which appear to show 

evidence of reduced enhancer activity and chromatin openness in the Tibetan-enriched haplotype, 

they fail to discuss other regions on the same tightly linked haplotype which show the exact 

inverse patterns in their analysis. For example, the SNPs in E20 consistently show the inverse 

effect (the wildtype allele significantly decreases enhancer activity and is associated with reduced 

chromatin openness). Within E22, the two regions/SNPs tested appear to go in opposite directions 

with regards to the adaptive alleles’ association with chromatin openness. While these may not 

entirely invalidate the overall conclusions regarding multiple enhancers contributing to the 

downregulation of EPAS1 in Tibetans, they need to be addressed rather than buried in the 

supplement. 

5.) rs3768729 which the authors describe as having a striking effect on enhancer activity, and 

putatively EPAS1 expression in Tibetans based on their reporter gene assays is a common SNP 

worldwide. The putatively adaptive allele is ancestral and segregates at .48-.58 frequency globally. 

If this SNP had such a profound effect on enhancer activity and EPAS1 expression, it is surprising 

that is has not been detected in any GWAS or eQTL study given this high frequency. The authors 

should address this point if they wish to put this SNP forward as the most probable and/or 

important causal SNP under selection at the EPAS1 locus. 



6.) The choice of cell type, while interesting, is not well justified. The authors claim the 

endothelium is hypoxia-responsive and therefore a good choice of tissue in which to assess Tibetan 

chromatin structure. This statement seems to assume either that the findings within the 

endothelium are representative of other hypoxia-responsive tissue types (which is unlikely, given 

that regulatory networks will vary between tissues) or that endothelium is the most relevant tissue 

type in which to examine hypoxia adaptation. If the latter, the authors need to do a better job of 

explaining this choice. 

7.) As far as I can tell, the reporter gene assays were performed in normoxic conditions where 

both HIF1A and HIF2A are tagged for ubiquitination and degraded. Therefore, these are not the 

appropriate conditions for validating the enhancers and SNP effects and the results highly 

questionable. 

8.) The assess the significance of the composite multiple signals the authors combine p-values 

using Fisher’s approach (lines 742-745), but this approach assumes that the p values from 

independent tests of the same hypothesis, which is clearly not the case here because SNPs are in 

LD thus not independent. 

9.) The project accession PRJNA544821 is not found in Bioproject. 

Minor Comments: 

1.) The putatively selected regulatory regions defined by vPECA are typically much larger (>1kb) 

than the regions looked at for differential openness (~200-550bp) which are again larger than the 

very short segments examined in the luciferase assays (100bp). 

2.) The cell types chosen for the luciferase assays are not endothelial and enhancer activity in 

these contexts may not be representative of the endothelial regulatory network. 

3.) In lines 360-361 the authors describe RORA as having “the second strongest signal for high-

altitude adaptation” in Ethiopian populations. However, the articles they cite for this claim 

explicitly state that while a SNP in RORA is the second strongest signal of association with Hb 

concentration in the Amhara, it has no signal of selection in their data. Therefore, the statement 

above is false or at least misleading. 

4.) The paper as written is littered with typos that would need to be fixed in a final edit. 

5.) While the Authors present a compelling data analysis pipeline, they appear to apply this model 

specifically to their Tibetan expression and chromatin accessibility data, while using publicly 

available data for the other aspects of the model. For the purposes of method development, it 

would be interesting to determine how similar the results would be if, for instance, ENCODE data 

on HUVEC expression and chromatin accessibility were used. In other words, could this tool be 

used with solely publicly available data to improve variant interpretation within a population for 

which only population genetics/ selection data existed. 

6.) Fig. 1E and 1F should show error bars. 

Reviewer #2 (Remarks to the Author): 

The manuscript by Xin et al. entitled “Chromatin accessibility landscape and regulatory network of 

high-altitude hypoxia adaptation” describes an ambitious experimental and bioinformatics effort to 

evaluate mechanisms of Tibetan high-altitude environmental adaptations that affect a wide variety 

of physiologic traits. Previous genome-wide analyses have determined that multiple genetic 

variants with strong selection signals lie within non-coding regions that include the locus encoding 

HIF-2 (EPAS1), and other critical factors promoting these adaptations. The authors aim to 

generate a map of regulatory elements that impact gene expression, even though the cell type of 

action may be unknown, as well as relevant pathways, target genes, causality, and underlying 

mechanisms. They develop a variance interpretation model by Paired Expression and Chromatin 

Accessibility data (vPECA) to identify active regulatory elements (AREs) and active selected 

regulatory elements (ASREs), impacting associated gene regulatory networks. They demonstrate 

that genome-wide hypoxia regulatory networks operate via AREs and ASREs, and use these as a 



resource to characterize the effect of genetic variants on high-altitude adaptation. Overall, this 

highly ambitious project is carefully conducted, and the conclusions are sound. I recommend 

acceptance upon addressing the following relatively minor concerns: 

1. Most importantly, while the HUVEC cell types have been carefully chosen from individuals based 

on EPAS1 and EGLN1 genotypes, the culture conditions used have one important limitation. The 

authors appropriately chose to compare their assays in 21% O2 versus 1% O2 to identify hypoxic 

regulatory networks that could be relevant to extreme oxygen deprivation. This is a necessary but 

unavoidable limitation of their experimental set-up. Clearly, Tibetans do not live at 1% O2, and 

instead exist at two-thirds 21% O2 experienced by the Han Chinese. While I understand that this 

is needed to carry out the conducted studies, it is still a limitation and should be acknowledged as 

such in both the Results and Discussion sections. 

2. Data provided on luciferase assays conducted in HEK293 and HeLa cells, while informative, do 

not really query the appropriate cell type for e.g. erythropoietin expression. These cells reside in 

the interstitium of the kidney and the assays may not reflect the physiologically relevant cell type 

in vivo. Again, there is nothing wrong with the experiments presented. It is a limitation that simply 

should be acknowledged, especially in the Discussion section. 

3. Finally, while the results are very compelling, the Discussion should include speculation about 

future mouse models that would be necessary to functionally determine the in vitro findings 

described here. 

Minor concerns: 

1. Overall, the manuscript harbors numerous grammatical errors that should be carefully edited. 

2. The authors cite reference no. 23 to describe oxygen signaling at consensus HREs. This work 

dates back to 2005, and has now been improved upon by the work of David Mole and Peter 

Ratcliffe in more recent papers. This should be revisited and updated accordingly. 

Reviewer #3 (Remarks to the Author): 

This work provided a rich data resource for open chromatin, gene expression and chromatin 

conformation profiles of Tibetan genome with hypoxia adaptation. With these datasets, they 

developed a novel variant interpretation method that prioritizes causal SNPs, and regulatory 

elements that drives essential genes responsible for hypoxia adaptation in the Tibetan population. 

In total, they generated 50 ATAC-seq and 50 RNA-seq for five Tibetan and five Han Chinese across 

five time points, 10 whole genome sequencing for the samples, and four Hi-C for selected four 

samples. The manuscript is relatively easy to follow, despite some grammar mistakes. 

My major comments are listed below: 

1. Data availability: the authors needs to provide processed data for the reviewer. Note: I am not 

asking for the raw reads, as I understand they might be sensitive data. I am asking the authors 

make the bigwig and Hi-C matrix available to the reviewer so that I can check the quality of their 

data. 

2. In Fig. 1B, the clustering analysis of gene expression shows that 0h, 6h, and 1d are separated 

better than the clustering based on ATAC-seq data. But the authors also suggested in previous 

sections that chromatin accessibility response earlier to hypoxia than gene expression. 

3. The authors identified 14 dynamically expressed TFs through motif search, however, the criteria 

for “dynamic” expression is not explained. This information is critical. 

4. How the EPAS1 RNAi experiments were done and how the RNAi result validates 621 EPAS1 

target gene in the network were not explained. 

Please have the manuscript proof-read by professional writers. There are many grammar 

mistakes. One example is listed here: in L687, “don’t consistent with.” 



Reviewer #4 (Remarks to the Author): 

Comments on 

Chromatin accessibility landscape and regulatory  

network of high-altitude hypoxia adaptation  

Jingxue Xin et al Bing Su 

This is really a timely and outstanding study. It should be publishable with only minor revisions. I 

have two questions. 

