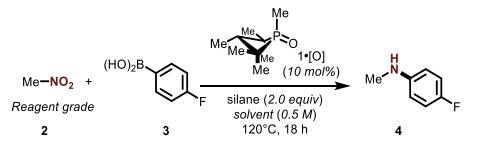
P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate

Gen Li, Ziyang Qin, Alexander T. Radosevich*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Correspondence to: radosevich@mit.edu


Contents

I.	General Materials and Methods	S2
II.	Studies of Experimental Variables	S3
III.	Examples of Methylamination of Boronic Acids (Esters)	S5
	A. General Procedure	S5
	B. Analytical Data for Methylamination Products	S7
	C. Preparation of Boronic Acid (Esters)	S20
IV.	Mechanistic Studies	S27
V.	Specialized Applications and Examples	
	A. Isotopic labelling from H ₃ C–NO ₂ isotopologues	
	B. (¹⁵ <i>N</i>)Nitromethane Preparation	
	C. Reactivity Comparison for (MeNO ₂ vs ArNO ₂) and (ArB(OH) ₂ vs ArBpin)	S36
	D. Benzene-1,4-Diamine Synthesis from a Three-Component Reaction	S38
	E. Target Molecule Synthesis: Triflubazam	
VI.	DFT Computation of Orbital Eigenvalues for MeNO ₂ and PhNO ₂	S41
VII.	Spectral Data	S42

I. General Materials and Methods

All reagents (including commercial phosphorus reagents used in optimization studies) were purchased from commercial vendors (Sigma-Aldrich, Alfa Aesar, Acros, TCI, Oakwood Chemical or Combi-Blocks) and used without further purification unless otherwise indicated. Dichloromethane, diethyl ether, dimethylformamide, and tetrahydrofuran were purified and collected under argon using a Glass Contour Solvent Purification System. Anhydrous *m*-xylene and cyclopentyl methyl ether were obtained from a Sigma-Aldrich (sure-seal® bottle) and used as received. All other solvents were ACS grade or better and were used without further purification unless otherwise noted. Manipulations were conducted under an atmosphere of dry N2 gas unless otherwise noted. The catalytic methylamination reactions were carried out in glass culture tubes with threaded end (20×125 mm; Fisher Scientific part # 14-959-35A), outfitted with a phenolic screw-thread open top cap (Kimble-Chase part #73804-15425), and PTFE-lined silicone septum (Thermo Fisher part # B7995-15). Column chromatography was carried out on silica gel (SiliFlash® Irregular Silica Gel, P60 40-63µm) or aluminum oxide (activated, neutral, Brockmann I) as noted. ¹H, ²H, ¹³C, ¹⁹F, and ³¹P NMR were collected with either Bruker AVANCE-400, DPX 400, VARIAN Inova-500, or JEOL 500 MHz spectrometers and processed using either MestReNova or Bruker software. ¹H NMR chemical shifts are given in ppm with respect to solvent residual peak (CDCl₃, δ 7.26 ppm; DMSO-d₆, δ 2.50 ppm; TMS, δ 0.00 ppm). ²H NMR chemical shifts are given in ppm with respect to solvent residual peak (CDCl₃, δ 7.26 ppm; CD₂Cl₂-d₆, δ 5.30 ppm). ¹³C{¹H} NMR shifts are given in ppm with respect to (CDCl₃ δ 77.16 ppm, DMSO-*d*₆, δ 39.52 ppm). ³¹P NMR shifts are given in ppm with respect to 85% H₃PO₄ (δ 0.0 ppm) as an external standard. Multiplicities are described as s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, m = multiplet. Coupling constants are reported in Hertz (Hz). High-resolution ESI mass spectra were obtained from the Mass Spectrometry Laboratory at the MIT department of chemistry instrumentation on a JEOL AccuTOF-DART (JMS-T100LP, ionSense DART source).

II. Optimization of the Reductive C-N Coupling Reaction

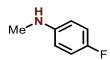
To an oven-dried glass culture tube described in the General Methods section was added a small stir bar, 4fluorophenylboronic acid **2** (36 mg, 0.25 mmol, 1.0 equiv, 97% purity), phosphine oxide precatalyst (10 mol% unless otherwise noted), and nitromethane **3** (41 μ L, 0.75 mmol, 3.0 equiv unless otherwise noted). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. Following evacuation and the introduction of nitrogen on a Schlenk line, dry solvent (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, silane was added and the reaction mixture was stirred at 120 °C. When complete, the reaction vessel screw cap was unscrewed (note that in some cases pressure release was observed) and dibromomethane (17.5 μ L, 0.25 mmol, 1.0 equiv) was added as internal standard. The reaction mixture was diluted with 3 mL of CDCl₃ and analyzed by quantitative ¹H NMR. The yield was determined by relative integration between CH₂Br₂ (4.93 ppm, 1.0 equiv x 2H = 200%) and product **4** [(2.81 ppm, 3H) or (6.51-6.58 ppm, 2H)]. Number of scans = 16 and relaxation delay = 4 seconds.
 Table S1. Discovery and Optimization of Organophosphorus-Catalyzed N-methyl-amine Synthesis.

Me —NO₂ + (3.0 equiv)	(HO) ₂ B	$Me \xrightarrow{Me}_{Me} 1 \cdot [O]$ $Me \xrightarrow{(10 mol\%)} Me^{H}_{F} \text{ silane } (2.0 \text{ equiv})$ $solvent (0.5 \text{ M})$			
2	3	120°C, 18 h		4	
Entry	Solvent	Silane	R ₃ P=O	Yield (%)	
1	СРМЕ	PhSiH ₃	1• [O]	95(90)%	
2	CPME	PhSiH ₃	1	94%	
3	CPME	PhSiH ₃	None	0%	
4	CPME	None	1• [O]	0%	
5 ^b	CPME	Ph_2SiH_2	1• [O]	87%	
6^b	CPME	PMHS	1• [O]	85%	
7	<i>m</i> -xylene	PhSiH ₃	1• [O]	51%	
8	dioxane	PhSiH ₃	1• [O]	90%	
9^c	CPME	PhSiH ₃	1• [O]	73%	
$10^{d,f}$	CPME	PhSiH ₃	1• [O]	84%	
11 ^{e,f}	CPME	PhSiH ₃	1• [O]	89%	

^{*a*} Yields were determined through ¹H NMR analysis with the aid of dibromomethane as an internal standard. ^{*b*} 24 h reaction time. ^{*c*} 2 equiv of nitromethane was used. ^{*d*} Reaction run under air. ^{*e*} 2.0 equiv of H₂O added.

III. Examples of Methylamination of Boronic Acids (Esters)

A. General procedure:

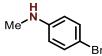

General Procedure 1A. To a glass culture tube described in the General Methods section was added a small stir bar, the appropriate boronic acid/boronic acid ester (if solid), phosphetane oxide precatalyst 1•[O] (10 mol% unless otherwise noted). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry cyclopentyl methyl ether (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, phenylsilane (or diphenylsilane) and nitromethane were added and the reaction mixture was stirred at 120 °C. Upon completion, the reaction vessel screw cap was unscrewed (note that in some cases pressure release was observed) and 10 mL of ethyl acetate was added following by extraction with 4x15 mL 5 M aqueous HCl solution. After mixing and separating the organic layer, the aqueous layer was neutralized with 1 M NaOH aqueous solution to pH=14, then transferred to a separatory funnel. Each aqueous phase was back-extracted with 4x15 mL portions of DCM. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated with aid of a rotary evaporator. The crude residues were purified via column chromatography to yield pure coupling products. Columns were primarily slurry packed with hexanes and mobile phase polarity was increased gradually to the mixture indicated. Note: hexanes = Hex, dichloromethane = DCM, ethyl acetate = EA.

General Procedure 1B. To a glass culture tube described in the General Methods section was added a small stir bar, the appropriate boronic acid/boronic acid ester (if solid), phosphetane oxide precatalyst $1 \cdot [O]$ (10 mol% unless otherwise noted). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry *cyclopentyl methyl ether* (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, phenylsilane (or diphenylsilane) and nitromethane were added and the reaction mixture was stirred at 120 °C. When completed, the reaction vessel screw cap was unscrewed (note that in some cases pressure release was observed) and diluted with 10 mL ethyl acetate. The mixture were transferred to a 40 mL vial and concentrated with aid of a rotary evaporator. The crude residues were purified via column chromatography to yield pure coupling products. Columns were primarily slurry packed with hexanes and mobile phase polarity was increased gradually to the mixture indicated. Note: hexanes = Hex, dichloromethane = DCM, ethyl acetate = EA.

General Procedure 1C. To a glass culture tube described in the General Methods section was added a small stir bar, the appropriate boronic acid/boronic acid ester (if solid), phosphetane oxide precatalyst 1•[O] (15 mol% unless otherwise noted). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry cyclopentyl methyl ether (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, phenylsilane (or diphenylsilane) and nitromethane were added and the reaction mixture was stirred at 120 °C. Upon completion, the reaction vessel screw cap was unscrewed (note that in some cases pressure release was observed) and 10 mL of ethyl acetate was added following by extraction with 4x15 mL 5 M aqueous HCl solution. After mixing and separating the organic layer, the aqueous layer was neutralized with 1 M NaOH aqueous solution to pH=14, then transferred to a separatory funnel. Each aqueous phase was back-extracted with 4x15 mL portions of DCM. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated with aid of a rotary evaporator. The crude residues were purified via column chromatography to yield pure coupling products. Columns were primarily slurry packed with hexanes and mobile phase polarity was increased gradually to the mixture indicated. Note: hexanes = Hex, dichloromethane = DCM, ethyl acetate = EA.

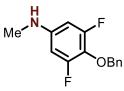
B. Analytical Data for Methylaminatiion Products

4-Fluoro-N-methylaniline (4):


Following the **General Procedure 1A** using 4-fluorophenylboronic acid (70 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 18 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (56 mg, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.94 – 6.88 (m, 2H), 6.59 – 6.50 (m, 2H), 3.59 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.9 (d, *J* = 234.4 Hz), 145.8 (d, *J* = 1.8 Hz), 115.7 (d, *J* = 22.3 Hz), 113.2 (d, *J* = 7.3 Hz), 31.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -128.53 (tt, J = 8.6, 4.3 Hz). HRMS (ESI) calculated for C₇H₉FN [M+H]⁺: 126.0713, Found: 126.0714.

N-methylaniline (5):

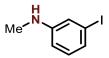
Following the **General Procedure 1A** using phenylboronic acid (1.2 g, 10 mmol, 1.0 equiv), phenylsilane (2.46 mL, 1.00 mmol, 2.0 equiv) and nitromethane (1.62 mL, 1.50 mmol, 3.0 equiv) for 18 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (0.89 g, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (ddd, *J* = 8.8, 7.3, 1.7 Hz, 2H), 6.72 (ddt, *J* = 8.7, 7.3, 1.4 Hz, 1H), 6.68 – 6.56 (m, 2H), 3.70 (br s, 1H), 2.85 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 129.3, 117.4, 112.5, 30.9. HRMS (ESI) calculated for C₇H₉N [M+H]⁺ : 108.0813, Found: 108.0814.


4-Bromo-N-methylaniline (6):

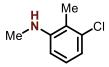
Following the **General Procedure 1A** using 4-bromophenylboronic acid (104 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (86 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.22 (m, 2H), 6.54 – 6.44 (m, 2H), 3.69 (s, 1H),

2.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.4, 132.0, 114.1, 108.9, 30.8. HRMS (ESI) calculated for C₇H₉BrN [M+H]⁺: 185.9913; Found: 185.9914.

4-(Benzyloxy)-3,5-difluoro-N-methylaniline (7):


Following the **General Procedure 1A** using 4-benzyloxy-3,5-difluorophenylboronic acid (135 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (372 μ L, 2.00 mmol, 4.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (64 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.42 (m, 2H), 7.40 – 7.30 (m, 3H), 6.16 – 6.04 (m, 2H), 5.01 (s, 2H), 3.74 (s, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.6 (d, *J* = 8.4 Hz), 156.1 (d, *J* = 8.3 Hz), 145.8 (t, *J* = 12.5 Hz), 137.1, 128.5 (d, *J* = 6.9 Hz), 128.4, 96.0 (d, *J* = 7.9 Hz), 95.8 (d, *J* = 7.7 Hz), 76.7 (t, *J* = 2.4 Hz), 30.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -127.71. HRMS (ESI) calculated for C₁₄H₁₄F₂NO [M+H]⁺: 250.1038; Found: 250.1035.

2-Bromo-N-methylaniline (8):

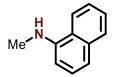

Following the **General Procedure 1A** using 2-bromophenylboronic acid (104 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (279 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica gel (78 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.22 (ddd, *J* = 8.5, 7.4, 1.5 Hz, 1H), 6.69 (dd, *J* = 8.2, 1.5 Hz, 1H), 6.61 (td, *J* = 7.6, 1.5 Hz, 1H), 4.80 (s, 1H), 2.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.7, 132.4, 128.7, 118.2, 111.4, 110.0, 31.0. HRMS (ESI) calculated for C₇H₉BrN [M+H]⁺: 185.9913; Found: 185.9913.

3-Iodo-N-methylaniline (9):

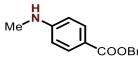
Following the **General Procedure 1B** using 3-iodophenylboronic acid (124 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 µL, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 µl, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica gel (95 mg, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (dt, *J* = 7.7, 1.3 Hz, 1H), 6.94 (t, *J* = 2.0 Hz, 1H), 6.88 (t, *J* = 7.9 Hz, 1H), 6.55 (ddd, *J* = 8.2, 2.4, 0.9 Hz, 1H), 3.73 (s, 1H), 2.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.6, 130.7, 126.2, 120.9, 112.0, 95.4, 30.6. HRMS (ESI) calculated for C₇H₉IN [M+H]⁺: 233.9774.9913; Found: 233.9773.

3-Chloro-*N***,2-dimethylaniline (10):**

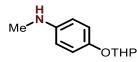
Following the **General Procedure 1A** using 3-chloro-2-methylphenylboronic acid (87 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=30:1 on silica gel (47 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (t, *J* = 8.1 Hz, 1H), 6.79 (dd, *J* = 8.0, 1.1 Hz, 1H), 6.52 (dd, *J* = 8.1, 1.1 Hz, 1H), 3.70 (s, 1H), 2.90 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.5, 134.5, 127.4, 119.6, 117.9, 107.6, 31.1, 13.5. HRMS (ESI) calculated for C₈H₁₁ClN [M+H]⁺: 156.0575, Found: 156.0575.


N,2-dimethylaniline (11):

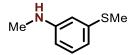
Following the **General Procedure 1A** using 2-methylphenylboronic acid (70 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (40 mg, 66%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (td, *J* = 7.7, 1.6 Hz, 1H), 7.06 (dd, *J* = 7.5, 1.6 Hz,


1H), 6.68 (td, J = 7.4, 1.2 Hz, 1H), 6.62 (dd, J = 8.0, 1.1 Hz, 1H), 3.58 (s, 1H), 2.90 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.4, 130.0, 127.3, 122.0, 117.0, 109.3, 30.9, 17.5. HRMS (ESI) calculated for C₈H₁₂N [M+H]⁺: 122.0964; Found: 122.0967.

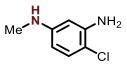
N-methylnaphthalen-1-amine (12):


Following the **General Procedure 1A** using naphthalene-1-boronic acid (89 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (372 μ L, 2.00 mmol, 4.0 equiv) and nitromethane (108 μ L, 2.00 mmol, 4.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=20:1 on silica (56 mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.76 (m, 2H), 7.49 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 6.64 (d, *J* = 7.5 Hz, 1H), 4.44 (s, 1H), 3.04 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.6, 134.3, 128.7, 126.8, 125.8, 124.8, 123.6, 119.9, 117.4, 103.9, 31.1. HRMS (ESI) calculated for C₁₁H₁₂N [M+H]⁺: 158.0964, Found: 158.0961.

