OMTO, Volume 19

Supplemental Information

A 70-Gene Signature for Predicting Treatment

Outcome in Advanced-Stage Cervical Cancer

Ngoc Ngo Yen Nguyen, Tae Gyu Choi, Jieun Kim, Min Hyung Jung, Seok Hoon Ko, Yoonhwa Shin, Insug Kang, Joohun Ha, Sung Soo Kim, and Yong Hwa Jo

С

D

Figure S1. Validation of the 70-gene signature in independent data sets. (A-B) Incorporation of 70-gene signature into patients with RNA-seq of TCGA (A), microarray of GSE39001 and GSE52904 (B). Each group was classified by 70-gene signature into low- and high-risk, and evaluated by Kaplan-Meier analysis. The p values were computed by the log-rank test. (C). Heatmap of median centered 70-gene expression profiles between high- and low-risk groups in TCGA data sets (red, relative high expression; green, relative low expression). (D). Heatmap of median centered 70-gene expression profiles between high- and low-risk groups in TCGA data sets (red, relative high expression; green, relative low expression).

Α

С

Figure S2. Survival analysis of patients under 65 years old by the 70-gene signature. (A-C)

The 70-gene signature was applied to patients under 65 years old (**A**), early-stage (**B**), advanced-stage (**C**). Each group was classified by 70-gene signature into low- and high-risk, and evaluated by Kaplan-Meier analysis. The p values were computed by the log-rank test.

Figure S3.

Figure S3. Survival analysis by the treatment methods in patients with early-stage. (A) Patients were separated according to the conventional therapies; hysterectomy and/or radiotherapy. (B) Effect of additional chemotherapy with hysterectomy and radiotherapy. The p values were computed by the log-rank test. CT, chemotherapy; HT, hysterectomy; RT, radiotherapy

Figure S4.

Advanced stage – chemoradation therapy

Figure S4. Survival analysis of advanced-stage patients treated with chemoradiation therapy

by the 70-gene signature. Incorporation of 70-gene signature into patients with chemoradiation therapy. Each group was classified by 70-gene signature into low- and high-risk, and evaluated by Kaplan-Meier analysis. The p values were computed by the log-rank test.

Figure S5.

Figure S5. Work flowchart of the applied analysis

Table S1. Univariate and multivariate Cox proportional hazard regression of prognosiswith stage.

Variables -	Univariate			Multivariate		
	HR	95%CI	p value	HR	95%CI	<i>p</i> value
Stage (Stage IIB-IV)	3.547	2.466 - 5.103	8.8e-12	3.691	2.564 - 5.313	2.2e-12
Signature (High risk)	2.265	1.566 - 3.275	1.4e-05	2.369	1.637 – 3.428	4.8e-06

HR, Hazard Ratio; CI, Confidence Interval; the Wald test was used to estimate *p*-values. All

statistical tests were two-sided.

Variables _	Univariate			Multivariate		
	HR	95%CI	p value	HR	95%CI	p value
Size	3 703	1.917 - 7.152	0.70.05	2 724	1.397 – 5.311	0 00326
(≥4 cm)	5.705		9.76-05	2.724		0.00320
Signature	6760	2.632 -17.409	7 2 . 05	5 401	2.108 - 14.304	0.00040
(High-risk)	0.769		7.3e-05	5.491		0.00049

Table S2. Univariate and multivariate Cox proportional hazard regression analysis ofprognosis with size.

HR, Hazard Ratio; CI, Confidence Interval; the Wald test was used to estimate *p*-values. All

statistical tests were two-sided.

Variables	Univariate			Multivariate		
	HR	95%CI	<i>p</i> value	HR	95%CI	p value
Age under 65year (Advanced Stage)	2.144	1.346-3.416	0.0013	2.048	1.284-3.265	0.0033
Signature(high)	2.134	1.328 -3.432	0.0017	2.095	1.303 - 3.368	0.0023

 Table S3. Univariate and multivariate Cox proportional hazard regression analysis of prognosis.

HR, Hazard Ratio; CI, Confidence Interval; the Wald test was used to estimate p-values. All

statistical tests were two-sided.

Table S5. Cervical cancer RNA expression data sets.

GEO Number	Origin /Year	Chip type	References
TCGA		IlluminaHiSeq	
GSE39001	Mexico 2013	Affymetrix Human HG-Focus Target Array	Espinosa et al.
GSE44001	Korea 2013	Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip	Lee et al.
GSE52904	Mexico 2015	Affymetrix Human Gene 1.0 ST Array [transcript (gene) version]	Medina- Martinez et al.