1) Speaking of gene regulatory network, one usually refers to an interaction matrix with pairwise 

interactions represented by the off-diagonal elements and each gene’s self-regulation is a diagonal 

element. As can be seen in Chen et al. (2019), the diagonal elements may play a larger role than 

the off-diagonal elements in stabilizing the gene regulatory network. I wonder what the authors 

may say about the diagonal elements in their system since they only mentioned pairwise 

interactions. 

Ref: Yuxin Chen et al. 2019 Gene regulatory network stabilized by pervasive weak repressions: 

microRNA functions revealed by the May–Wigner theory. National Science Review (NSR) 

0: 1–13, 2019 doi: 10.1093/nsr/nwz076 Advance access publication 0 2019 

2) The main corresponding author has recently published a paper (also in NSR) which suggests 

that another gene in the same region, TMEN247, may be no less important than EPAS1. While the 

results on EPAS1 may not be all that surprising, TMEN 247 may need extra support. Any 

comments? 

In short, I look forward to seeing this paper in print. 



NCOMMS-19-13152A 

 

Point-to-point responses to Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

This manuscript presents a valiant effort to provide a biological interpretation for the signals of selection 

observed in Tibetan populations, particularly as they apply to the EPAS1 locus. To that end, they gather 

new data on transcript levels and chromatin dynamics in Tibetan and Han HUVECs exposed to hypoxia for 

increasing time lengths. Some of this data is then used in conjunction with an extension (vPECA) of a 

previously developed method to interpret the likely targets of selected regulatory elements in the Tibetan 

genome. This article presents a wealth of new data and data analysis that the authors rightly point out is key 

to better understanding and interpreting non-coding variation in human adaptation. However, this 

manuscript seems to fall apart in its attempt to apply their analytical approach to the EPAS1 locus. Several 

major concerns exist with regard to their experimental set up, the application of the method and the 

functional validation of regulatory elements. This article may hold promise as a resource or methods 

development paper, but it should not suitable for publication in Nature Communications as written. 

Author’s Response: We are happy the reviewer appreciated our major contribution in statistical 

method vPECA and valuable data resources for better understanding and interpreting non-coding 

variation in human adaptation. In light of the reviewer’s suggestion, we presented more genome-wide 

examples in addition to EPAS1 locus, carefully performed additional control experiments, and added 

functional validation in hypoxia conditions in our revision. We hope these revisions will address the 

major concerns and highlight our novel strategy to use hypoxia context-specific gene regulation to 

interpret variant besides method development and data resource. 

 

Major concerns: 

1.) The experimental set up for the RNAseq and ATACseq data is based on culturing cells in hypoxic 

conditions for increasing lengths of time including the 0h time point. Transcriptional or chromatin 

accessibility responses are then measured relative to different time points. This is not the standard set up 

for hypoxia response experiments where cells are cultured in parallel in normoxia and hypoxia for the same 

lengths of time. The experimental design used in this manuscript cannot distinguish between responses to 

hypoxia and responses to being in culture for different periods of time, which greatly complicates the 

interpretation of results. 

 

Author’s Response: We thank the reviewer’s insightful comment to improve the experimental setup. 

We agree with the reviewer that our experimental design cannot distinguish between responses to 

hypoxia and being cultured in different periods of time. We performed additional experiments that 

cells are cultured in normoxia for the same lengths of time. We generated the RNA-seq data and 

analyzed it together with our previous RNA-seq data. We found that the responses to being in culture 

for different periods of time are not significant compared to the responses to hypoxia. Our main 

discovery and conclusions stand firmly. 

 

In the new experiment, we collected 2 replicates of HUVEC from one Han Chinese and cultured them 

in normoxia (21% oxygen) for five days. Other cell culture conditions are controlled the same as 

previous experiments. RNA-seq was performed on 0h, 6h, 1d, 3d, and 5d for both replicates. Then 



the raw data was processed following the same pipelines in the previous analysis. The total reads 

numbers and the alignment statistics of RNA-seq data are shown in Fig. R1A, indicating that the new 

data are in high quality. We visualized the high dimensional data in the two-dimensional plane by 

PCA. Two replicates tend to be closer and the main variance in PC1 is when cells being in culture for 

different periods of time in normoxia (Fig. R1B). This is consistent with the reviewer’s point that 

gene expression response to being in culture for different periods of time. 

  

Figure R1. Alignment report and PCA of gene expression data when cells being cultured in normoxia for 

five days. (A) Raw reads number and alignment rates of all 10 samples. The samples are named with K8-

replicate number-time. (B) PCA of FPKM expression data of cells cultured in normoxia for 5 time points. 

Two replicates are similar and cells are separated by different time periods. 

 

Next, we compared the responses to being in culture for different periods of time to the responses to 

hypoxia. We pooled the data together, carefully removed the batch effect, and checked the variations 

of gene expression data between cells being cultured under normoxia and hypoxia for both the 

previous and new experiments. We used PCA to visualize the two datasets after batch effect 

adjustment (Fig. R2). The new samples (solid circles) are close to the previous 0h samples (red 

samples). The variance between normoxia samples in the new data (solid circles) is relatively smaller 

than the hypoxia ones (hollow shapes), especially in 3d and 5d. In the PCA plot, the largest variance 

revealed by PC1 is the response to hypoxia, i.e., the difference between normoxia to hypoxia 1d and 

3-5d under hypoxia (PC1 75%). This is the same as the results in Figure 1C. PC2 shows the difference 

between samples cultured in normoxia and hypoxia along time and is a mixture of response to culture 

time and hypoxia response. There are two key observations from the plot. 1) the responses to being 

in culture at normoxia for different periods of time are not significant compared to the responses to 

hypoxia. Although cells are different between 0h and 5d when cultured under normoxia, the variance 

is much smaller than 3d-5d under hypoxia (PC1 75% vs PC2 11%). Thus, the effect that cell 

responses to hypoxia is much larger than responses to being in culture at normoxia for different 

periods of time. 2) the response to culture along time is quite independent, dramatically different, 

and not related to the response to hypoxia in PC2. They have opposite directions that originated from 

the very similar 0h samples. This indicates there are two different gene groups underlying response 

to hypoxia and response to culture time. 

RawID Aligned pairs
multiple 

alignments
discordant 
alignments

concordant pair 
alignment rate

K8-1-0d 18,247,234 726318 ( 4.0%) 380006(2.1%) 86.20%

K8-1-1d 23,809,350 910700 ( 3.8%) 589045(2.5%) 85.10%

K8-1-3d 35,531,410 1379611 ( 3.9%) 873695(2.5%) 84.80%

K8-1-5d 22,296,600 850899 ( 3.8%) 496816(2.2%) 85.10%

K8-1-6h 26,538,303 1017462 ( 3.8%) 634062(2.4%) 84.60%

K8-2-0d 28,590,994 1122397 ( 3.9%) 659410(2.3%) 85.00%

K8-2-1d 21,113,789 803179 ( 3.8%) 512453(2.4%) 84.70%

K8-2-3d 25,003,468 960084 ( 3.8%) 564613(2.3%) 84.50%

K8-2-5d 27,656,424 1038307 ( 3.8%) 592748(2.1%) 85.30%

K8-2-6h 21,763,820 833595 ( 3.8%) 523040(2.4%) 85.20%

A B



 

Figure R2. PCA of gene expression data of previous and new experiments. 

To further dissect the general patterns revealed by PCA, we compared the differentially expressed 

genes (fold change of the average value of two groups larger than 2) between different time periods 

under normoxia (new data, response to culture time) and hypoxia (previous data, response to 

hypoxia). The numbers of DEGs between adjacent time points in hypoxia response, especially 1d vs 

3d and 3d vs 5d, are significantly larger than in normoxia by more than 30 folds (the number of DEGs 

are 1,000 vs 30 in Fig. R3A). In total, we identified 560 DEGs between 0h and 5d in normoxia with 

fold change > 2. The functional terms are significantly enriched in cell cycle and DNA replication 

(Fig. R3B, p-value<10-40), which are not related to hypoxia response. 



 

Figure R3. Differentially expressed genes between hypoxia (previous data, response to hypoxia) and 

normoxia (new data, response to culture time). (A) The number of DEGs comparison between adjacent 
time points in two experiments. The red line indicates normoxia, while the blue line represents hypoxia. 

(B) Functional enrichment of 560 DEGs between 0h and 5d for response to cell culture along time. 