Benzyl 4-(methylamino)benzoate (13):

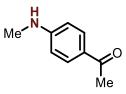

Following the **General Procedure 1B** using 4-benzylcarbonylphenylboronic acid (132 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (279 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (96 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.88 (m, 2H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.35 – 7.29 (m, 1H), 6.59 – 6.51 (m, 2H), 5.32 (s, 2H), 4.19 (s, 1H), 2.88 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.8, 153.1, 136.9, 131.8, 128.6, 128.1(128.13), 128.1(128.09), 118.3, 111.2, 66.1, 30.3. HRMS (ESI) calculated for C₁₅H₁₆NO₂ [M+H]⁺: 242.1176, Found: 242.1179.

N-methyl-4-((tetrahydro-2*H*-pyran-2-yl)oxy)aniline (14):


Following the **General Procedure 1B** using 4-(tetrahydro-2*H*-pyran-2-yloxy)phenylboronic acid (117 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ l, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (81 mg, 79%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.01 – 6.88 (m, 2H), 6.61 – 6.52 (m, 2H), 5.25 (t, *J* = 3.4 Hz, 1H), 3.97 (ddd, *J* = 11.9, 9.0, 3.2 Hz, 1H), 3.58 (dtd, *J* = 11.3, 4.3, 1.5 Hz, 1H), 3.23 (s, 1H), 2.80 (s, 3H), 2.07 – 1.91 (m, 1H), 1.91 – 1.79 (m, 2H), 1.75 – 1.55 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 144.7, 118.3, 113.5, 97.9, 62.3, 31.6, 30.7, 25.5, 19.2. HRMS (ESI) calculated for C₁₂H₁₈NO₂ [M+H]⁺: 208.1332; Found: 208.1343.

N-methyl-4-(methylthio)aniline (15):

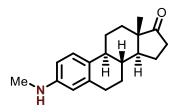
Following the **General Procedure 1A** using 4-(methylthio)phenylboronic acid (88 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ l, 1.5 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (59 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (t, *J* = 7.9 Hz, 1H), 6.61 (ddd, *J* = 7.7, 1.8, 0.9 Hz, 1H), 6.51 (t, *J* = 2.1 Hz, 1H), 6.40 (ddd, *J* = 8.1, 2.4, 0.9 Hz, 1H), 3.79 (s, 1H), 2.83 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8, 139.4, 129.7, 115.6, 110.4, 109.9, 30.8, 16.0. HRMS (ESI) calculated for C₈H₁₂NS [M+H]⁺: 154.0685; Found: 154.0687.


4-Chloro-*N*¹-phenylbenzene-1,3-diamine (16):

Following the **General Procedure 1A** using 3-amino-4-chlorophenylboronic acid (86 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (372 μ L, 2.00 mmol, 4.0 equiv) and nitromethane (108 μ L, 2.00 mmol, 4.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (44 mg, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.01 (d, *J* = 9.3 Hz, 1H), 6.02 – 5.99 (m, 2H), 3.80

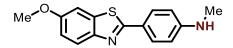
(s, 3H), 2.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.3, 143.5, 129.8, 108.2, 104.7, 99.3, 31.0. HRMS (ESI) calculated for C₇H₁₀ClN₂ [M+H]⁺: 157.0524, Found: 157.0527.

1-(4-(Methylamino)phenyl)ethan-1-one (17):

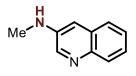


Following the **General Procedure 1A** using (4-acetylphenyl)boronic acid (82 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81 μ l, 1.5 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=20:1 on silica gel (45 mg, 61%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.75 (m, 2H), 6.63 – 6.44 (m, 2H), 4.42 (s, 1H), 2.88 (d, *J* = 5.1 Hz, 3H), 2.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.5, 153.3, 130.8, 126.5, 111.1, 30.1, 26.1. HRMS (ESI) calculated for C₉H₁₂N₂O [M+H]⁺: 150.0913, Found: 150.0913.

4-(6-Methoxybenzo/d/thiazol-2-yl)-N-methylaniline (18):



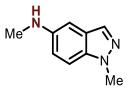
Following the **General Procedure 1A** using (4-(5-(p-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1yl)phenyl)boronic acid (87 mg, 0.25 mmol, 1.0 equiv), diphenylsilane (186 μ L, 1.00 mmol, 4.0 equiv) and nitromethane (41.0 μ L, 1.50 mmol, 3.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (53 mg, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 – 7.06 (m, 6H), 6.68 (s, 1H), 6.57 – 6.49 (m, 2H), 3.89 (s, 1H), 2.84 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 144.6, 142.4 (q, *J* = 38.2 Hz), 138.6, 129.4, 129.3, 128.6, 126.8, 126.6, 121.7 (q, *J* = 268.9 Hz) 112.1, 104.5 (q, *J* = 1.9 Hz), 30.6, 21.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.02. HRMS (ESI) calculated for C₁₈H₁₇F₃N₃ [M+H]⁺:332.1369, Found: 332.1373. (8R,9S,13S,14S)-13-Methyl-3-(methylamino)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta*[a]*phenanthren-17-one (19):


Following the **General Procedure 1A** using ((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta*[a]* phenanthren-3-yl)boronic acid (75 mg, 0.25 mmol, 1.0 equiv), phenylsilane (61 μ L, 0.50 mmol, 2.0 equiv) and nitromethane (41 μ L, 0.75 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=20:1 on silica (40 mg, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.4 Hz, 1H), 6.47 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.38 (s, 1H), 3.58 (s, 1H), 2.87 (dd, *J* = 10.4, 6.6 Hz, 2H), 2.82 (s, 3H), 2.50 (dd, *J* = 18.8, 8.6 Hz, 1H), 2.44 – 2.30 (m, 1H), 2.29 – 1.87 (m, 5H), 1.72 – 1.35 (m, 6H), 0.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.6, 137.4, 128.9, 126.3, 112.6, 110.9, 50.6, 48.2, 44.1, 38.7, 36.0, 31.8, 31.10, 29.9, 26.8, 26.1, 21.7, 14.0. HRMS (ESI) calculated for C₁₉H₂₆NO [M+H]⁺: 284.2009, Found: 284.1997.

4-(6-Methoxybenzo/d/thiazol-2-yl)-N-methylaniline (20):

Following the **General Procedure 1A** using (4-(6-methoxybenzo[d]thiazol-2-yl)phenyl)boronic acid (71 mg, 0.25 mmol, 1.0 equiv), phosphetane oxide precatalyst **1**•[O] (8.7 mg, 0.05 mmol, 20 mol%), diphenylsilane (186 μ L, 1.00 mmol, 4.0 equiv) and nitromethane (41 μ L, 0.75 mmol, 3.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica (52 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.83 (m, 3H), 7.32 (d, *J* = 2.5 Hz, 1H), 7.04 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.68 – 6.60 (m, 2H), 4.09 (s, 1H), 3.88 (s, 3H), 2.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.8, 157.3, 151.4, 149.0, 136.0, 128.9, 123.0, 122.9, 115.1, 112.2, 104.5, 56.0, 30.5. HRMS (ESI) calculated for C₁₅H₁₅N₂OS [M+H]⁺: 271.0900, Found: 271.0901.

N-methylquinolin-3-amine (21):


Following the **General Procedure 1C** using quinoline-3-ylboronic acid 1,3-propanediol ester (109 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (372 μ L, 2.00 mmol, 4.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (74 mg, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 2.8 Hz, 1H), 7.98 – 7.90 (m, 1H), 7.67 – 7.60 (m, 1H), 7.42 (tt, *J* = 7.0, 5.1 Hz, 2H), 7.00 (d, *J* = 2.8 Hz, 1H), 4.06 (s, 1H), 2.95 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.5, 142.7, 142.2, 129.7, 129.2, 127.1, 126.1, 125.0, 109.6, 30.5. HRMS (ESI) calculated for C₁₀H₁₁N₂ [M+H]⁺: 159.0917, Found: 159.0914.

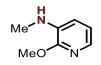
N-methylisoquinolin-5-amine (22):

Following the **General Procedure 1C** using Isoquinoline-5-ylboronic acid 1,3-propanediol ester (109 mg, 0.50 mmol, 1.0 equiv), diphenylsilane (372 μ L, 2.00 mmol, 4.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica gel (73 mg, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.16 (s, 1H), 8.46 (d, *J* = 6.0 Hz, 1H), 7.54 (d, *J* = 6.0 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 4.48 (s, 1H), 3.02 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.0, 143.7, 142.0, 129.4, 128.3, 126.2, 116.1, 113.5, 107.2, 30.9. HRMS (ESI) calculated for C₁₀H₁₁N₂ [M+H]⁺: 159.0917, Found: 159.0923.

N,1-dimethyl-1*H*-indazol-5-amine (23):

Following the **General Procedure 1C** using (1-methyl-1H-indazol-5-yl)boronic acid 1,3-propanediol ester (90 mg, 0.50 mmol, 1.0 equiv), phenylsilane (185 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (108 μ L, 2.00 mmol, 4.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (57 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.62 (t, *J* = 1.4 Hz, 1H), 7.34 (d, *J* = 1.9 Hz, 2H), 4.04 (s, 3H), 3.00 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 134.7, 132.7, 124.2, 119.8, 110.6, 110.3, 36.5, 35.9. HRMS calculated for C₉H₁₂N₃ [M+H]⁺: 162.1026, Found: 162.1026.

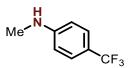
N-methylpyridin-3-amine (24):



Following the **General Procedure 1C** using 3-pyridineboronic acid 1,3-propanediol ester (83 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=4:1 on silica gel (48 mg, 88%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 3.0 Hz, 1H), 7.95 (dd, *J* = 4.7, 1.4 Hz, 1H), 7.08 (dd, *J* = 8.3, 4.7 Hz, 1H), 6.85 (ddd, *J* = 8.3, 3.0, 1.4 Hz, 1H), 3.82 (s, 1H), 2.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.3, 138.7, 135.9, 123.8, 118.1, 30.4. HRMS (ESI) calculated for C₆H₉N₂ [M+H]⁺: 109.0760, Found: 109.0761.

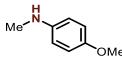
N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (26):

Following the **General Procedure 1C** using 3-pyrimidineboronic acid 1,3-propanediol ester (82 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica gel (31 mg, 57%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (s, 1H), 8.11 (d, *J* = 1.1 Hz, 2H), 3.78 (s, 1H), 2.90 (d, *J* = 4.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7, 142.7, 140.6, 30.1. HRMS (ESI) calculated for C₅H₈N₃ [M+H]⁺: 110.0714, Found: 110.0713.

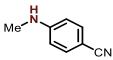

Following the **General Procedure 1C** using (2-methoxypyridin-3-yl)boronic acid 1,3-propanediol ester (97 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (108 μ L, 2.00 mmol, 4.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (42 mg, 60%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* = 5.1, 1.6 Hz, 1H), 6.79 (dd, *J* = 7.6, 5.0 Hz, 1H), 6.68 (dd, *J* = 7.6, 1.6 Hz, 1H), 4.19 (s, 1H), 3.97 (s, 3H), 2.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.6, 134.3, 132.6, 117.5, 114.0, 53.3, 30.0. HRMS (ESI) calculated for C₇H₁₁N₂O [M+H]⁺: 139.0864, Found: 139.0866.

N-methylthiophen-3-amine (28):

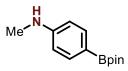
Following the **General Procedure 1C** using thiophen-3-ylboronic acid 1,3-propanediol ester (84 mg, 0.50 mmol, 1.0 equiv), phenylsilane (185 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (108 μ L, 2.00 mmol, 4.0 equiv) for 48 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (29 mg, 51%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 5.1, 3.1 Hz, 1H), 6.62 (dd, *J* = 5.1, 1.5 Hz, 1H), 5.96 (dd, *J* = 3.1, 1.5 Hz, 1H), 2.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.1, 125.4, 119.9, 95.3, 33.0. HRMS (ESI) calculated for C₅H₈NS [M+H]⁺: 114.0372, Found: 114.0350.


N-methyl-4-(trifluoromethyl)aniline (28):

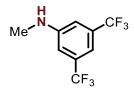
Following the **General Procedure 1C** using 4-trifluoromethylphenylboronic acid 1,3-propanediol ester (87 mg, 0.50 mmol, 1.0 equiv), phenylsilane (185 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 30 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=30:1 on silica gel (72 mg, 82%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 8.4 Hz, 2H),


6.60 (d, J = 8.5 Hz, 2H), 4.10 (s, 1H), 2.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.7, 126.7 (q, J = 3.8 Hz), 122.6 (q, J = 270.2 Hz), 118.7 (q, J = 32.1 Hz), 111.6, 30.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.95. HRMS (ESI) calculated for C₈H₉F₃N [M+H]⁺: 176.0682, Found: 176.0682.

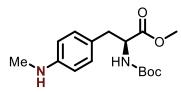
4-Methoxy-N-methylaniline (29):


Following the **General Procedure 1C** using 4-methoxylphenylboronic acid 1,3-propanediol ester (96 mg, 0.50 mmol, 1.0 equiv), phenylsilane (185 μ L, 1.50 mmol, 3.0 equiv) and nitromethane (81.0 μ L, 1.50 mmol, 3.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=30:1 on silica gel (43 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.84 – 6.77 (m, 2H), 6.64 – 6.55 (m, 2H), 3.76 (s, 3H), 3.44 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.2, 143.8, 115.0, 113.8, 56.0, 31.8. HRMS (ESI) calculated for C₈H₁₂NO [M+H]⁺: 138.0913, Found: 138.0913.

4-(Methylamino)benzonitrile (30):


Following the **General Procedure 1C** using (4-cyanophenyl)boronic acid neopentyl ester (94 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane (135 μ L, 2.50 mmol, 5.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (54 mg, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.37 (m, 2H), 6.60 – 6.51 (m, 2H), 4.29 (s, 1H), 2.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.3, 133.8, 120.7, 112.0, 98.7, 30.1. HRMS (ESI) calculated for C₈H₉N₂ [M+H]⁺: 133.0760, Found: 133.0761.

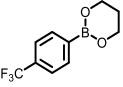
N-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (31):


Following the **General Procedure 1B** using 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (83 mg, 0.25 mmol, 1.0 equiv), phenylsilane (61 μ L, 0.50 mmol, 2.0 equiv) and nitromethane (68.0 μ L, 1.25 mmol, 5.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=15:1 on silica gel (53 mg, 91%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.61 (m, 2H), 6.62 – 6.54 (m, 2H), 3.92 (s, 1H), 2.85 (s, 4H), 1.32 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.9, 136.5, 111.6, 83.3, 30.4, 25.0. [Note: the carbon attached to boron was not observed due to quadrupole broadening caused by the ¹¹B nucleus]¹ HRMS (ESI) calculated for C₁₃H₂₁BNO₂ [M+H]⁺: 234.1662, Found: 234.1666.

N-methyl-3,5-bis(trifluoromethyl)aniline (32):

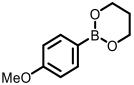
Following the **General Procedure 1C** using 3,5-ditrifluoromethylphenylboronic acid pinacol ester (87 mg, 0.25 mmol, 1.0 equiv), phenylsilane (62 μ L, 0,50 mmol, 2.0 equiv) and nitromethane (41 μ L, 0.75 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (56 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (s, 1H), 6.92 (s, 2H), 4.16 (s, 1H), 2.91 (d, *J* = 5.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8, 132.5 (q, *J* = 32.9 Hz), 123.8 (q, *J* = 272.5 Hz), 111.6 (d, *J* = 3.8 Hz), 110.23 – 110.0 (m, 1C), 30.50. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 63.21. HRMS calculated for C₉H₈F₆N [M+H]⁺: 244.0555, Found: 244.0559.

Methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(methylamino)phenyl)propanoate (33):


Following the **General Procedure 1B** using methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate (101 mg, 0.25 mmol, 1.0 equiv), **1**•[O] (8.70 mg, 0.0375 mmol, 0.15 equiv), phenylsilane (61 μ L, 0.50 mmol, 2.0 equiv) and nitromethane (68.0 μ L, 1.25 mmol, 5.0 equiv) for 36 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=9:1 on silica gel (61.8 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.00 – 6.92 (m, 2H), 6.61 – 6.53 (m, 2H), 4.96 (d, *J* = 8.3 Hz, 1H), 4.53 (q, *J* = 6.5 Hz, 1H), 3.77 (brs, 1H), 3.73 (s, 3H), 3.00 (dd, *J*

= 4.8, 2.4 Hz, 2H), 2.84 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8, 155.3, 148.4, 130.2, 124.5, 112.8, 54.8, 52.3, 37.6, 31.0, 30.9, 28.5. HRMS (ESI) calculated for C₁₆H₂₄N₂O₄Na [M+Na]⁺: 331.1628, Found: 331.1620.

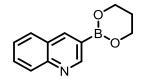
C. Preparation of Boronic Acid (Esters).


General procedure 1D for preparation of Boronic Acid 1,3-Propanediol Esters: To a glass culture tube described in the General Methods section was added an appropriate stir bar and the appropriate boronic acid (if solid). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry *toluene* (0.5 M) (unless otherwise noted) was added via syringe from solvent system. Lastly, 1,3-propanediol was added and the reaction mixture was stirred at 80 °C overnight. Upon completion, the mixture was dried over anhydrous calcium chloride, filtered and concentrated with aid of a rotary evaporator to yield the product in sufficient purity for subsequent use without further purification.

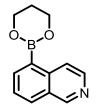
4-Trifluoromethylphenylboronic acid 1,3-propanediol ester:

Following the **General Procedure 1D** using 4-Trifluoromethylphenylboronic acid (3.8 g, 20 mmol, 1.0 equiv), 1,3-propanediol (1.6 mL, 22 mmol, 1.1 equiv) at 80 °C for overnight. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 7.7 Hz, 2H), 7.58 (d, *J* = 7.8 Hz, 2H), 4.18 (t, *J* = 5.5 Hz, 4H), 2.08 (p, *J* = 5.5 Hz, 2H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -62.88.

4-Methoxylphenylboronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using 4-Methoxylphenylboronic acid (3.0 g, 20 mmol, 1.0 equiv), 1,3-propanediol (1.6 mL, 22 mmol, 1.1 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dt, *J* = 9.2, 2.2 Hz, 2H), 6.92 – 6.84 (m, 2H), 4.15 (t, *J* = 5.5 Hz, 4H), 3.82 (s, 3H), 2.04 (p, *J* = 5.5 Hz, 2H).

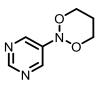
(2-Methoxypyridin-3-yl)boronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using (2-methoxypyridin-3-yl)boronic acid (0.61 g, 4.0 mmol, 1.0 equiv), 1,3-propanediol (0.6 mL, 8.2 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (dd, J = 5.0, 2.2 Hz, 1H), 7.96 (dd, J = 7.1, 2.2 Hz, 1H), 6.85 (dd, J = 7.1, 5.0 Hz, 1H), 4.19 (t, J = 5.5 Hz, 4H), 3.97 (s, 3H), 2.08 (p, J = 5.5, 2H).

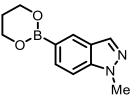
Quinolin-3-ylboronic acid 1,3-propanediol ester:

Following the **General Procedure 1D** using Quinolin-3-ylboronic acid (0.86 g, 4.0 mmol, 1.0 equiv), 1,3-propanediol (0.60 mL, 8.2 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.18 (d, J = 1.8 Hz, 1H), 8.56 (d, J = 1.3 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.84 (dd, J = 8.1, 1.5 Hz, 1H), 7.73 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.53 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 4.24 (t, J = 5.5 Hz, 4H), 2.13 (p, J = 5.6 Hz, 2H).

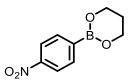
Isoquinolin-5-ylboronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using Isoquinolin-5-ylboronic acid (0.43 g, 2.0 mmol, 1.0 equiv), 1,3-propanediol (0.30 mL, 4.1 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform*d*) δ 9.22 (s, 1H), 8.58 (d, *J* = 6.1 Hz, 1H), 8.51 (d, *J* = 6.0 Hz, 1H), 8.23 (dd, *J* = 7.0, 1.4 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.58 (dd, *J* = 8.2, 7.0 Hz, 1H), 4.29 (t, *J* = 5.5 Hz, 4H), 2.16 (p, *J* = 5.5 Hz, 2H).

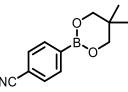
Thiophen-3-ylboronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using Thiophen-3-ylboronic acid (2.6 g, 20 mmol, 1.0 equiv), 1,3propanediol (1.6 mL, 22 mmol, 1.1 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, J = 2.7 Hz, 1H), 7.35 (d, J = 4.8 Hz, 1H), 7.30 (dd, J = 5.0, 2.7 Hz, 1H), 4.14 (t, J = 5.5 Hz, 4H), 2.05 (p, J = 5.5 Hz, 2H).

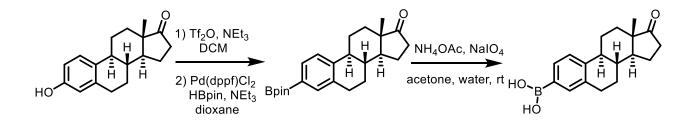
Pyrimidin-3-ylboronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using Pyrimidin-3-ylboronic acid (0.62 g, 5.0 mmol, 1.0 equiv), 1,3propanediol (0.70 mL, 10 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.23 (s, 1H), 8.96 (s, 2H), 4.19 (t, *J* = 5.5 Hz, 4H), 2.10 (p, *J* = 5.5 Hz, 2H).

1-Methyl-1*H*-indazol-5-ylboronic acid 1,3-propanediol ester:


Following the **General Procedure 1D** using 1-Methyl-1*H*-indazol-5-ylboronic acid (0.52 g, 3.0 mmol, 1.0 equiv), 1,3-propanediol (0.4 mL, 6.0 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (s, 1H), 7.98 (s, 1H), 7.78 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.35 (dd, *J* = 8.5, 1.0 Hz, 1H), 4.20 (t, *J* = 5.5 Hz, 4H), 4.07 (s, 3H), 2.09 (p, *J* = 5.5 Hz, 2H).

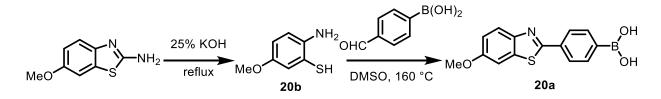
2-(4-Nitrophenyl)-1,3,2-dioxaborinane:


Following the **General Procedure 1D** using (4-nitrophenyl)boronic acid (1.0 g, 6.0 mmol, 1.0 equiv), 1,3propanediol (0.48 mL, 7.2 mmol, 1.2 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 (d, J = 8.2 Hz, 2H), 7.88 (d, J = 8.2 Hz, 2H), 4.14 (t, J = 5.4 Hz, 4H), 2.03 (p, J = 5.4 Hz, 2H).

4-Cyanophenylboronic acid 2,2-dimethyl-1,3-propandiol ester:

Following the **General Procedure 1D** using 4-Cyanophenylboronic acid (0.73 g, 5.0 mmol, 1.0 equiv), 2,2-dimethyl-1,3-propanediol (0.7 mL, 10.0 mmol, 2.0 equiv) at 80 °C for overnight. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 7.7 Hz, 2H), 3.78 (s, 4H), 1.03 (s, 6H).

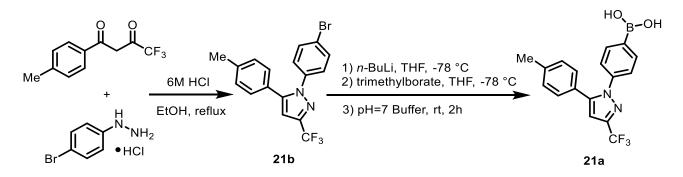
Synthesis of ((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-*6H*-cyclopenta/*a*/phenanthren-3-yl)boronic acid (19a):



To a solution of estrone (1.0 g, 3.7 mmol) and triethylamine (1.0 mL, 7.4 mmol) in DCM (20 mL) was added Tf₂O (0.7 mL, 4.1 mmol,) at 0°C. The reaction mixture was stirred at same temperature for 1h, then warmed to room temperature and stirred overnight. After completion, the reaction was washed with NaHCO₃ (20 mL). The aqueous phase was extracted with DCM (2 x 20 mL), and the combined organic phase was washed brine (40 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (Hex: EA =10:1) on silica to give 3-(trifluoromethanesulfonyl)estrone as a white solid (1.3 g, 90%). A portion of this product (1.0 g, 2.5 mmol) was added to a sealed tube containing Pd(dppf)Cl₂ (122 mg, 0.15 mmol), triethylamine (2.1 mL, 6.0 equiv), dioxane (10 mL), followed by 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.2 mL, 7.2 mmol). The reaction mixture was then heated to 100°C and stirred for 24 h. The reaction mixture was cooled to room temperature and filtered through a pad of cellite. The filtrate was concentrated and purified by flash column chromatography (Hex: EA =10:1) on silica to give 3 mixture was then heated to 100°C and stirred for 24 h. The reaction mixture was cooled to room temperature and filtered through a pad of cellite.

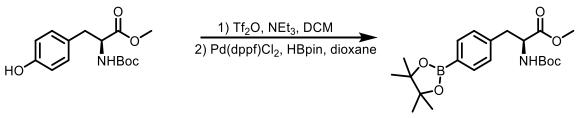
give 3-deoxyestrone-3-boronic acid pinacol ester (0.70 g, 74%) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.53 (m, 2H), 7.31 (d, *J* = 7.8 Hz, 1H), 2.93 (dt, *J* = 6.8, 4.3 Hz, 2H), 2.57 – 2.40 (m, 2H), 2.33 (td, *J* = 10.8, 4.2 Hz, 1H), 2.19 – 1.89 (m, 4H), 1.73 – 1.39 (m, 6H), 1.34 (s, 12H), 0.90 (s, 3H).

To a solution of 3-deoxyestrone-3-boronic acid pinacol ester (0.70 g, 1.8 mmol) in acetone (15 mL) and water (10 mL), NH₄OAc (0.82 g, 11 mmol) and NaIO₄ (2.4 g, 11 mmol) were added. The resulting reaction mixture was stirred at room temperature for 48 h. When completed, the reaction was diluted with Et₂O and filtered through a pad of celite. The filtrate was concentrated and purified by flash column chromatography (Hex: EA = 10:1) to afford aryl boronic acid **19a** (307 mg, 56%) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (d, *J* = 8.4 Hz, 1H), 6.64 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.58 (d, *J* = 2.7 Hz, 1H), 2.93 – 2.81 (m, 2H), 2.51 – 2.33 (m, 2H), 2.28 – 2.19 (m, 1H), 2.19 – 1.90 (m, 4H), 1.67 – 1.36 (m, 6H), 0.91 (s, 3H).


Synthesis of (4-(6-methoxybenzo[d]thiazol-2-yl)phenyl)boronic acid (20a):

To a solution of 25% potassium hydroxide (7.50 g KOH in 22.5 mL pure water) in 100 mL roundbottomed flask, 2-amino-methoxybenzothiazole (6.0 g, 33 mmol) was added. The suspension was heated to reflux for 24 h. After cooling down to room temperature, the pale yellow solution was acidified to pH=6 with aqueous 6N HCl then acetic acid. The precipitated solid was filtered and purified by flash column chromatography (Hex: EA=15:1) on silica to afford the desired product **20b** as a yellow solid (4.6 g, 88%). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.80 (dd, *J* = 8.7, 3.0 Hz, 1H), 6.73 – 6.63 (m, 2H), 4.12 – 3.98 (m, 2H), 3.61 (s, 3H).

To a sealed tube charged with nitrogen were added **20b** (0.78 mg, 5.0 mmol) and 4-Formylphenylboronic acid (0.75 mg, 5.0 mmol) followed by DMSO (30 mL). The suspension was heated to 160 °C and stirred for 2 h. After completion of the reaction, the mixture was poured into ice water to precipitate the product, which was collected by suction filtration and washed with a sparing amount of dichloromethane to afford desired product (4-(6-methoxybenzo[*d*]/thiazol-2-yl)phenyl)boronic acid **20a** (1.4 g, 99%) as a solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.23 (s, 2H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.97 – 7.89 (m, 3H), 7.73 (d, *J* = 2.6 Hz, 1H), 7.14 (dd, *J* = 8.9, 2.6 Hz, 1H), 3.86 (s, 3H).

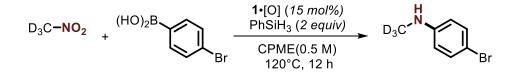

Synthesis of (4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)boronic acid (21a):

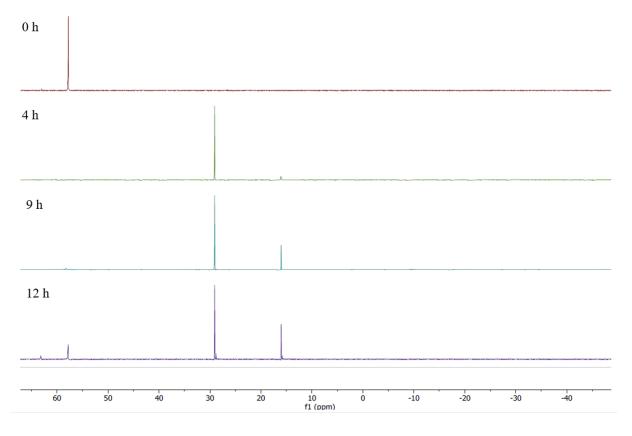
To a 100 mL round-bottomed flask charged with nitrogen and equipped with a magnetic stir bar were added 4,4,4-trifluoro-1-(*p*-tolyl)butane-1,3-dione (2.37 g, 10.3 mmol), (4- bromophenyl)hydrazine hydrochloride (2.24 g, 10.0 mmol), ethanol (20 mL) and 6N HCl (3.4 mL, 20 mmol). The reaction vessel was heated to reflux and stirred for 12 h. After cooling to room temperature, the reaction mixture was diluted with EA (40 mL) and washed with 30 mL saturated K₂CO₃, followed by 30 mL saturated brine. Then the combined organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (Hex: EA =10:1) to afford **21b** as a white solid (3.5 g, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.43 (m, 2H), 7.25 – 7.09 (m, 6H), 6.74 (s, 1H), 2.38 (s, 3H).

To a 25 mL round-bottomed flask equipped with a magnetic stir bar were added 1-(4-bromophenyl)-5-(*p*-tolyl)-3-(trifluoromethyl)-1*H*-pyrazole (0.76 g, 2.0 mmol), THF (5.6 mL) under an atmosphere of nitrogen and cooled to -78°C. A solution of *n*-BuLi (0.88 mL, 2.2 mmol) in hexane (2.5 M) was added dropwise. At this temperature, the suspension was stirred for 15 min. Neat triisopropylborate (0.8 mL, 3.0 mmol) was added dropwise. The resulting solution was stirred at -78°C for further 5 min then warmed to room temperature and stirred for another 1 h. Next, aqueous buffer (pH=7, 1.0 vol) was added and the biphasic mixture was stirred vigorously for 2 h. The reaction mixture was partitioned between water and ethyl acetate, the phases were separated, and the aqueous phase was extracted with EA (3 x 20 mL). The combined organic phases were washed with brine (20 mL) and then dried over Na₂SO₄, Removal of all volatiles *in vacuo* gave the crude product a white solid, which could be purified by flash column chromatography on silica gel (Hex:EA = 4:1) to afford pure product **21a** as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.23 (s, 2H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.21 – 7.11 (m, 5H), 2.30 (s, 3H).