 

To confirm the minor culture effect and DEG numbers observed in our new data, we also checked 

the public data in the GEO database for the impact of cell culture for different periods of time. We 

collected two independent datasets for HUVEC cultured in normoxia for 1h-24h and 0min-440min. 

We found cell culture along time did not have a dramatic effect on gene expression and cell culture 

effect is minor compared to the hypoxia effect. This is consistent with our experimental data and 

support that cell culture along time will not complicate our major findings. The detailed results are 

summarized as follows. 

1. We collected the RNA-seq data of HUVEC in the GEO database with accession number 

GSE92506 (Huang, et al., 2017). This data contains static control (ST) samples for four time 

periods, 1, 4, 12, and 24 hours. Each time point contains 2 replicates. After downloading the raw 

reads count matrix, we calculated the expression FPKM value by the following formula.  

𝑭𝑷𝑲𝑴 =
𝑪𝑫𝑺 𝒓𝒆𝒂𝒅 𝒄𝒐𝒖𝒏𝒕×𝟏𝟎𝟗

𝑪𝑫𝑺 𝒍𝒆𝒏𝒈𝒕𝒉 × 𝒕𝒐𝒕𝒂𝒍 𝒎𝒂𝒑𝒑𝒆𝒅 𝒓𝒆𝒂𝒅 𝒄𝒐𝒖𝒏𝒕
, 

where CDS is the coding sequence. We filtered out genes with FPKM 0. And we calculated the 

fold change between 1h and 24h in normoxia for each gene. Then we chose the cut off 2 for each 

replicate as differentially expressed genes. 45 genes consistently change in both replicates, which 

are identified as genes affected by 24h cell culture. These genes are not related to hypoxia 

response (GO:0001666).    

2. We also collected the microarray data of HUVEC in the GEO database with accession number 

GSE21989 contributed by Di Camillo et al. HUVEC in the control group were cultured in 0, 40, 

100, 200, 340, and 440min. After downloading the series matrix, we calculated the expression 

level of each coding gene as the maximum value of all probes. Then the data was normalized into 

log2 transformation. Similarly, we identified 103 DEGs between 0min and 44min by fold change 

larger than 1.2. These genes are related to endothelial cell proliferation. No gene is involved in 

response to hypoxia. We also tried fold change 2, and no gene was identified.  

In addition, we searched the literature for the possible culture effect since HUVEC is a commonly 

used stable endothelial cell line in ENCODE and many other studies. A regenerative medicine study 

investigates “the ability of HUVECs to be expanded in culture to provide sufficient cells for graft 

seeding. The levels of gene expression of key genes are then examined to ensure that these cells retain 



the EC phenotype. This study demonstrates that HUVECs may be cultured for up to 12 passages 

without alteration in phenotype”(Punshon, et al., 2011).  

Taken together, several lines of evidence support that cell culture along time in normoxia will not 

affect our major findings. We can confidently draw the conclusion that the responses to being in 

culture for different periods of time are not significant, negligible, and independent of the responses 

to hypoxia. Our main discovery and conclusions stand firmly. We added the new data and results in 

our revision. 

   

2.) With regard to the Hi-C data, it is well established that Hi-C without promoter capture identifies TAD 

boundaries, but does not have the resolution to identify actual enhancers. While the Hi-C data generated by 

the authors is valuable in its own right and may be useful in the PECA modeling, it cannot be used as a 

validation of specific enhancers, as presented – for example – in Fig. 3A. Incidentally, this figure is 

misleading because they do not represent other genes, besides EPAS1, that are also present within the same 

TAD (eg PRKCE). Also, it is unclear why in some analyses they use Hi-C data from previous publications 

and in others they use their own data. 

 

Author’s Response: We agree with the reviewer that Hi-C without promoter capture identifies TAD 

boundaries but does not have the resolution to identify actual enhancers. In our study, the candidate 

enhancers in HUVEC are defined by the combination of H3K27ac plus H3K4me1, which is a 

commonly adopted strategy in many studies. The Hi-C data were used in our vPECA model to 

identify the TAD boundaries and to impose physical boundaries of enhancer-promoter (E-P) 

interactions. Fig. 3A clearly illustrates our strategy to define the regulatory boundary by HiC data 

and identify regulatory elements by histone modification data. We found that HiC information helps 

us greatly reduce the number of candidate E-P interactions. For example, there are 80 candidate 

enhancers within the 1M up- and down-stream region around EPAS1. After adding the Hi-C TAD 

boundary as shown in Fig. 3A, the number of candidate enhancers reduced to 23 in the TAD. This 

could reduce the number of parameters in vPECA model by ~4 folds.  

We also agree with the reviewer’s point that Hi-C data does not have the resolution to identify actual 

enhancer-promoter (E-P) interactions. For example, in Fig. 3A, the Hi-C TAD around EPAS1 

contains two genes including PRKCE. The Hi-C data cannot help us to identify real target genes and 

specific E-P interactions. We need paired ATAC-seq and RNA-seq to assess the correlation between 

enhancer activity and target gene expression and to reveal the true enhancer-target interactions.   

Nevertheless, Hi-C data are still useful to provide evidence for long-range interactions predicted by 

vPECA. Since the resolution of the Hi-C data is 5kb, we used loops longer than 5k to identify E-P 

interactions. The enhancers are defined by the ATAC-seq peaks, and the regulation relations are 

detected from the Hi-C loops. We listed 3 examples, i.e. SOX17, SNAI2, and IL6, showing the E-P 

interactions detected by the Hi-C loops in Fig. R4. The E-P interactions are clearly revealed from the 

Hi-C loop data. Based on those observations, we think the loop data can partially provide physical 

interaction evidence to identify actual enhancer target relationships, but insufficient to detect them 

completely due to the resolution limit. We expect future data from Trac-looping, HiCHiP, CHIA-

PET technologies will provide E-P interactions with higher resolution.  



 

 

 

Figure R4. E-P interactions detected by Hi-C loops. 

 



In addition, we used the published Hi-C data since Rao et al. generated in situ Hi-C map for 

HUVEC at 5kb resolution, which shows high reproducibility with dilution Hi-C and contains many 

confident contacts. Later we generated our own HiC data and we found that they are quite conserved 

at topologically associating domains (TAD) level between different conditions (two time points and 

two populations) in our Hi-C data in HUVEC (Fig. R5). This is consistent with the observation in the 

3D genome field that the TADs are conserved across a variety of cell types in the human genome 

(Pombo and Dillon, 2015). Therefore, the regulatory boundary information used in our model is 

conservative and may not change much whether we use public or our own Hi-C data. Moreover, one 

advantage of the strategy to use the public Hi-C TAD information is that vPECA could be applied to 

a more general context. After all, matched ATAC-seq and RNA-seq data can be easily accessible 

rather than the additional matched Hi-C data. 

 

 

Figure R5. The number of TADs in our Hi-C data reveals the conservation of TAD. A (Adaptive) indicates 

Tibetan and W (Wildtype) is Han Chinese. 0 means 0h, and 3 means three days.  

 

We also thank the reviewer’s pointing the issue in Fig. 3A. We updated the figure by adding the 

PRKCE gene to this region both in the main text and listed below (Fig. R6). Interestingly, two 

elements (E7 and E8) are located in the PRKCE intron, but they are predicted to regulate EPAS1 

(not PRKCE) by vPECA model and supported by the Hi-C read count under 3d hypoxia (Fig. 3D). 

These enhancers are within the same Hi-C loops with EPAS1’s promoter but not PRKCE’s promoter. 

Actually, the regulation of PRKCE is within the left loop linking PRKCE promoter and enhancers 

(Fig. R7). This indicates the advantage of using Hi-C loops as regulatory boundaries. Thus, in Fig. 

3A we only show the regulation of EPAS1 within the two loops and put the regulation landscape of 

PRKCE and EPAS1 in the supplementary figure as fig. S6A. 



 

Figure R6. Updated figure of Fig. 3A by adding PRKCE.  

 

Figure R7. Regulation landscape of PRKCE and EPAS1. 

PRKCE 



 

Taken together, we agree with the reviewer’s comments on Hi-C. We updated and demonstrated our 

methods and results more clearly and with more details. We also noticed that advanced techniques, 

such as HiChIP, ChIA-PET, and Trac-looping, can provide more detailed regulation information 

between enhancers and target genes. We may generate these types of data to study hypoxia 

adaptation response in the future. 

 

3.) No information is provided with regard to subjects that donated the umbilical blood cords other than the 

hospital and their self-reported ethnicity. Were they all born and raised at high altitude? Did the entire 

pregnancy take place at high altitude? Did they visit low altitude locations during the pregnancy or during 

the past 6 months? Transcript levels and chromatin conformation are molecular phenotypes that can be 

modified by environmental exposure especially in the context of hypoxic conditions. Was the ancestry of 

the donors verified by genetic analyses? 

 

Author’s Response: In fact, we implemented stringent criteria, deep surveys, as well as genetic 

analyses in the sampling procedure to make sure that the ancestry of the donors are Tibetans. We 

added that information in our revision to the main text and we thank the reviewer to improve our 

manuscript. 

Firstly, the ancestry of the donors was determined by the self-report and verified by the genetic 

analyses using genotyping and whole genome sequencing data. Only the Tibetans, whose lineal 

relatives are also Tibetan ethnicity within three generations, were included in this study. The same 

strategy was also implemented for Han donors.  

For genetic verification, we chose the adaptive (Tibetan) and wildtype (Han Chinese) populations 

according to the EPAS1/EGLN1 genotypes using Tibetan-specific common SNPs (Table R1). Given 

the DAF (derived allele frequency) of these SNPs in the Han population is extremely low (near 0), we 

can determine ancestry exactly using their genotypes. Additionally, we used known ancestry 

populations conducted principal component analysis, which also supports the ancestry identification 

from genotypes.  

For pregnancy situation, we confirmed that the Tibetan donors were all born and raised at high 

altitude (Lhasa, elevation: 3680m), and their entire pregnancy procedure took place at high altitude 

and no low altitude visit during the period. Biologically related individuals were excluded from this 

study. Written informed consents for all participants were obtained. 

Table R1. Tibetan- specific SNPs for ancestry characterization. 

SNPs Han Tibetan 
ancestral 

allele 

derived 

allele 

DAF- 

TBN 

DAF-

HAN 

rs73926265 G G A A G A 0.777 0.005 

rs149594770 T T A A T A 0.572 0.005 

rs186996510 G G C C G C 0.700 0.034 

TED(3.4kb) Insertion Deletion Insertion Deletion 0.500 0.000 

 

4.) While the authors focus on a single SNP (rs3768729) and region (E22-1) which appear to show evidence 

of reduced enhancer activity and chromatin openness in the Tibetan-enriched haplotype, they fail to discuss 

other regions on the same tightly linked haplotype which show the exact inverse patterns in their analysis. 

For example, the SNPs in E20 consistently show the inverse effect (the wildtype allele significantly 



decreases enhancer activity and is associated with reduced chromatin openness). Within E22, the two 

regions/SNPs tested appear to go in opposite directions with regards to the adaptive alleles’ association 

with chromatin openness. While these may not entirely invalidate the overall conclusions regarding 

multiple enhancers contributing to the downregulation of EPAS1 in Tibetans, they need to be addressed 

rather than buried in the supplement. 

 

Author’s Response: Thanks for the reviewer’s crucial comments. We agree that except for E22-1, 

other regions on the same tightly linked Tibetan-enriched haplotype should be discussed in the main 

text rather than buried in the supplement. 

As the reviewer suggested, E20 and E22 show the exact inverse patterns of chromatin accessibility 

between two populations. It may indicate the complexity of gene regulation. Usually, gene expression 

is regulated by multiple regulatory elements under certain temporal and spatial conditions. The 

regulatory elements, binding with various transcription factors, may activate or repress gene 

expression. Currently, to our limited knowledge of the regulation of EPAS1 expression, it is down-

regulated in Tibetan than Han Chinese (Fig. 3B). There are 23 regulatory elements (REs) potentially 

regulating its expression. The overall effect of all enhancers is down-regulation in Tibetan, although 

there might be some REs with the opposite trend. In general, among all 23 REs, the openness scores 

of 7 (p-value<0.1) and 3 (p-value<0.05) elements of Tibetan are smaller than Han. Only the openness 

scores of E7 in Tibetan are slightly larger than Han with p=0.11 (fig. S6B, i.e., Fig. R8). Therefore, 

when pooling all the enhancers together, the overall regulation output is decreased gene expression.  



 

Figure R8. Chromatin accessibility dynamics for the 23 candidate regulatory elements of EPAS1. 

 

When considering the effect of multiple SNPs in a LD region, although some SNPs might have an 

inversed activity pattern such as E20 and E22, the integrative effect is down-regulation in Tibetan. If 

we aggregate all SNPs in Fig. 3E, the activity of reporter assay in Tibetan is lower than Han. 

Another observation is that E20 and E22 are functional at different time, as shown in Fig. 3B. The 

activity of E20 increases at 6h, while E22 at 5d. Thus, the two enhancers may function in early and 

late-stage, respectively under hypoxia.  

Taken together, EPAS1 is regulated by multiple enhancers, whose activity is different along time and 

affected by various SNPs in the tightly linked haplotype. Although the functions and effect sizes of 



these SNPs and enhancers might be different, the overall output is down-regulation of EPAS1 in 

Tibetan than Han Chinese. We added the above explanation to the Result section in our revision. 

 

5.) rs3768729 which the authors describe as having a striking effect on enhancer activity, and putatively 

EPAS1 expression in Tibetans based on their reporter gene assays is a common SNP worldwide. The 

putatively adaptive allele is ancestral and segregates at .48-.58 frequency globally. If this SNP had such a 

profound effect on enhancer activity and EPAS1 expression, it is surprising that is has not been detected in 

any GWAS or eQTL study given this high frequency. The authors should address this point if they wish to 

put this SNP forward as the most probable and/or important causal SNP under selection at the EPAS1 locus. 

 

Author’s Response: Yes, the Tibetan-enriched allele (putatively adaptive allele) is the ancestral allele 

“T” for rs3768729, and the T allele reaches 85% in Tibetans with lower frequencies in other world 

populations (Fig. R9). In particular, there is a deep divergence of rs3768729 between Tibetans and 

Han Chinese (FST=0.52), suggesting selection on the ancestral allele. The relatively high ancestral 

allele frequency in Europeans (0.65) might be caused by genetic drift rather than selection. 

Additionally, according to our previous study (Peng, et al., 2017), EPAS1 displays its function by the 

Tibetan-specific haplotype, not just a variant, and selection signal of rs3768729-T may result from a 

hitchhiking effect. Finally, the E22 enhancer where rs3768729 is located exhibited activity change in 

hypoxia (5d) while not in normoxia (0h) (Fig. 3C lower right), suggesting that rs3768729-T may only 

work in hypoxic condition. We also performed an additional reporter gene assay experiment after 

36h incubation in 1% oxygen hypoxia environment. Under hypoxia, the activity differences for E22-

1 (containing rs3768729) between the Han version and the Tibetan version became larger (p = 0.0038 

in HEK293 and p=3.51×10-5 in HELA). Taken together, this could explain why rs3768729-T was not 

detected in the published eQTL data in spite of high frequencies in global populations. 

 

Figure R9. Allele frequencies of rs3768729 in global populations. 

 



 

Figure R10. Dual-luciferase enhancer reporter gene assay of E22-1 (rs3768729). All assays were 

performed in at least three replicates and the p-values were calculated by t-test. 

We add those discussions and the new functional experimental results for SNP rs3768729 in our 

revision (Figure 3 in the main text and fig S7 in supplementary materials). We thank the reviewer’s 

insightful comment to improve the causal SNP interpretation. 

 

6.) The choice of cell type, while interesting, is not well justified. The authors claim the endothelium is 

hypoxia-responsive and therefore a good choice of tissue in which to assess Tibetan chromatin structure. 

This statement seems to assume either that the findings within the endothelium are representative of other 

hypoxia-responsive tissue types (which is unlikely, given that regulatory networks will vary between tissues) 

or that endothelium is the most relevant tissue type in which to examine hypoxia adaptation. If the latter, 

the authors need to do a better job of explaining this choice. 

Author’s Response: We agree with the reviewer that we need to better explain why endothelium is 

the most relevant cell type for hypoxia study. In the revised version, we added a subsection to give 

more explanations in the Methods (“Choosing relevant cell type to hypoxia response” section). The 

followings are the presented evidence for choosing HUVEC. 