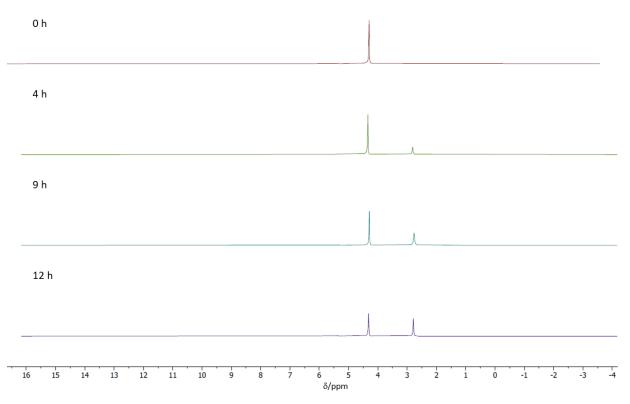
Synthesis of (S)-(4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl)boronic acid (22a):

22a


To a solution of Boc-Tyr-OMe (5.0 g, 17 mmol) and NEt₃ (4.7 mL, 34 mmol,) in DCM (50 mL) was added Tf₂O (3.3 mL, 19 mmol) at 0°C. The reaction mixture was stirred at same temperature for 1 h, then warmed to room temperature and stirred overnight. After completion, the reaction was washed with NaHCO₃ (50 mL). The aqueous phase was extracted with DCM (2 x 50 mL), and the combined organic phase was washed brine (50 mL), dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (Hex: EA =10:1) on silica to give trifluoromethanesulfonic ester (5.1 g, 70%) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.17 (m, 4H), 5.01 (d, *J* = 8.2 Hz, 1H), 4.60 (q, *J* = 6.9 Hz, 1H), 3.71 (s, 3H), 3.10 (ddd, *J* = 53.2, 13.9, 6.1 Hz, 2H), 1.41 (s, 9H).


To a sealed tube were added trifluoromethanesulfonic ester (2.5 g, 5.8 mmol), Pd(dppf)Cl₂ (0.22 g, 0.3 mmol), 4-methylmorpholine (1.8 mL, 1.5 equiv), dioxane (20 mL), followed by 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.6 mL, 18 mmol). The reaction mixture was then heated to 80°C and stirred for 24 h. The reaction mixture was cooled to room temperature and filtered through a pad of cellite. The filtrate was concentrated and purified by flash column chromatography (Hex: EA =10:1) on silica to give **22b** (1.51 g, 63%) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 4.94 (d, *J* = 8.2 Hz, 1H), 4.58 (q, *J* = 6.6 Hz, 1H), 3.70 (s, 3H), 3.11 (tt, *J* = 13.8, 6.9 Hz, 2H), 1.42 (s, 9H), 1.34 (s, 12H).

IV. Mechanistic Experiments


A. In Situ Spectroscopic Investigations

In situ NMR observation of the catalytic reaction: To a glass culture tube described in the General Methods section was added a small stir bar, 4-bromophenylboronic acid (208 mg, 1.00 mmol, 1.0 equiv), phosphetane oxide precatalyst **1**•[O] (26 mg, 15 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry *cyclopentyl methyl ether* (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, phenylsilane (246 μ L, 2.00 mmol, 2.0 equiv) and *d*₃-nitromethane (162 μ L, 3.0 mmol, 3.0 equiv) were added and the reaction mixture was stirred at 120 °C for 12 h. For every time point, a 50 μ L aliquot of the diluted relative to *d*-DCM(*l*) internal standard) and ³¹P NMR spectra (ppm are relative to 85% H₃PO₄ external standard) were collected at 0 h, 4 h, 9 h and 12 h.

Figure S1. Time-stacked in situ ³¹P NMR spectra (T = 25 °C, CH₂Cl₂) at t = 0 h, 4 h, 9 h and 12 h. Chemical shifts: **1**•[O], δ 57.8 (*anti*) and 62.3 (*syn*) ppm; **1**, δ 29.1 (*anti*) and 16.0 (*syn*) ppm. Units of chemical shift (δ) are ppm relative to 85% H₃PO₄ as an external standard.

Figure S2. Time-stacked in situ ²H NMR spectra (T = 25 °C, dichloromethane) at t = 0 h, 4 h, 9 h and 12 h. Chemical shifts: d_3 -nitromethane, δ 4.32 ppm; 4-bromo-*N*-(methyl- d_3)aniline, δ 2.79 ppm. Units of chemical shift (δ) are ppm relative to d_2 -dichloromethane as an internal standard.

B. Control reactions with formaldoxime trimer

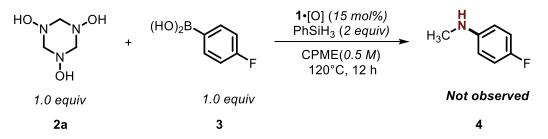
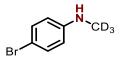
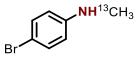
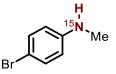



Figure S3. Control reactions with formaldoxime trimer instead of nitromethane as the starting material under the standard conditions.

V. Specialized Applications and Examples


A. Isotopic labelling from H₃C–NO₂ isotopologues

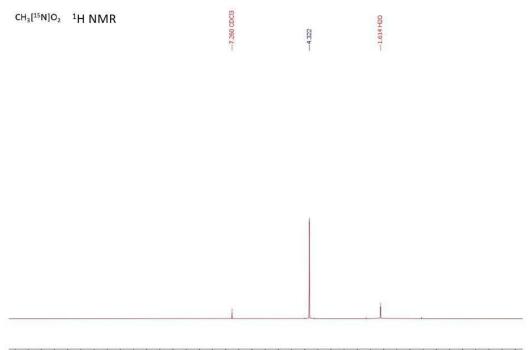
a. 4-Bromo-*N*-(methyl-*d*₃)aniline synthesis (5b):


Following the **General Procedure 1C** using 4-bromophenylboronic acid (104 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane- d_3 (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (84 mg, 88%). ¹H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.22 (m, 2H), 6.53 – 6.42 (m, 2H), 3.70 (s, 1H), 2.77 (s, 0.06H, 98% D). ²H NMR (61 MHz, Chloroform-d) δ 2.79 (s, 3D). ¹³C NMR (101 MHz, Chloroform-d) δ 148.4, 132.0, 114.1, 108.9.² HRMS (ESI) calculated for C₇H₉BrN [M+H]⁺: 189.0101; Found: 189.0102.

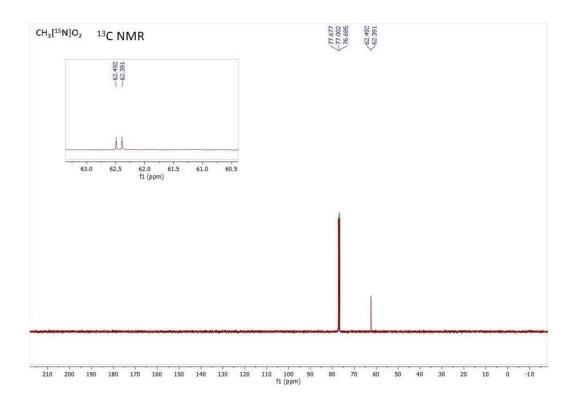
b. 4-bromo-*N*-(methyl-¹³*C*)aniline synthesis (5*c*):

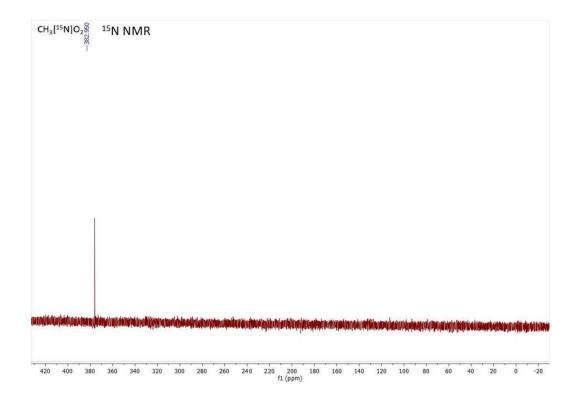
Following the **General Procedure 1C** using 4-bromophenylboronic acid (104 mg, 0.50 mmol, 1.0 equiv), phenylsilane (123 μ L, 1.00 mmol, 2.0 equiv) and nitromethane-¹³C (81.0 μ L, 1.50 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica gel (86 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.18 (m, 2H), 6.58 – 6.35 (m, 2H), 3.82 (s, 1H), 2.79 (d, *J* = 135.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 131.8, 114.0 (d, *J* = 3.4 Hz), 108.9, 30.7. HRMS (DART) calculated for C₆[¹³C]H₉BrN [M+H]⁺: 186.9946; Found: 186.9949, 98% [¹³C]

c. 4-Bromo-*N*-methylaniline- ${}^{15}N$ synthesis (*5d*):

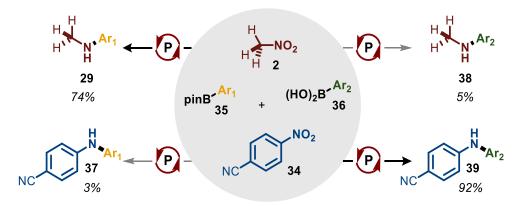

Following the **General Procedure 1C** using 4-Bromophenylboronic acid (41 mg, 0.20 mmol, 1.0 equiv), phenylsilane (50 μ L, 0.40 mmol, 2.0 equiv) and (nitro-¹⁵N)methane (32 μ L, 0.60 mmol, 3.0 equiv) for 24 h at 120 °C. The product was purified by flash column chromatography with Hex:EA=19:1 on silica

gel (34 mg, 91%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.19 (m, 2H), 6.59 – 6.41 (m, 2H), 3.93 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.9 (d, *J* = 21.6 Hz), 131.9 (d, *J* = 1.6 Hz), 114.2 (d, *J* = 2.8 Hz), 109.2, 30.9 (d, *J* = 9.8 Hz). ¹⁵N NMR (41 MHz, Chloroform-*d*) δ 52.4. HRMS (DAR) calculated for C₇H₉Br[¹⁵N] [M+H]⁺: 186.9883; Found: 186.9873. 99%[¹⁵N]

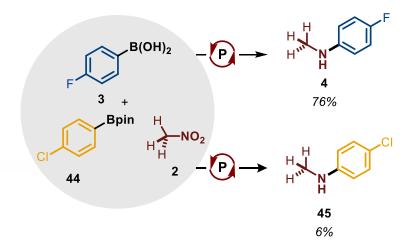

B. (nitro-¹⁵*N*)methane Preparation


$$Na[^{15}N]O_2 + CIH_2C-COOH \xrightarrow{B(OH)_3 (1.05 \text{ equiv})} H_3C-^{15}NO_2$$

Preparation followed a modification of a reported procedure:³ To a stirred mixture of chloroacetic acid (1.6 g, 14 mmol, 1.4 equiv) and cracked ice (25 g) was added cold 1 M NaOH just enough to make the solution alkaline to phenolphthalein. The solution was mixed with ¹⁵NO₂Na (0.70 g, 10 mmol) in H₂O (10 mL) and with boric acid (0.65 g, 1.05 equiv). The reaction mixture was heated until bubbles of carbon dioxide appeared (around 60 °C) and held at this temperature for 4 h. The reaction temperature was then increased to 80 °C and held for an additional 2 h. Nitromethane and H₂O were then distilled and nitromethane was extracted with diethyl ether (2 x 10 mL) and dried with Na₂SO₄. Careful distillation of the crude mixture gave the pure product (nitro-¹⁵*N*)methane (0.20 g, 32%). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 62.4 (d, *J* = 10.1 Hz). ¹⁵N NMR (41 MHz, Chloroform-*d*) δ 383.0.

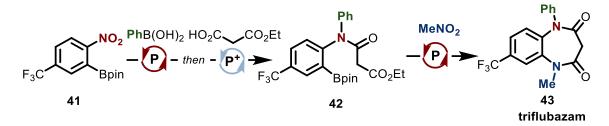


15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 f1(ppm)



C. Reactivity comparison for (MeNO₂ vs ArNO₂) and (ArB(OH)₂ vs ArBpin).

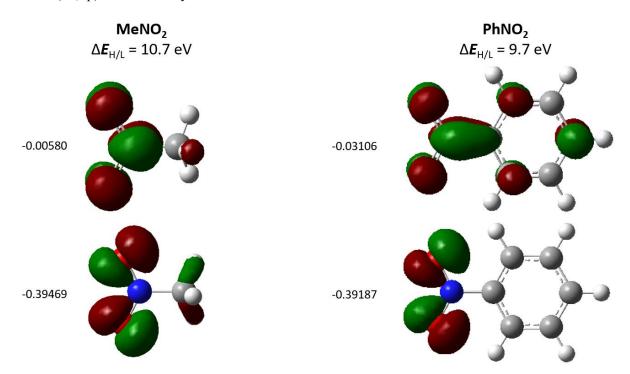
To a glass culture tube described in the General Methods section was added a small stir bar, 3,5ditrifluoromethylphenylboronic acid pinacol ester (87 mg, 0.25 mmol, 1.0 equiv), 4-methoxyphenylboronic acid (38 mg, 0.25 mmol, 1.0 equiv), 4-nitrobenzonitrile (37 mg, 0.25 mmol, 1.0 equiv) and phosphetane oxide precatalyst 1•[O] (13 mg, 0.075 mmol%, 30 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry cyclopentyl methyl ether (1.0 mL, 0.25 M) was added via syringe from a sure-seal[®] bottle. Lastly, phenylsilane (123 μ L, 1.00 mmol, 4.0 equiv) and nitromethane (41.0 μL, 0.75 mmol, 3.0 equiv) were added and the reaction mixture was stirred at 120 °C for 12 h. Upon completion, the yield of 4-((3,5-bis(trifluoromethyl)phenyl)amino)benzonitrile 37 was determined by ¹⁹F NMR with trifluorotoluene as the internal standard, and the yield of 4-methoxy-Nmethylaniline **38** was determined by ¹H NMR with dibromomethane as the internal standard. The crude mixture was purified directly by flash column chromatography with Hex:EA=10:1 on silica gel to obtain N-methyl-3,5-bis(trifluoromethyl)aniline 29 (45 mg, 74%) and 4-((4-methoxyphenyl)amino)benzonitrile **39** (52 mg, 92%), ¹H NMR (400 MHz, Chloroform-d) δ 7.41 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 6.01 (br s, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 157.0, 149.8, 133.7, 132.6, 125.0, 120.3, 114.9, 113.8, 100.0, 55.6. HRMS (ESI) calculated for C₁₄H₁₃N₂O [M+H]⁺: 225.1028; Found: 225.1031.