 

1. HUVEC can be easily accessed compared with other tissues with SNP enrichment signals in 

Figure R11, such as ovary, pancreas, and brain etc. First, we agree with the reviewer’s opinion 

that findings within the endothelium aren’t representative of other hypoxia-responsive tissue 

types because of tissue specificity. We know that hypoxia adaptation is a complex physical trait 

that involves multiple tissues in the respiratory and circulatory systems. Other tissues are also 

important when interpreting selection signals. But under the current condition, we were not able 

to get access to other relevant tissues, such as lung and heart in human. Second, although gene 

regulatory networks are different between tissues, hypoxic inducible pathways are conserved to 

some extent. The HIF family genes, such as HIF1A and EPAS1, have similar expression patterns 

responsive to hypoxia. Thus, we could only try our best to interpret part of the selection variants 

falling into the open regions in HUVEC and leave the other relevant tissues for future studies. 

 

2. HUVEC is a classic model to study oxidative stress and hypoxia, due to its oxygen-sensitive and 

easy to obtain. We found many references using it to study cellular responses to hypoxia (Cao, et 

al., 2019; Michiels, et al., 2000; Namiki, et al., 1995; Therade-Matharan, et al., 2004). Nakato et 

al. recently cataloged gene expression and active histone marks in nine types of human ECs 

(generating 148 genome-wide datasets) and carried out a comprehensive analysis with chromatin 
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interaction data. They pointed out that endothelial cells (ECs), which make up the innermost 

blood vessel lining of the body, express diverse phenotypes that affect their morphology, 

physiological function and gene expression patterns in response to the extracellular environment, 

including the oxygen concentration, blood pressure and physiological stress (Nakato, et al., 2019). 

 

3. HUVEC is listed as the Tier 2 ENCODE Project common cell types 

(https://www.genome.gov/encode-project-common-cell-types). Cell types were selected largely 

for practical reasons, including their wide availability, the ability to grow them easily, and their 

capacity to produce sufficient numbers of cells for use in all technologies being used by ENCODE 

investigators. Importantly, HUVEC has a normal karyotype and are readily expandable to 108-

109 cells. ENCODE and NCBI GEO database collected rich public data for HUVEC, i.e., RNA-

seq, DNase-seq, and ChIP-seq experiments, which provide rich independent validation samples. 

 

4. SNPs under selection in Tibetans are enriched in the open chromatin regions in HUVEC (Fig 1F 

& S3C, i.e., Fig. R11). The fold enrichment is 1.5 for normoxia and 1.6 for hypoxia. This 

demonstrates that HUVEC is sensitive to hypoxia. We also observed strong selection SNPs located 

in the open regions of HUVEC (fig. S8E) around EPAS1, the major effect gene in adaption to 

hypoxia in Tibetans. These observations together provide the feasibility to utilize the regulatory 

regions in HUVEC to interpret functional variants in Tibetans.   

 

Figure R11. SNPs under selection are highly enriched in HUVEC and a variety of cell types/tissues from 

ROADMAP. The FC score is calculated across 40 DNase-seq samples from ROADMAP (Supplementary 

methods). More stringent thresholds give higher fold enrichment scores. 

 

7.) As far as I can tell, the reporter gene assays were performed in normoxic conditions where both HIF1A 

and HIF2A are tagged for ubiquitination and degraded. Therefore, these are not the appropriate conditions 

for validating the enhancers and SNP effects and the results highly questionable. 

 

Author’s Response: To address this question, we performed additional gene reporter assay 

experiments under hypoxia in both HEK293 and HELA, and the results are shown in Fig. R12 and 

also updated in Fig. 3E. The cells were incubated for 36h under hypoxia after transfection, and the 

other experimental conditions were the same as the previous assays under normoxia. 
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Figure R12. Dual-luciferase reporter gene assay of five upstream EPAS1 variants at normoxia and hypoxia 

culture conditions of 37℃ in two cell lines HEK293 (left) and HELA (right). All assays were performed in 

at least three replicates and the p-values were calculated by t-test.  

 

The 4 REs (E12, E20, E21, and E22) are in general more active under hypoxia except for E21-2, 

suggesting their involvement in response to hypoxia by regulating EPAS1 expression. Notably, under 

hypoxia, the enhancer activity differences between the Han version and the Tibetan version became 

larger for E20 (p = 0.05 in HEK293), E22-1 (p = 0.0038 in HEK293 and p=3.51×10-5 in HELA), and 

E21-2 (p= 0.01 in HELA). This strongly supports the proposed functional roles of these adaptive 

SNPs (rs370299814, rs368706892, rs3768729 and rs6756667). 

Taken together, our reporter assay experiments in both normoxic and hypoxic conditions are 

effective in detecting functional REs that contribute to the adaptive expression regulation of EPAS1 

in Tibetans. The above results were added to our revision. 

 

8.) The assess the significance of the composite multiple signals the authors combine p-values using 

Fisher’s approach (lines 742-745), but this approach assumes that the p values from independent tests of 

the same hypothesis, which is clearly not the case here because SNPs are in LD thus not independent. 

 

Author’s Response: We agree that Fisher’s approach assumes that the p-values from independent 

tests of the same hypothesis. Here we used Fisher’s method to integrate the independent selection 

signals from different population genetic tests for a single SNP. This task will not consider many 

SNPs and should not be affected by the LD structure. The fact that SNPs in LD are not independent 

is considered in the first equation of vPECA estimating the selection status of each regulatory element. 

 

Four selection scores, i.e. Fst, iHS, XP-EHH, and PBS, were composited together by Fisher’s method. 

An overall p-value for each SNP is calculated by chi-squared distribution. This method is a simplified 

version of CMS score by a composite of multiple selection signals (Grossman, et al., 2010). The 

original CMS method treats multiple tests for selection for each SNP as independent. Thus, the CMS 

score is the posterior probability that the SNP is selected, which can be decomposed into the product 

of the probability of each individual test. This is why we used Fisher’s method to combine different 

selection scores by assuming them as independent. Therefore, for every single SNP, the screening 

method calculates one score.  
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We consider the LD effect in the first equation of vPECA estimating the selection status of each 

regulatory element, i.e.,  

𝒍𝒐𝒈
𝑷(𝑺𝒌 = 𝟏|𝑿, 𝒀)

𝟏−𝑷(𝑺𝒌 = 𝟏|𝑿, 𝒀)
= 𝝁𝟎 + ∑ 𝝁𝒒 ∑

𝟏

|𝑱𝒌|
𝒘𝒑𝑿𝒑,𝒒𝒑∈𝑱𝒌

𝑸
𝒒=𝟏 + 𝝁𝑸+𝟏 ∑

𝟏

|𝑱𝒌|
𝒘𝒑𝒑∈𝑱𝒌

𝒀𝒑, 

where 𝒘𝒑 indicates the weight of the p-th SNP, which is the reciprocal of the LD score of SNP p. 

This term can down-weight the influence of SNPs within a large LD, which reduces the redundancy 

of correlated SNPs. The idea was referred from a wildly used selection detection method XP-CLR 

(Chen, et al., 2010; Grossman, et al., 2010). 

 

9.) The project accession PRJNA544821 is not found in Bioproject. 

Author’s Response: In the revision, the data generated in this study, including RNA-seq, ATAC-

seq, and Hi-C data were deposited at http://www.ncbi.nlm.nih.gov/geo/ (accession number: 

GSE145774) and Genome Sequence Achieve (project number: 

CRA002025; https://bigd.big.ac.cn/gsa/browse/CRA002025). A reviewer link has been generated as 

follows: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnylueyszfqxnml&acc=GSE145774.

The source codes for vPECA are available at https://github.com/AMSSwanglab/vPECA. 

 

 

Minor Comments: 

1.) The putatively selected regulatory regions defined by vPECA are typically much larger (>1kb) than the 

regions looked at for differential openness (~200-550bp) which are again larger than the very short 

segments examined in the luciferase assays (100bp). 

 

Author’s Response: We thank the reviewer’s question. The putatively selected regulatory regions 

defined by vPECA (based on 3 histone modification marks by ChIP-seq data) is much larger than 

the short segments we used in luciferase assays, which are about 200-550bp long (fig. S8A). The choice 

of short segments is based on narrow ATAC-Seq peaks located in the broad regulatory regions 

(usually several thousand bps) where variants under selection are located. This design helps to study 

1-2 variants separately in short segments. Also, the technical limitation of luciferase assay usually 

requires short segments no longer than several hundred base pairs. 

 

2.) The cell types chosen for the luciferase assays re not endothelial and enhancer activity in these contexts 

may not be representative of the endothelial regulatory network. 

Author’s Response: We acknowledged HEK293 and HeLa cells may not reflect the physiologically 

relevant cell type in vivo and we discussed the potential limitation in the Discussion sections in our 

revision. Our choice of cell types is based on the following thoughts. 

Excerpt from Manuscript: We used HEK293 and HELA to do a dual-fluorescent reporting system 

just to verify the elements are functional as enhancers. The transfection of the dual-fluorescent 

reporting system is usually transient, so the dual-fluorescent reporting system often uses cell lines of 

high transfection efficiency, easy culture and rapid growth such as HEK293 and HELA. The 

transfection efficiency of the primary culture HUVEC is less than 10%, and our current culture 

system only allows the generation of the HUVEC for 92h. Therefore, the signals could not be detected 

by the dual-fluorescence reporting system. In order to reflect the physiologically relevant cell type in 

http://www.ncbi.nlm.nih.gov/geo/
https://bigd.big.ac.cn/gsa/browse/CRA002025
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnylueyszfqxnml&acc=GSE145774
https://github.com/AMSSwanglab/vPECA


vivo, the direct evidence is knock-out and knock-in by CRISPR-Cas9 system. We plan to establish 

the immortal HUVEC cell line and conduct gene editing in the future. 

 

3.) In lines 360-361 the authors describe RORA as having “the second strongest signal for high-altitude 

adaptation” in Ethiopian populations. However, the articles they cite for this claim explicitly state that while 

a SNP in RORA is the second strongest signal of association with Hb concentration in the Amhara, it has 

no signal of selection in their data. Therefore, the statement above is false or at least misleading. 

Author’s Response: We thank the reviewer for pointing out this inaccurate citation. We revised this 

sentence to “We note that a SNP in RORA is the second strongest signal of association with Hb 

concentration in the Amhara in Ethiopia” in the manuscript. 

 

4.) The paper as written is littered with typos that would need to be fixed in a final edit. 

Author’s Response: We thank the reviewer’s comment. We carefully checked and corrected the 

typos in the main manuscript. 

 

5.) While the Authors present a compelling data analysis pipeline, they appear to apply this model 

specifically to their Tibetan expression and chromatin accessibility data, while using publicly available data 

for the other aspects of the model. For the purposes of method development, it would be interesting to 

determine how similar the results would be if, for instance, ENCODE data on HUVEC expression and 

chromatin accessibility were used. In other words, could this tool be used with solely publicly available 

data to improve variant interpretation within a population for which only population genetics/ selection data 

existed. 

Author’s Response: We thank the reviewer’s insightful question and we appreciate the reviewer’s 

interest in the general usage of our method. The short answer is yes. In our previous publication 

(Duren et al, PNAS, 2017, https://www.pnas.org/content/114/25/E4914), we demonstrated that we 

used solely publicly available ENCODE data to improve variant interpretation for which only 

population genetics/ selection data existed. There the regulatory model inferred from accessibility 

and expression data in diverse contexts from mouse ENCODE database provided interpretation for 

QTLs in MGI database. The software and results can be accessed at 

https://github.com/SUwonglab/PECA. 

 

However, we recommend integrating context relevant and specific omics data with public data as 

demonstrated in our manuscript. This will greatly improve the confidence of genetic interpretation. 

As we showed in this manuscript, hypoxia condition is critical to reveal the selected SNPs’ function 

and it’s necessary to generate the omics data in hypoxia condition.  

 

6.) Fig. 1E and 1F should show error bars.  

Author’s Response: We thank the reviewer’s comment to improve the figures. We updated Fig. 1F 

with error bars, which indicate the standard error of fold change between replicates. 

Fig. 1E shows the number of differentially expressed genes (DEG) between every two adjacent time 

points. We chose FDR < 0.05 as the cutoff. The numbers of DEGs are constant but not random 

variables. Therefore, we can’t plot error bars in this figure.  

 

 

https://www.pnas.org/content/114/25/E4914
https://github.com/SUwonglab/PECA


Reviewer #2 (Remarks to the Author): 

The manuscript by Xin et al. entitled “Chromatin accessibility landscape and regulatory network of high-

altitude hypoxia adaptation” describes an ambitious experimental and bioinformatics effort to evaluate 

mechanisms of Tibetan high-altitude environmental adaptations that affect a wide variety of physiologic 

traits. Previous genome-wide analyses have determined that multiple genetic variants with strong selection 

signals lie within non-coding regions that include the locus encoding HIF-2  (EPAS1), and other critical 

factors promoting these adaptations. The authors aim to generate a map of regulatory elements that impact 

gene expression, even though the cell type of action may be unknown, as well as relevant pathways, target 

genes, causality, and underlying mechanisms. They develop a variance interpretation model by Paired 

Expression and Chromatin Accessibility data (vPECA) to identify active regulatory elements (AREs) and 

active selected regulatory elements (ASREs), impacting associated gene regulatory networks. They 

demonstrate that genome-wide hypoxia regulatory networks operate via AREs and ASREs, and use these 

as a resource to characterize the effect of genetic variants on high-altitude adaptation. Overall, this highly 

ambitious project is carefully conducted, and the conclusions are sound. I recommend acceptance upon 

addressing the following relatively minor concerns: 

 

Author’s Response: We are happy the reviewer appreciated our major contribution for a variant 

interpretation model vPECA and data resources of genome-wide hypoxia regulatory networks to 

characterize the effect of genetic variants on high-altitude adaptation. 

 

1. Most importantly, while the HUVEC cell types have been carefully chosen from individuals based on 

EPAS1 and EGLN1 genotypes, the culture conditions used have one important limitation. The authors 

appropriately chose to compare their assays in 21% O2 versus 1% O2 to identify hypoxic regulatory 

networks that could be relevant to extreme oxygen deprivation. This is a necessary but unavoidable 

limitation of their experimental set-up. Clearly, Tibetans do not live at 1% O2, and instead exist at two-

thirds 21% O2 experienced by the Han Chinese. While I understand that this is needed to carry out the 

conducted studies, it is still a limitation and should be acknowledged as such in both the Results and 

Discussion sections. 

Author’s Response: We thank the reviewer to discuss the possible limitation on the culture condition. 

This motivates us to discuss the potential limitation in the Methods section in our revision. We 

acknowledged that the choice of 1% O2 is empirical and mainly based on the literature (Antonova, et 

al., 2014; Casanello, et al., 2005; Collard, et al., 1999; Graham, et al., 1998; Kumar, et al., 2011; 

Losenkova, et al., 2018; Monteiro, et al., 2019; Schmedtje, et al., 1997; Shimpuku, et al., 2000; Suzuki, 

et al., 1999; Voellenkle, et al., 2016; Wu, et al., 2003; Zhang, et al., 2016). Our choice of 1% O2 is 

roughly estimated based on the following understandings.  

Excerpt from Manuscript: Oxygen partial pressures of cells and bodies are different. Oxygen is 

inhaled by the body to reach the mitochondria of the cells, and the partial pressure of oxygen is a 

progressive step down. At sea level (normoxia), oxygen partial pressure is 159.22 mm hg (20.95%), 

but the partial arterial oxygen pressure (PaO2) is only 100 mmHg (13%), while the venous oxygen 

partial pressure (PvO2) is 40 mmHg (5.2%), and the mitochondrial oxygen partial pressure is 4 to 20 

mmHg (0.52% to 2.6%).  

 

2. Data provided on luciferase assays conducted in HEK293 and HeLa cells, while informative, do not 

really query the appropriate cell type for e.g. erythropoietin expression. These cells reside in the interstitium 

of the kidney and the assays may not reflect the physiologically relevant cell type in vivo. Again, there is 



nothing wrong with the experiments presented. It is a limitation that simply should be acknowledged, 

especially in the Discussion section. 

 

Author’s Response: We acknowledged that HEK293 and HeLa cells may not reflect the 

physiologically relevant cell type in vivo and we discussed the potential limitation in the Methods 

section in our revision. Our choice of cell types is based on the following thoughts. 