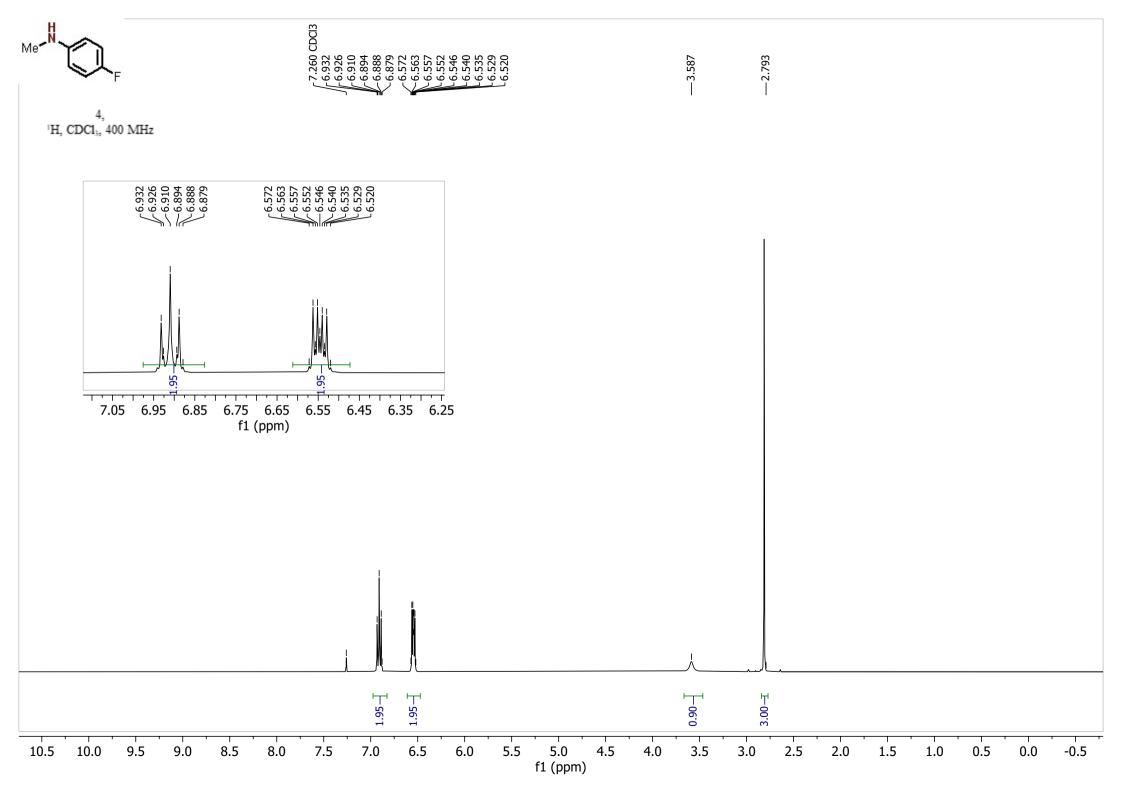
To a glass culture tube described in the General Methods section was added a small stir bar, 4chlorophenylboronic acid pinacol ester (60 mg, 0.25 mmol, 1.0 equiv), 4-fluorophenylboronic acid (35 mg, 0.25 mmol, 1.0 equiv) and phosphetane oxide precatalyst **1**•[O] (6.5 mg, 0.0375 mmol%, 15 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry cyclopentyl methyl ether (0.5 mL, 0.5 M) was added via syringe from a sure-seal® bottle. Lastly, phenylsilane (62 μ L, 0.50 mmol, 2.0 equiv) and nitromethane (41.0 μ L, 0.75 mmol, 3.0 equiv) were added and the reaction mixture was stirred at 120 °C for 8 h. NMR yield of 4-fluoro-*N*-methylaniline **4** (76%) was obtained by ¹⁹F NMR with 4-fluorotoluene as the internal standard, and the NMR yield of 4-chloro-*N*methylaniline **45** was determined by ¹H NMR with dibromomethane as the internal standard.

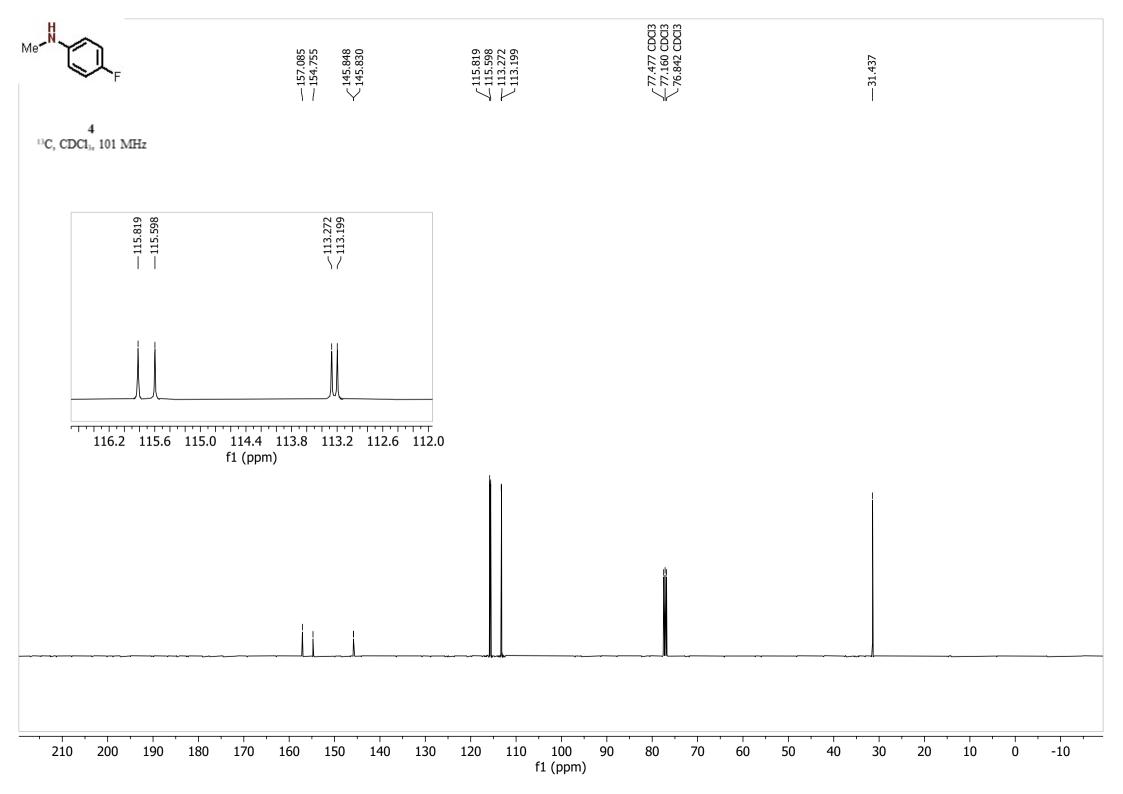
D. Benzene-1,4-diamine synthesis from a three-component reaction.

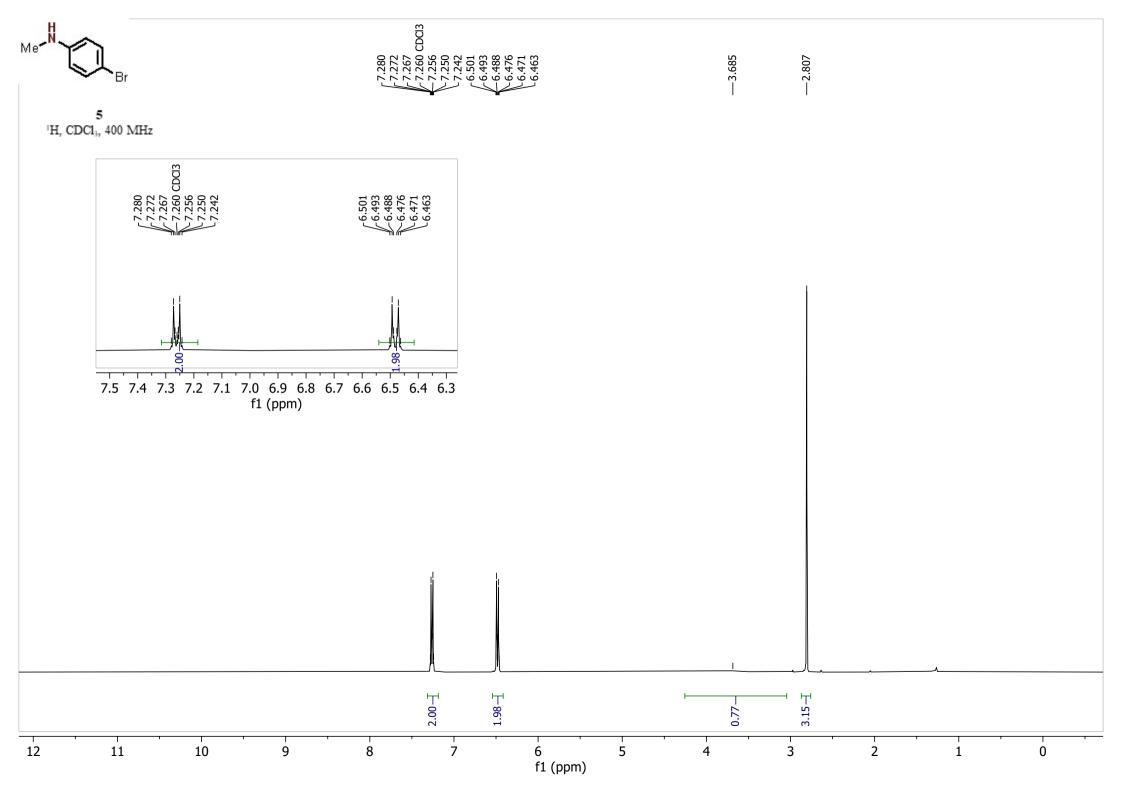
To a glass culture tube described in the General Methods section was added a small stir bar, 2-(4nitrophenyl)-1,3,2-dioxaborinane (103 mg, 0.50 mmol, 1.0 equiv), phenylboronic acid (61 mg, 0.50 mmol, 1.0 equiv) and phosphetane oxide precatalyst **1**•[O] (18 mg, 0.10 mmol, 20 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry *cyclopentyl methyl ether* (0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, diphenylsilane (557 µL, 3.00 mmol, 6.0 equiv) and nitromethane (81.0 µL, 1.50 mmol, 3.0 equiv) were added and the reaction mixture was stirred at 120 °C for 12 h. Upon completion, the yield of *N*-methylaniline **6** was determined by ¹H NMR with dibromomethane as the internal standard. The crude mixture was purified directly by flash column chromatography with Hex:EA=10:1 on silica gel to obtain product **42** (77 mg, 78%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.48 (s, 1H), 7.08 (dd, *J* = 8.4, 7.1 Hz, 2H), 6.94 – 6.86 (m, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.60 (t, *J* = 7.3 Hz, 1H), 6.54 – 6.46 (m, 2H), 5.34 (s, 1H), 2.65 (s, 3H). ¹³C NMR (101 MHz, DMSO*d*₆) δ 146.7, 145.6, 131.4, 128.9, 122.6, 117.0, 113.6, 112.4, 30.2. HRMS (ESI) calculated for C₁₃H₁₅N₂ [M+H]⁺: 199.1230; Found: 199.1230. E. Target molecule synthesis: Triflubazam (anxiolytic, anti-obsessive efficacy).

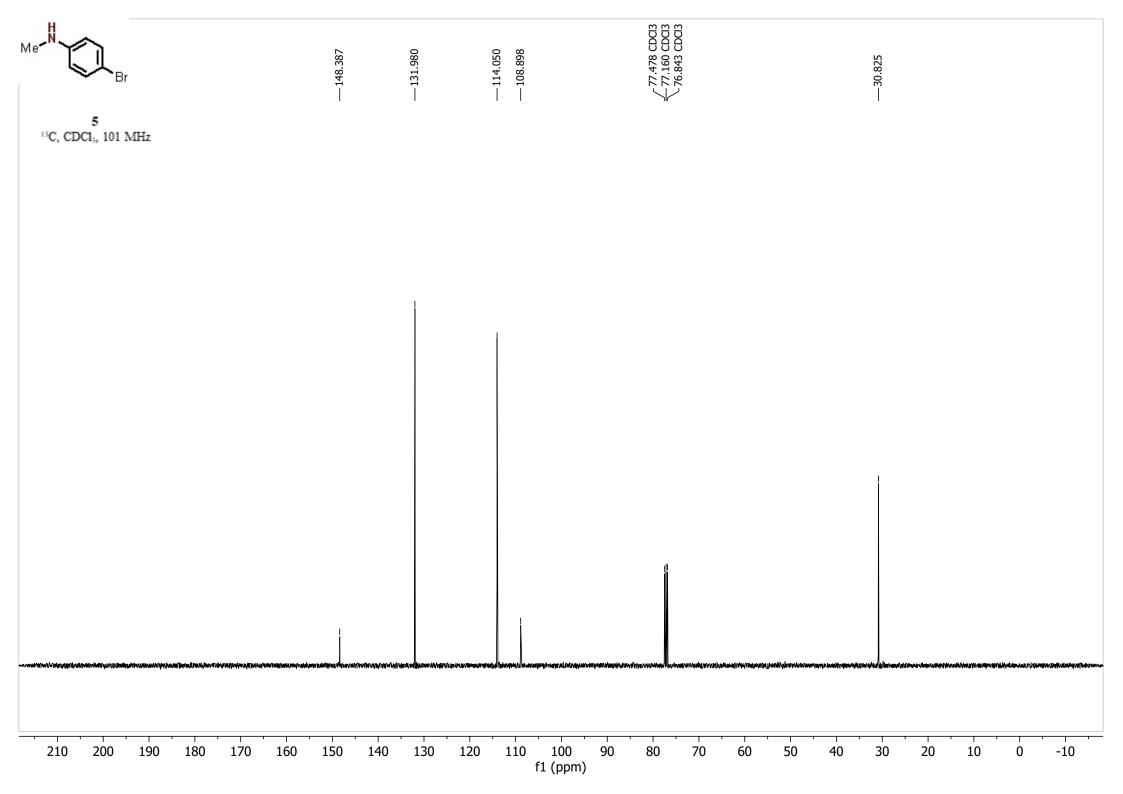

To a glass culture tube described in the General Methods section was added a small stir bar, compound 41 (79 mg, 0.25 mmol, 1.0 equiv), phenylboronic acid (34 mg, 0.28 mmol, 1.1 equiv) and phosphetane oxide precatalyst 1•[O] (13 mg, 0.08 mmol, 30 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, dry cyclopentyl methyl ether (0.5 mL, 0.5 M) was added via syringe from a sure-seal[®] bottle. Lastly, diphenylsilane (186 μ L, 1.0 mmol, 4.0 equiv) was added and the reaction mixture was stirred at 120 °C. After 2 h, the reaction mixture was cooled to 80 °C and diethyl (methyl)bromomalonate (72 μ L, 0.375 mmol, 1.5 equiv) and hydrogen ethyl malonate (34 μ L, 0.30 mmol, 1.2 equiv) were added. After 10 min, the reaction mixture was moved to another oil bath at 40 °C and the reaction mixture was stirred for 24 h. Upon completion, the reaction vessel screw cap was unscrewed (note that in some cases pressure release was observed) and 10 mL of distilled water was added. With the aid of DCM, the reaction mixture was transferred to a separatory funnel. After mixing and separating the aqueous layer, the organic layer was washed with 10 mL of a 1 M NaOH aqueous solution, and 10 mL of brine. Each aqueous phase was back-extracted with 10 mL portions of DCM. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated with aid of a rotary evaporator to obtain the crude product, which was advanced without further purification to the next step.