Excerpt from Manuscript: We used HEK293 and HELA to do a dual-fluorescent reporting system 

just to verify the elements are functional as enhancers. The transfection of the dual-fluorescent 

reporting system is usually transient, so the dual-fluorescent reporting system often uses cell lines of 

high transfection efficiency, easy culture and rapid growth such as HEK293 and HELA. The 

transfection efficiency of the primary culture HUVEC is less than 10%, and our current culture 

system only allows the generation of the HUVEC for 92h. Therefore, the signals could not be detected 

by the dual-fluorescence reporting system. In order to reflect the physiologically relevant cell type in 

vivo, the direct evidence is knocked-out and knocked-in by CRISPR-Cas9 system. We plan to 

establish the immortal HUVEC cell lines and conduct gene editing in the future. 

 

3. Finally, while the results are very compelling, the Discussion should include speculation about future 

mouse models that would be necessary to functionally determine the in vitro findings described here. 

Author’s Response: We thank the reviewer to point out the future mouse models are necessary to 

functionally determine the in vitro findings we made. We added this as the future work in the 

Discussion sections in our revision. 

Indeed, the enhancers (containing SNP or not) to be functional verified could be site-directed mutated 

or knocked out by CRISPR-Cas9 system to construct mouse models for studying the physiological 

phenotypes. 

 

 

Minor concerns: 

 

1. Overall, the manuscript harbors numerous grammatical errors that should be carefully edited. 

Author’s Response: We thank the reviewer’s comment. We carefully checked and corrected the 

grammar mistakes in the manuscript. 

 

2. The authors cite reference no. 23 to describe oxygen signaling at consensus HREs. This work dates back 

to 2005, and has now been improved upon by the work of David Mole and Peter Ratcliffe in more recent 

papers. This should be revisited and updated accordingly. 

Author’s Response: We thank the reviewer’s suggestion for the improved work by David Mole and 

Peter Ratcliffe. We have updated two recent papers (Platt, et al., 2016; Smythies, et al., 2019) in the 

references. 

 

 

Reviewer #3 (Remarks to the Author): 



This work provided a rich data resource for open chromatin, gene expression and chromatin conformation 

profiles of Tibetan genome with hypoxia adaptation. With these datasets, they developed a novel variant 

interpretation method that prioritizes causal SNPs, and regulatory elements that drives essential genes 

responsible for hypoxia adaptation in the Tibetan population. In total, they generated 50 ATAC-seq and 50 

RNA-seq for five Tibetan and five Han Chinese across five time points, 10 whole genome sequencing for 

the samples, and four Hi-C for selected four samples. The manuscript is relatively easy to follow, despite 

some grammar mistakes. 

Author’s Response: We appreciated the reviewer’s positive comments for the rich multi-omics data 

resource we provided for Tibetan hypoxia adaptation, and the novel variant interpretation method 

proposed to prioritize causal SNPs using gene regulatory network.  

 

My major comments are listed below: 

Data availability: the authors needs to provide processed data for the reviewer. Note: I am not asking for 

the raw reads, as I understand they might be sensitive data. I am asking the authors make the bigwig and 

Hi-C matrix available to the reviewer so that I can check the quality of their data. 

 

Author’s Response: We totally agree that this friendly data sharing will increase vPECA’s impact. 

In the revision, the data generated in this study, including RNA-seq, ATAC-seq, and Hi-C data 

were deposited at http://www.ncbi.nlm.nih.gov/geo/ (accession number: GSE145774) and Genome 

Sequence Achieve (project number: CRA002025; https://bigd.big.ac.cn/gsa/browse/CRA002025).  

A reviewer link has been generated as 

follows: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnylueyszfqxnml&acc=GSE145774.

The source codes for vPECA are available at https://github.com/AMSSwanglab/vPECA. 

There are three essential components for the data organization including a metadata spreadsheet, 

the processed data files, and raw data files. The processed data include variant calling vcf format 

file, hg19 alignment bam and bigwig files for ATAC-seq and RNA-seq, bed format peak files of 

ATAC-seq, FPKM gene expression matrix, .hic files and loops for Hi-C data. The data have been 

released. The reviewers can easily get access to the data via 

ftp://download.big.ac.cn/gsa/CRA002025/processed_data/ 

 

2. In Fig. 1B, the clustering analysis of gene expression shows that 0h, 6h, and 1d are separated better than 

the clustering based on ATAC-seq data. But the authors also suggested in previous sections that chromatin 

accessibility response earlier to hypoxia than gene expression. 

 

Author’s Response: We agree that 0h, 6h, and 1d are separated in gene expression better than the 

clustering based on ATAC-seq data. So only the clustering result is not sufficient to claim the 

conclusion that chromatin accessibility response earlier to hypoxia than gene expression. Therefore, 

we added more evidence to support this finding. 

First, we compared the number of differentially expressed genes (DEGs) and open regions between 

0h and 6h. We identified 517 DEGs (out of 12,998 genes in total, and the proportion is 3.98%) and 

8,551 (out of all 54,102 regions, the proportion is 15.81%) differential open regions (DORs) between 

normoxia 0h and hypoxia 6h with FDR<0.05. Thus between 0h and 6h, we identified a much larger 

proportion of DORs than DEGs (by 4 folds), which suggests after hypoxic induction for 6h, the 

chromatin accessibility of regulatory elements changes more dramatically than gene expression. This 

suggests chromatin accessibility response earlier to hypoxia than gene expression. 

http://www.ncbi.nlm.nih.gov/geo/
https://bigd.big.ac.cn/gsa/browse/CRA002025
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnylueyszfqxnml&acc=GSE145774
https://github.com/AMSSwanglab/vPECA
ftp://download.big.ac.cn/gsa/CRA002025/processed_data/


Second, the regulation of EPAS1 is one of the examples clearly indicating that changing RE’s 

accessibility is earlier than gene expression. In Fig. R13 (i.e. Fig. 3B&C), the chromatin accessibility 

of E20 and E21 increases dramatically from 0h to 6h, and then EPAS1 expression begins to increase 

from 1d. 

 

Figure R13. Gene expression and RE accessibility of EPAS1. 

 

Third, there is further evidence from literature, TFs and specific chromatin remodelers often 

facilitate higher-order chromatin organization and regulate access to DNA (Klemm, et al., 2019). The 

remodeling process changes the open chromatin state of regulatory elements, which regulate the 

transcription of neighboring genes. Therefore, it is reasonable to observe chromatin accessibility 

dynamics before the change of gene expression. 

 

3. The authors identified 14 dynamically expressed TFs through motif search, however, the criteria for 

“dynamic” expression is not explained. This information is critical. 

 

Author’s Response: We thank the reviewer’s question. We supplemented the detailed approach in 

“Motif scan and identification of enriched dynamic transcription factors” in the Methods section.  

 

Excerpt from Manuscript: Fig. 1D shows the 14 TFs selected by dynamic expression and motif 

enrichment. In the figure, the color of each dot represents the average gene expression value and the 

circle size indicates the average ME score among all samples at each time point. The gene expression 

FPKM values are divided into 5 levels, i.e. Level I: < 6, Level II: 6-12, Level III: 12-30, Level IV: 30-

120, and Level V : > 120, which are labeled by 5 colors. Similarly, the ME scores are divided into 7 

levels, i.e. Level I: < 2, Level II: 2-4, Level III: 4-10, Level IV: 10-50, Level V: 50-90, Level VI: 90-

240, and Level VII : > 240, showing by the circle size. Then we filtered out motifs by two requirements, 

i.e. (1) Maximal FPKM >= 12, and (2) Maximal ME Score >= 2, which gives 43 TFs. Among these 

TFs, we also required the TFs should be dynamic, i.e. the expression FPKM and ME scores are not 

in the same Level (Level I-V for gene expression and Level I-VII for ME score) along 5 time points, 

thus obtaining 14 TFs in the short list.  

 

BA



4. How the EPAS1 RNAi experiments were done and how the RNAi result validates 621 EPAS1 target 

gene in the network were not explained. 

 

Author’s Response: We thank the reviewer’s question. We have added a new subsection titled 

“Validation of 621 target genes of EPAS1 by siRNA knockdown experiments” in the Methods part.  

Excerpt from Manuscript: In detail, the cell lines of HUVEC and C166 were transfected with 

EPAS1 siRNA and non-targeting control siRNA for 48 hours. The efficiencies of knocking down the 

EPAS1 expression were assessed by qPCR with 1.4% for HUVEC and 3.2% for C166 (Yoo, et al., 

2015). The FPKM gene expression data of HUVEC and C166 was downloaded from the GEO 

database with accession number GSE62974. Then EPAS1’s target genes were derived by comparing 

expression profiles of EPAS1 siRNAs with non-targeting ones. We calculated the fold change (FC) of 

average FPKM values between replicates and identified 795 genes in HUVEC and 1,382 in C166 with 

FC larger than 1.5. These genes were assumed to be true positive to validate 621 EPAS1 target genes 

derived from the regulatory network.  Then we used the hypergeometric test to calculate the 

enrichment of vPECA predicted target genes of EPAS1 in the gold standard gene set. The 

hypergeometric cumulative distribution function is given by 

𝑭(𝒙|𝑲, 𝑴, 𝑵) = ∑
(

𝑲
𝒊

)(
𝑴−𝑲
𝑵−𝒊

)

(
𝑴
𝑵

)

𝒙
𝒊=𝟎 , 

where x is the number of predicted target genes of EPAS1 in the gold-standard gene set. M denotes 

the total number of expressed genes in HUVEC. K indicates the number of gold standard genes 

expressed in HUVEC. And N is the number of predicted EPAS1 target genes. The hypergeometric 

test p-values are 1.22×10-4 in HUVEC and 7.8×10-11 in C166, which indicates vPECA predicted target 

genes of EPAS1 are significantly enriched in the differentially expressed genes in the knockdown 

experiment of HUVEC and C166. 

 

Please have the manuscript proof-read by professional writers. There are many grammar mistakes. One 

example is listed here: in L687, “don’t consistent with.” 

Author’s Response: We thank the reviewer for pointing out the grammar mistakes. We have 

corrected the grammar errors in the manuscript. 

 

 

Reviewer #4 (Remarks to the Author): 

 

Comments on 

Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation  

Jingxue Xin et al Bing Su 

 

This is really a timely and outstanding study. It should be publishable with only minor revisions. I have two 

questions. 

 



1) Speaking of gene regulatory network, one usually refers to an interaction matrix with pairwise 

interactions represented by the off-diagonal elements and each gene’s self-regulation is a diagonal element. 

As can be seen in Chen et al. (2019), the diagonal elements may play a larger role than the off-diagonal 

elements in stabilizing the gene regulatory network. I wonder what the authors may say about the diagonal 

elements in their system since they only mentioned pairwise interactions. 

Ref: Yuxin Chen et al. 2019 Gene regulatory network stabilized by pervasive weak repressions: microRNA 

functions revealed by the May–Wigner theory. National Science Review (NSR) 

0: 1–13, 2019 doi: 10.1093/nsr/nwz076 Advance access publication 0 2019 

Author’s Response: We agree that gene’s self-regulation is important in mRNA degradation and 

stabilizing gene regulatory network. It has been nicely demonstrated that self-regulation may play a 

larger role than the off-diagonal elements in stabilizing the GRN in the published study (Chen, et al., 

2019). However, our vPECA model has the limitation to infer the self-regulation relations due to the 

Bayesian inference structure. When modeling expression of a target gene (TG) given a set of 

candidate TFs, we used the conditional density, i.e. 𝑷(𝑻𝑮|𝐓𝐅𝐬). For self-regulation situations, TG is 

also a TF and there will be a self-loop. It violates the assumption that the Bayesian network should 

be based on a directed acyclic graph. Therefore, our method could not infer the self-regulation 

structure. It can be extended to dynamical Bayesian network to handle self-regulation, which we plan 

to try in future studies.  

 

We cited the reference of Chen et al (2019), pointing out the importance of self-regulation, and 

discussed the potential limitation of vPECA in the Discussion section. 

 

2) The main corresponding author has recently published a paper (also in NSR) which suggests that another 

gene in the same region, TMEM247, may be no less important than EPAS1. While the results on EPAS1 

may not be all that surprising, TMEM247 may need extra support. Any comments? 

In short, I look forward to seeing this paper in print. 

Author’s Response: TMEM247 is another important gene with strong selection signals in Tibetans. 

TMEM247-rs116983452 has recently been identified to be significantly correlated with reduced 

hemoglobin concentration, red blood cell count, and hematocrit (Deng, et al., 2019). However, this 

gene’s expression is highly context-specific and is not expressed in HUVEC (expression value is 0 

across all the 50 samples). This makes it hard to interpret the regulatory mechanisms under our 

current dataset.  

 

We also checked the expression profile of TMEM247 in ENCODE, GTEx, and gene expression data 

of mammalian (human and macaque) organ development (Cardoso-Moreira, et al., 2019), which is 

shown in the following figures (Fig. R14-16). These expression profiles show TMEM247 mainly 

expresses in testis, implying its potential function in male reproduction, which is worthy to be studied 

in the future. We added those new data and discussions in our revision. We thank the reviewer’s 

insights to improve our manuscript. 

 



 
Fig. R14. The expression profile of TMEM247 in ENCODE shows that TMEM247 is expressed in testis, 

blood, and embryo but not in other tissues or cell lines. 

 
Fig. R15. The expression profile of TMEM247 in multiple tissues in GTEx shows that TMEM247 is highly 

expressed in testis, but mostly absent in other 40 tissues. 

 



 
Fig. R16. Expression profile of TMEM247 during development across 6 major tissues. 
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REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

The authors have carefully and thoughtfully addressed my previous concerns. 

Regarding the remaining concerns of Reviewer no. 1, I went through the authors’ response to the 

reviewer and think they have been very thorough and attentive to the criticisms. I only have two 

additional comments: 

1. They show that the hypoxic DEGs peak and decline over a five day period which is what would 

be expected based on the literature, and this should be acknowledged. 

2. Another rationale for using HUVECs for their study is that it is a cell type that expresses EPAS1 

at high levels. Because EPAS1 expression is more tissue restricted than HIF1A (especially in 

utero), HUVECs are a good bet for this and the other reasons they mention. This should be stated. 

Reviewer #3 (Remarks to the Author): 

The authors did an excellent job addressing my previous concerns. I support its publication in NC 

now.



NCOMMS-19-13152C 

Point-to-point responses to Reviewers' comments: 

Reviewer #2 (Remarks to the Author): 

The authors have carefully and thoughtfully addressed my previous concerns. 

Regarding the remaining concerns of Reviewer no. 1, I went through the authors’ response to the 
reviewer and think they have been very thorough and attentive to the criticisms. I only have two 
additional comments: 

1. They show that the hypoxic DEGs peak and decline over a five day period which is what would be 
expected based on the literature, and this should be acknowledged. 

Author’s Response: We thank the reviewer’s important comment. Indeed, the pattern that 
DEGs decline over a five-day period was also reported in Peng et al., 2007 [1]. But we can’t 
find any literature systematically discusses the reason and this could be an interesting 
topic to explore in future. We speculate it might be due to the regulatory feedback loops 
in hypoxic response derived from the ancient HIF pathway [2], which ensures that 
oxygen in cell can be maintained after chronic hypoxic induction. We added this 
statement and cited the references in the main manuscript. 

1. Peng, Y. et al. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans 
to High-Altitude Hypoxia. Mol Biol Evol 34, 818-830 (2017). 

2. Ivan, M. & Kaelin, W.G. The EGLN-HIF O2 Sensing System: Multiple Inputs and Feedbacks. 
Mol Cell 66, 772-779 (2017). 

2. Another rationale for using HUVECs for their study is that it is a cell type that expresses EPAS1 at 
high levels. Because EPAS1 expression is more tissue restricted than HIF1A (especially in utero), 
HUVECs are a good bet for this and the other reasons they mention. This should be stated. 

Author’s Response: We thank the reviewer for the insightful comment on the rationale for 
using HUVECs. In the revised version, we added this important reason to the Methods 
(“Choosing relevant cell type to hypoxic response” section) as follow. 

 “EPAS1 (Endothelial PAS domain protein 1) is a key transcription factor involved in hypoxic 
induction and the genetic adaptation of Tibetans to high-altitude. Compared with HIF1A, 
EPAS1 expression is more tissue restricted [3] and highly expressed in endothelial cells, such as 
HUVEC, which makes it an appropriate cell type in this study.”

3.  Wiesener, M.S. et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell 
populations of different organs. FASEB J 17, 271-3 (2003). 

Reviewer #3 (Remarks to the Author): 

The authors did an excellent job addressing my previous concerns. I support its publication in NC 
now. 

We appreciate the reviewer’s positive comments. 
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