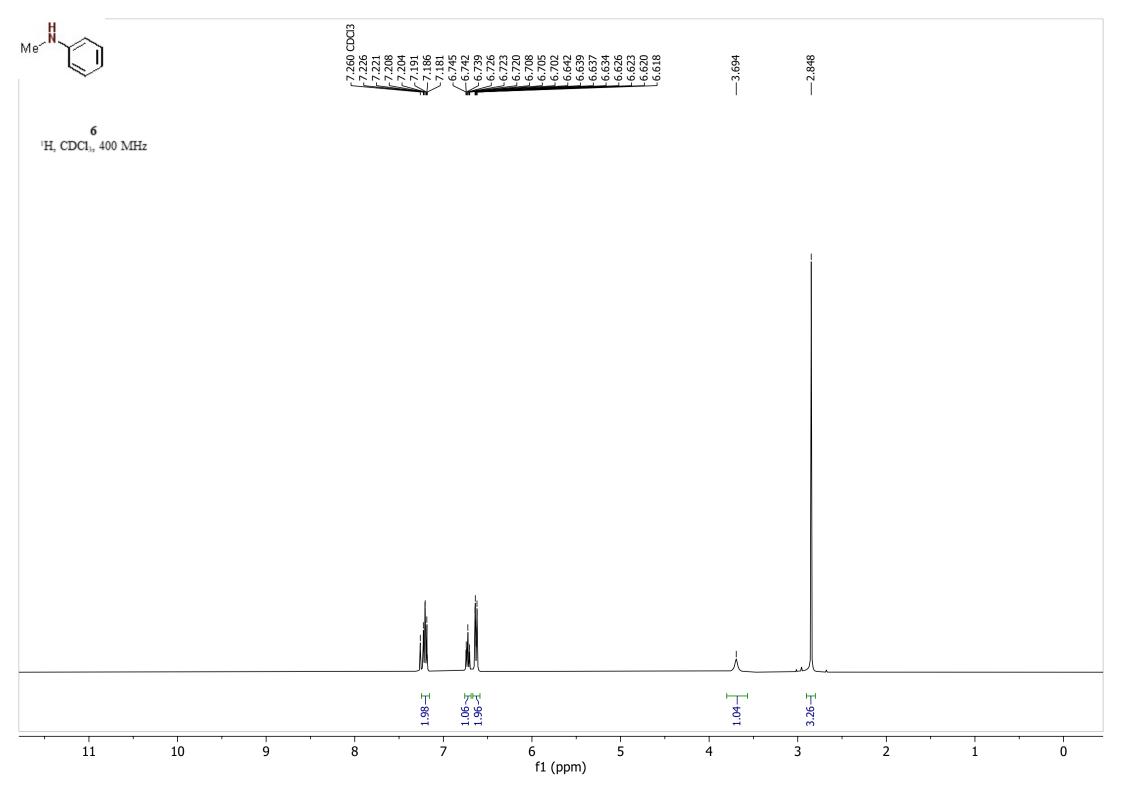
To a glass culture tube described in the General Methods section was added a small stir bar, phosphetane oxide precatalyst $1 \cdot [O]$ (6.5 mg, 0.04 mmol, 15 mol%). The tube thread was wrapped once with Teflon tape and a phenolic screw-thread open-top cap fitted with a PTFE-lined silicone septum (Thermo Scientific) was screwed on. No special drying of the reaction vessel components was conducted prior. Following evacuation and the introduction of nitrogen on a Schlenk line, a solution of crude mixture from the first step in dry *cyclopentyl methyl ether* (1.0 mL, 0.25 M) from a sure-seal[®] bottle was added via syringe. Lastly, nitromethane (41.0 μ L, 0.75 mmol, 3.0 equiv) and diphenylsilane (139 μ L, 0.75 mmol, 3.0 equiv) were added and the reaction mixture was stirred at 120 °C. Upon completion, the mixture was purified directly by flash column chromatography with Hex:EA=1:1 on silica gel (42 mg, 51%). ¹H NMR

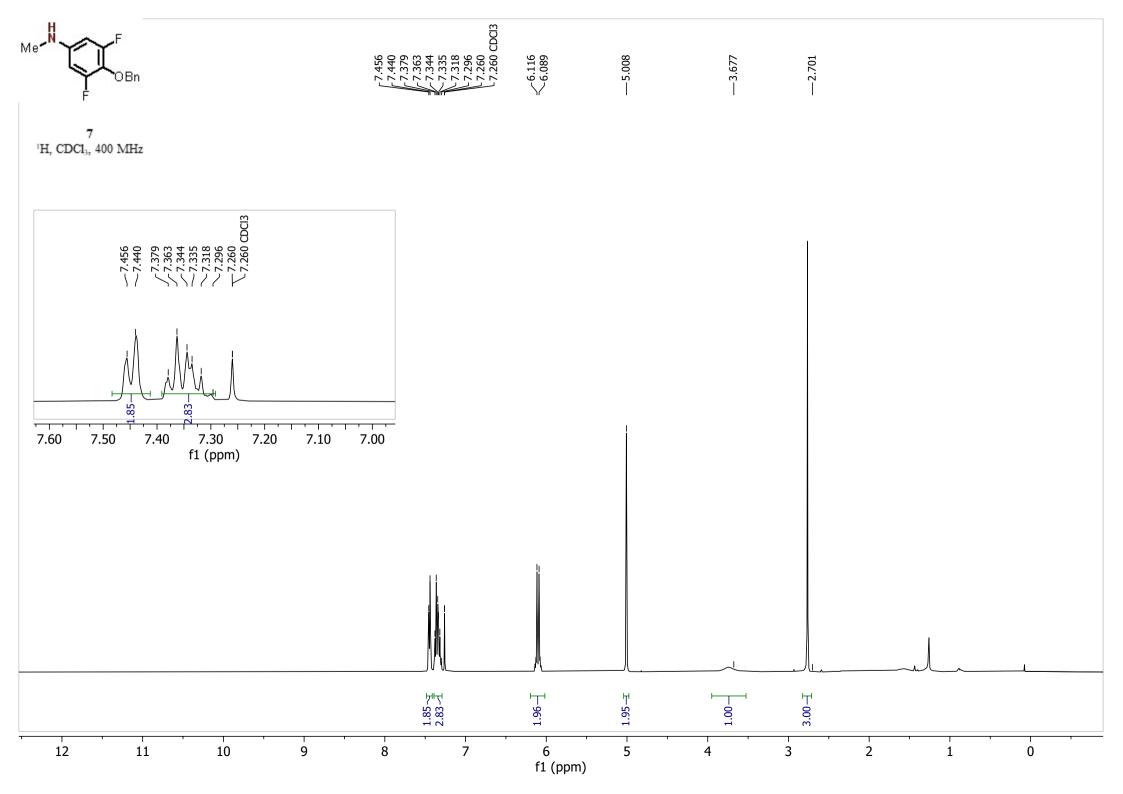

(400 MHz, Chloroform-*d*) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.47 (m, 2H), 7.44 (dd, J = 8.4, 6.9 Hz, 2H), 7.40 – 7.32 (m, 1H), 7.19 (dt, J = 5.8, 1.4 Hz, 3H), 3.61 (d, J = 12.3 Hz, 1H), 3.55 (s, 3H), 3.69 – 3.40 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 164.3, 140.2, 139.7, 136.3, 129.8, 128.70 (q, J = 33.9 Hz), 128.0, 124.5, 123.1 (q, J = 270.9 Hz), 123.7 – 123.4 (m, 3C), 44.4, 35.8. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.64. HRMS (ESI) calculated for C₁₇H₁₇N₃F₃O₂ [M+NH₄]⁺: 352.1267; Found: 352.1277.

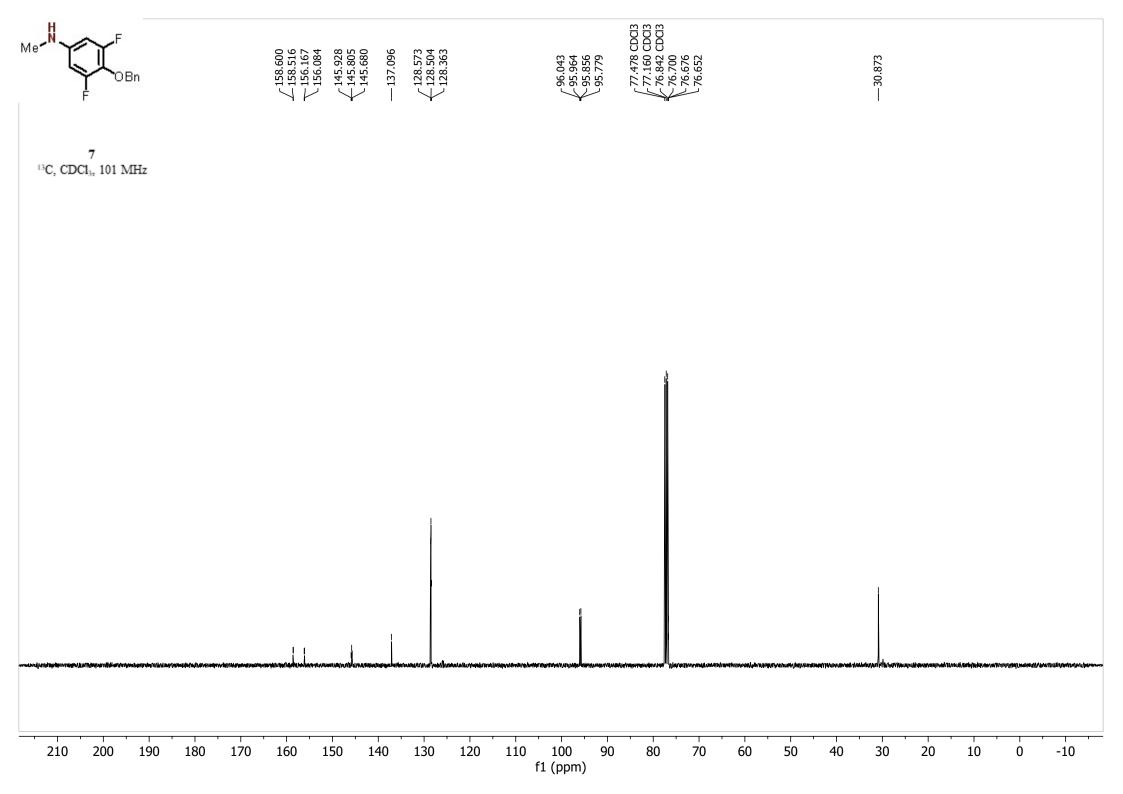

VI. DFT Computation

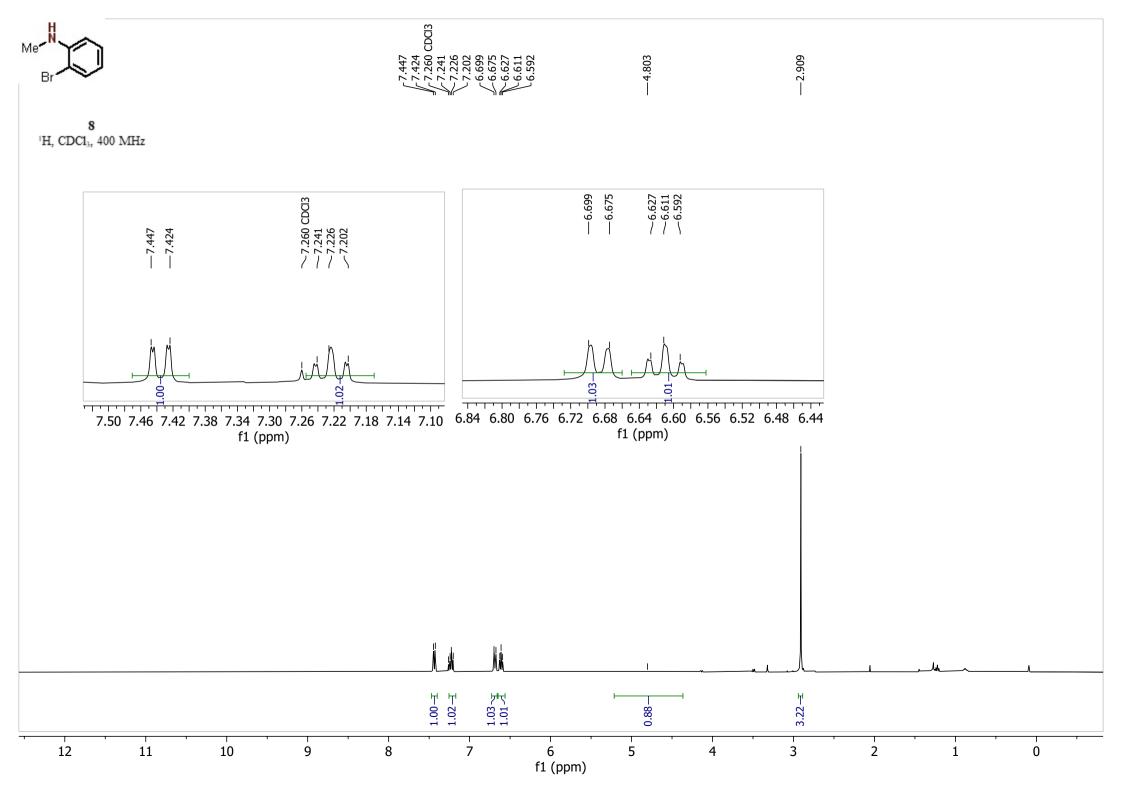

Kohn-Sham frontier orbital eigenvalues (in hartrees) for H_3C-NO_2 and $H_5C_6-NO_2$ at the $\omega B97XD/6-311++G(2d,2p)$ level of theory are as follows:

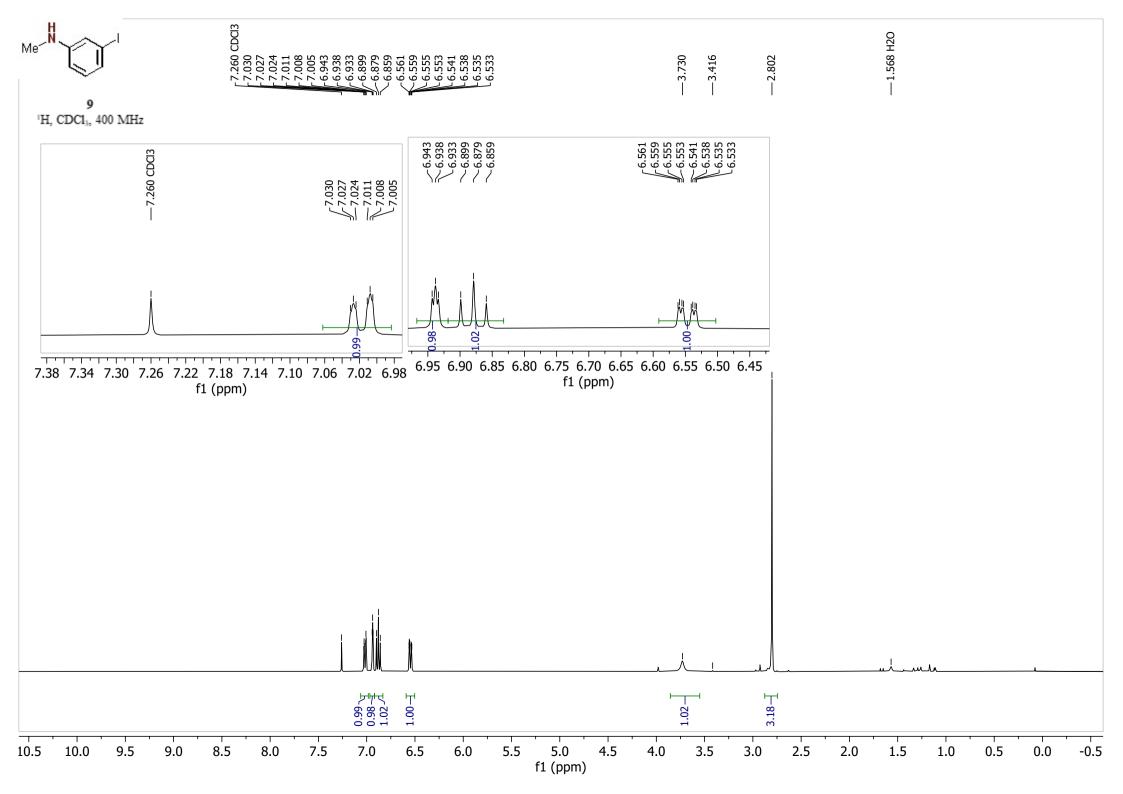


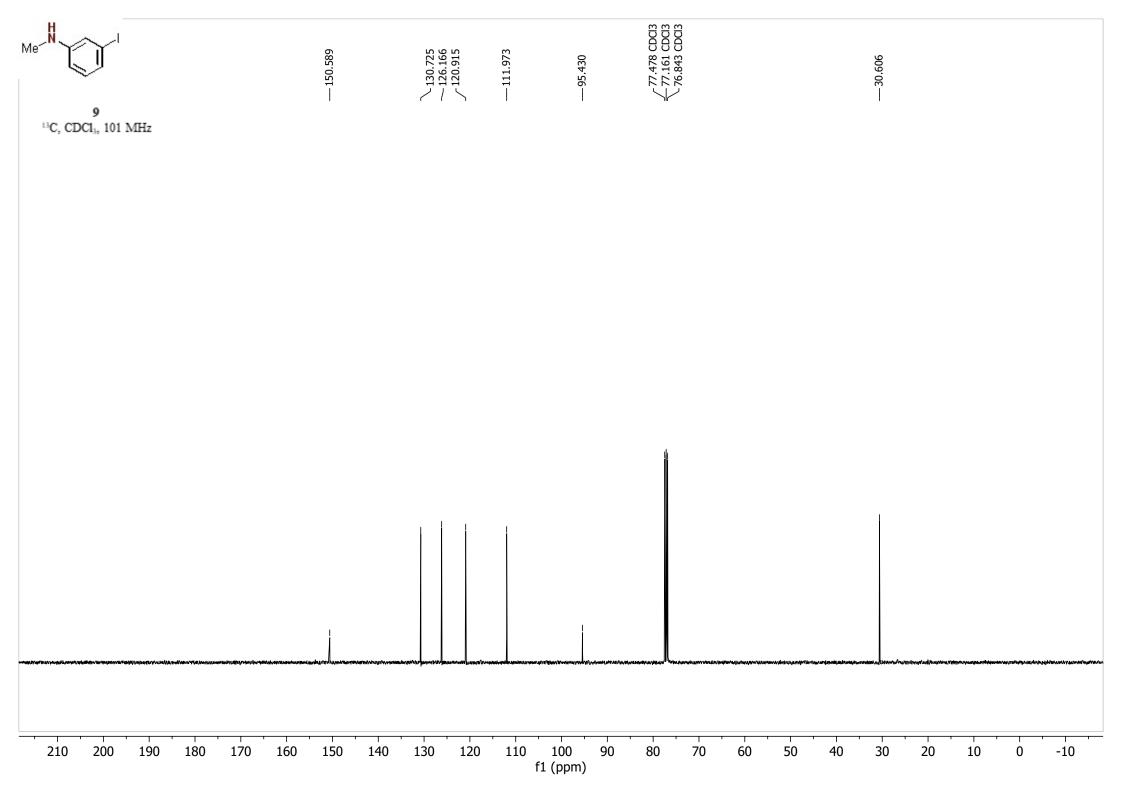

VI. Spectra Data

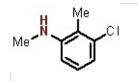


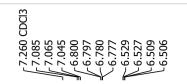




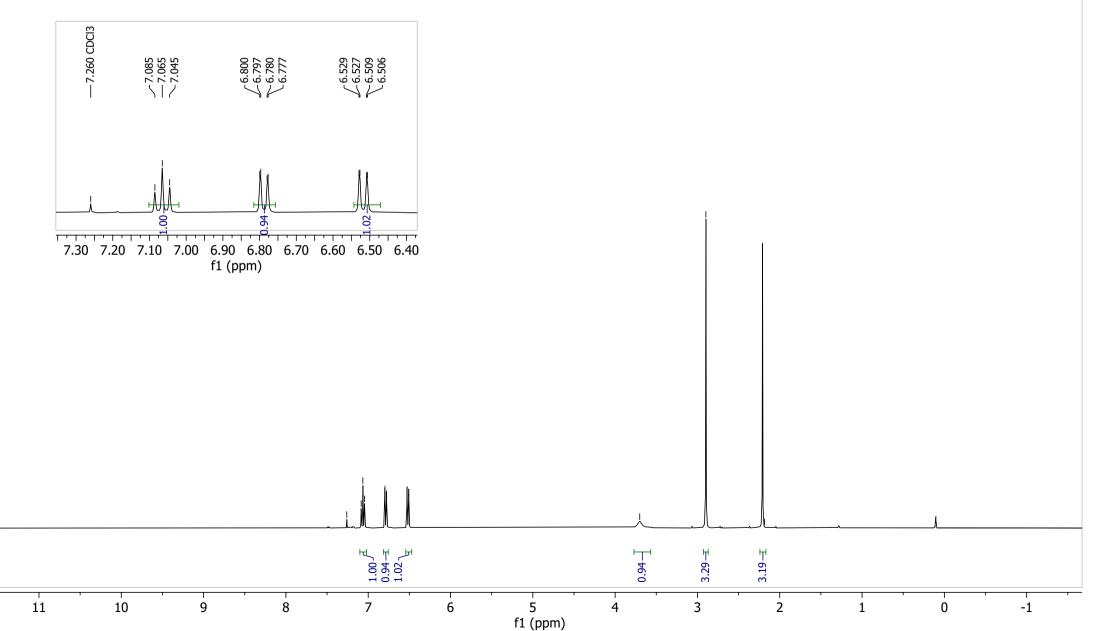

6 C, CDCl _b , 101 MHz	— 149.467	— 129.334	— 117.379 — 112.541	77.479 CDC3 77.160 CDC3 76.843 CDC3	
210 200 190 180 170 160		130 12	20 110 100 90 f1 (ppm)		30 20 10 0 -10

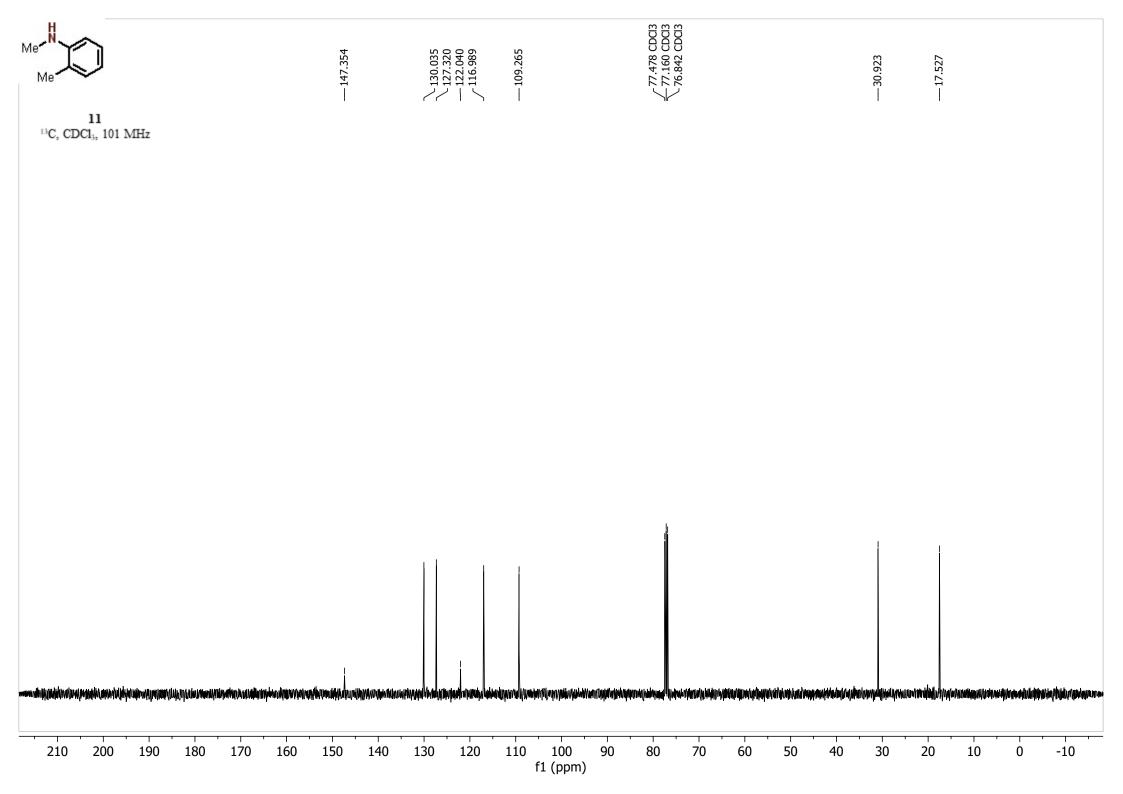


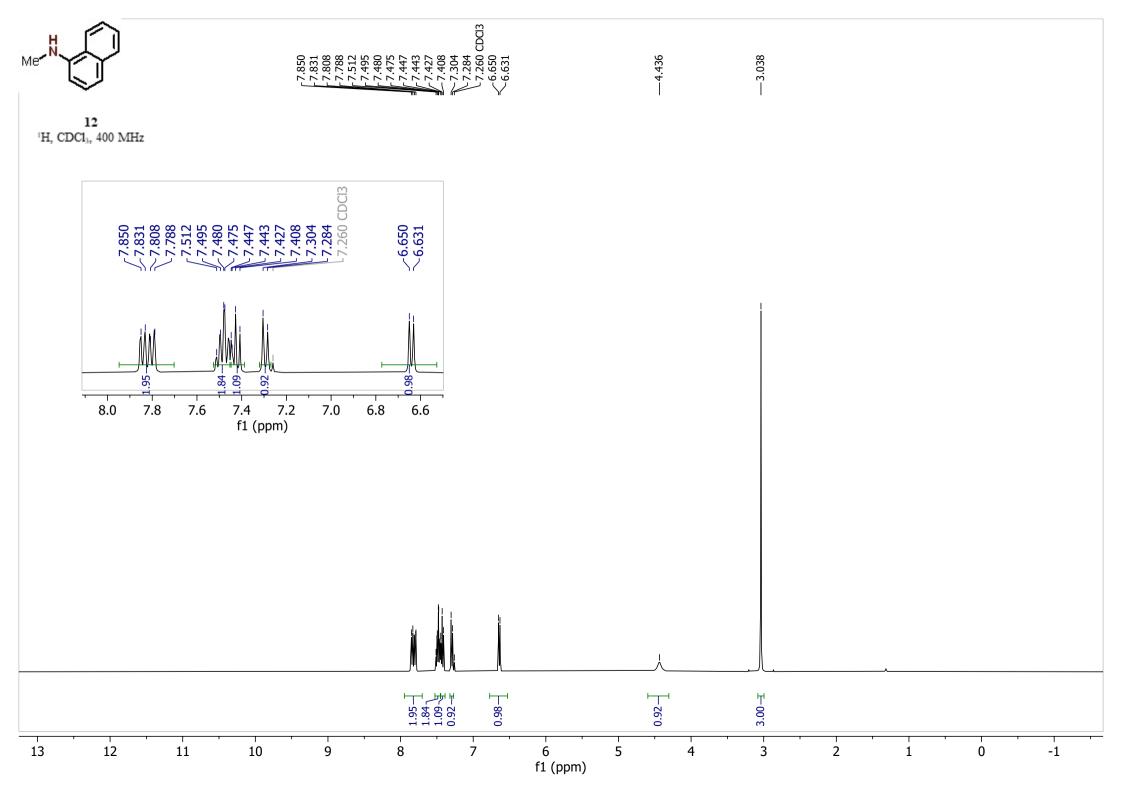


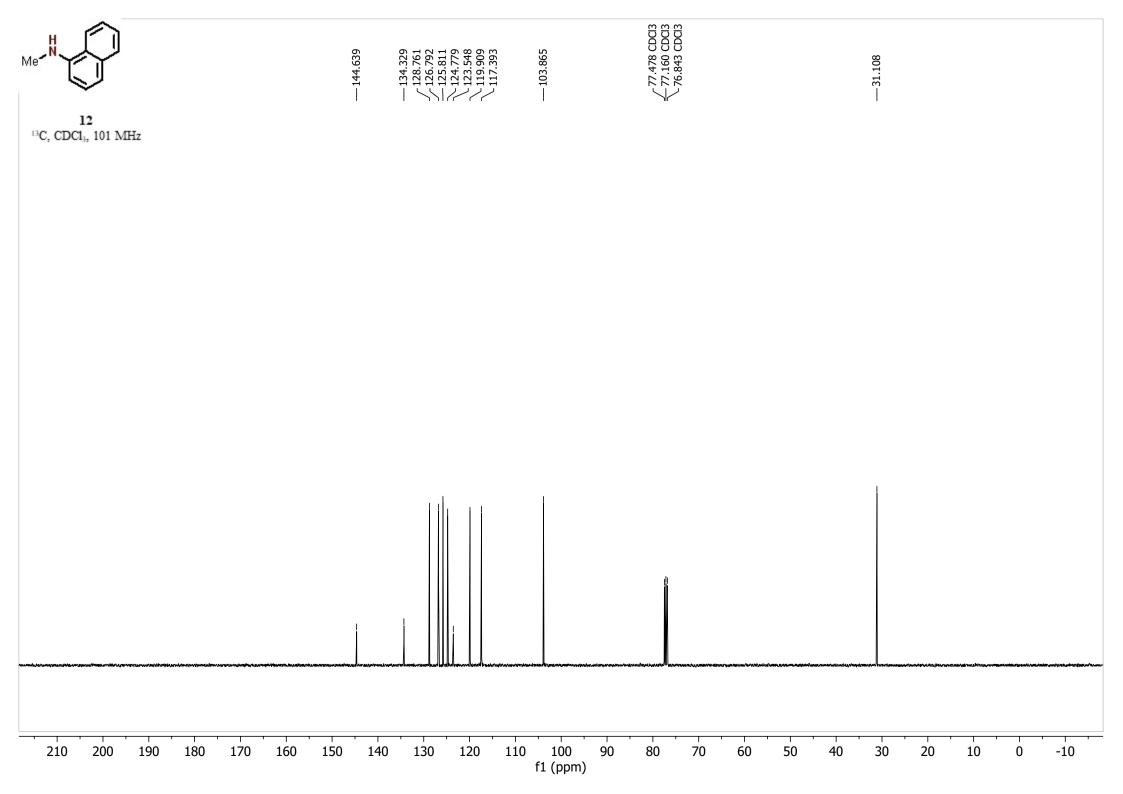


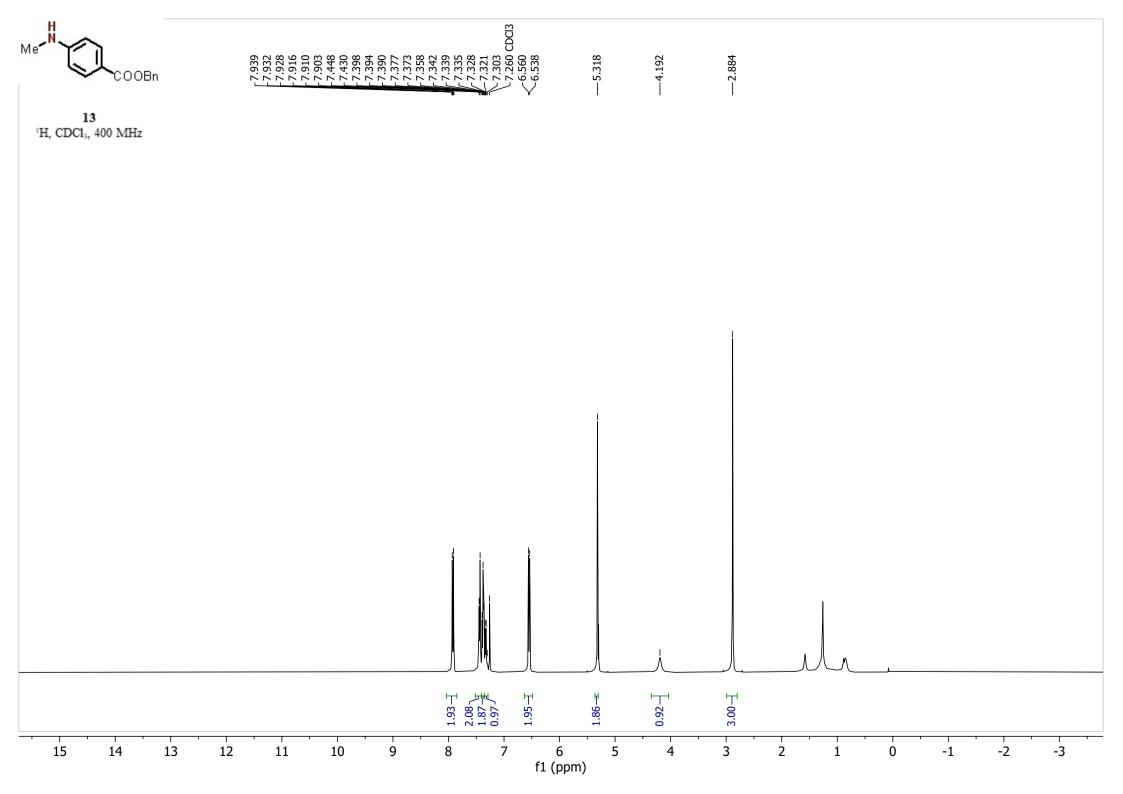
Br	— 145.672	— 132.442 — 128.676	— 118.206	~ 111.393 ~ 109.985	77.480 CDCI3 77.160 CDCI3 76.842 CDCI3	
8 ¹³ C, CDCl ₃ , 101 MHz						
		der hat Malennesser war				

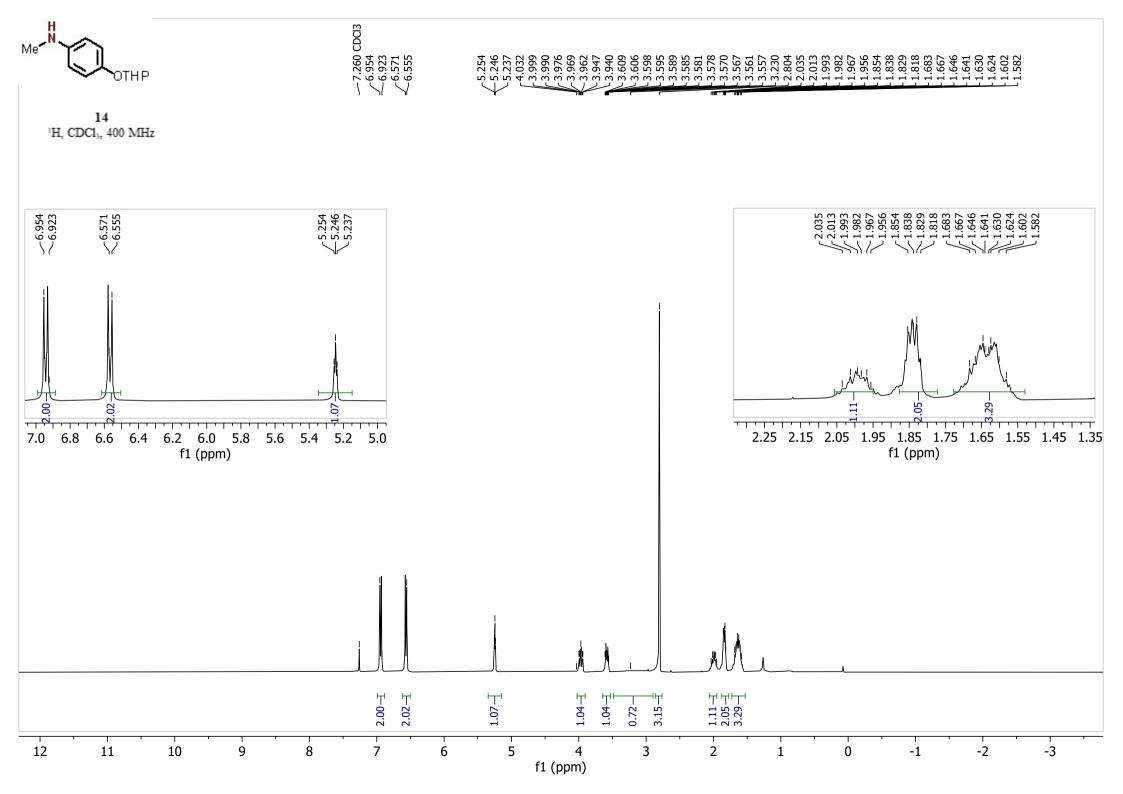


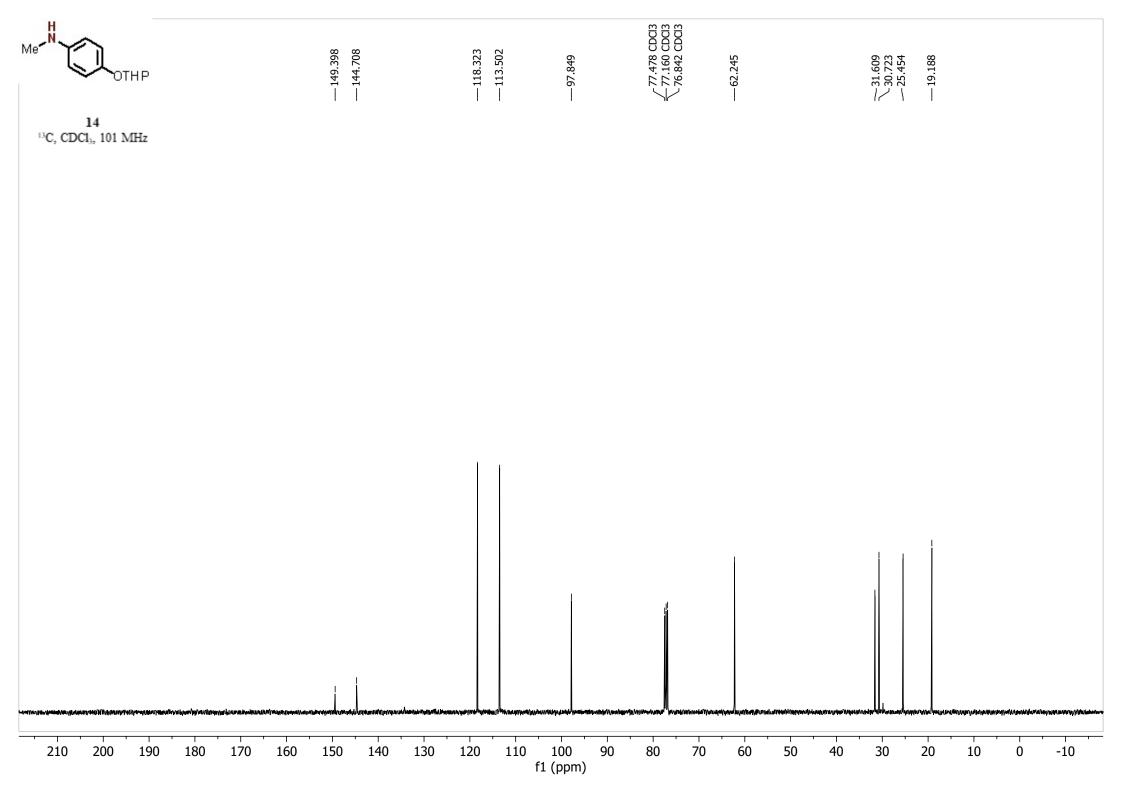


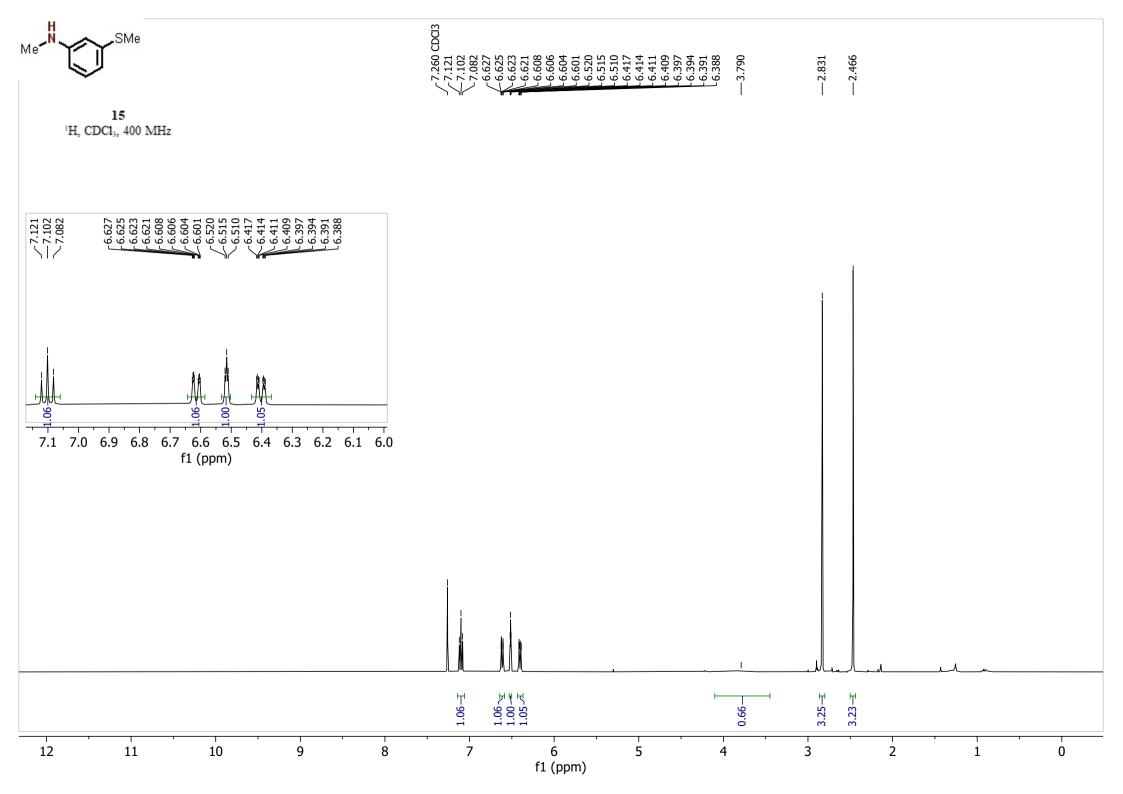

10 ¹H, CDCl₃, 400 MHz

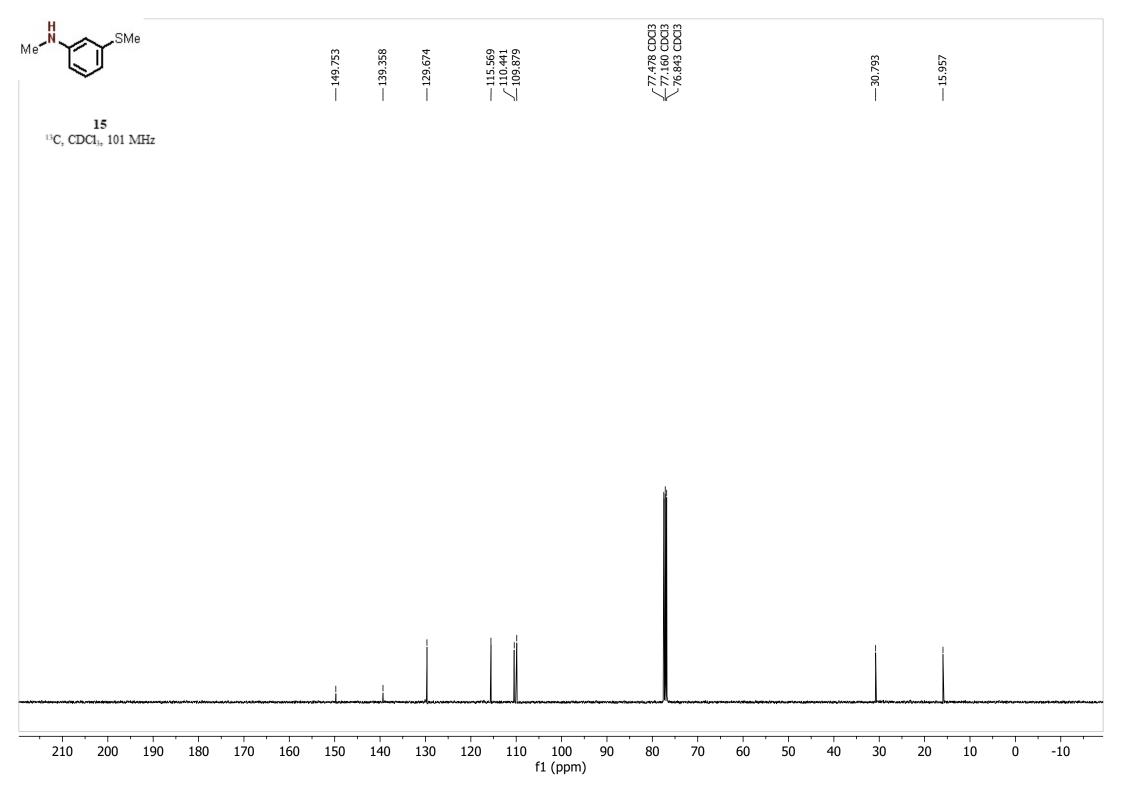


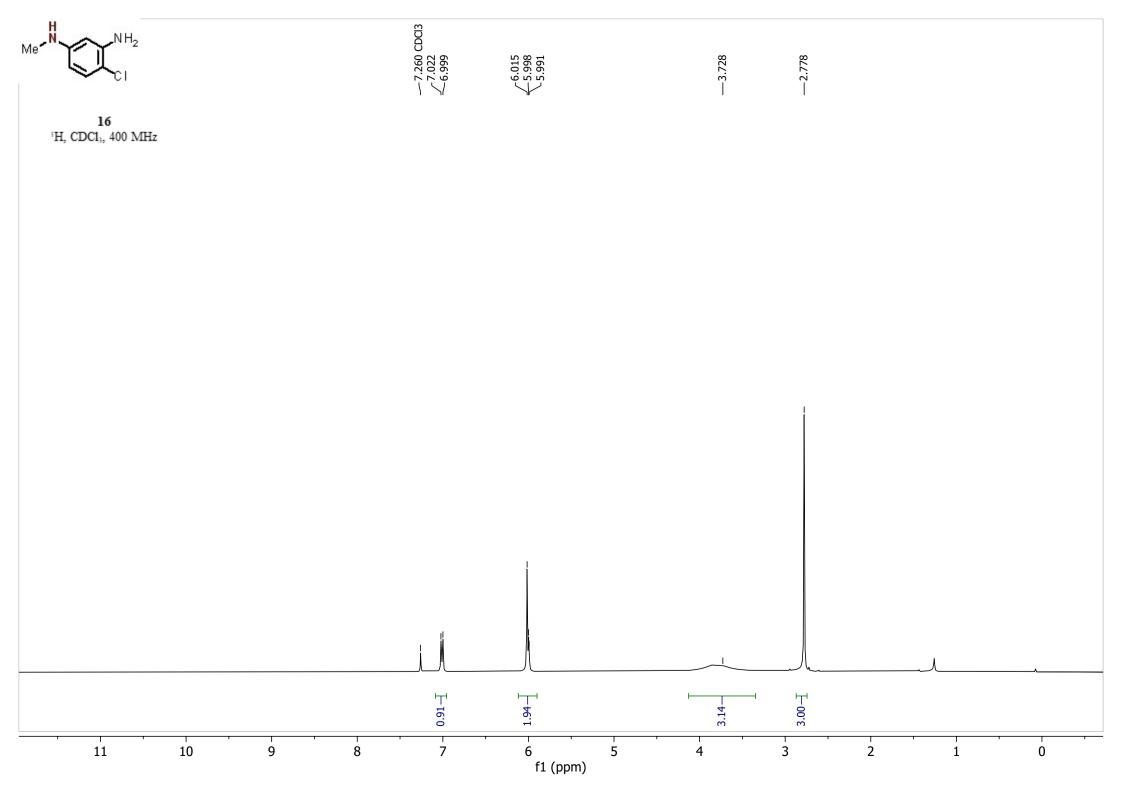

Me Me ¹⁰ ¹³ C, CDCl _b , 101 MHz	— 148.527		 — 107.637	77.477 CDCI3 77.160 CDCI3 76.842 CDCI3		— 13.471	
		-					
210 200 190 180 170 160	, , , , , , , , , , , , , , , , , , ,		 110 100 90 f1 (ppm)		 		1 - 1 - 10

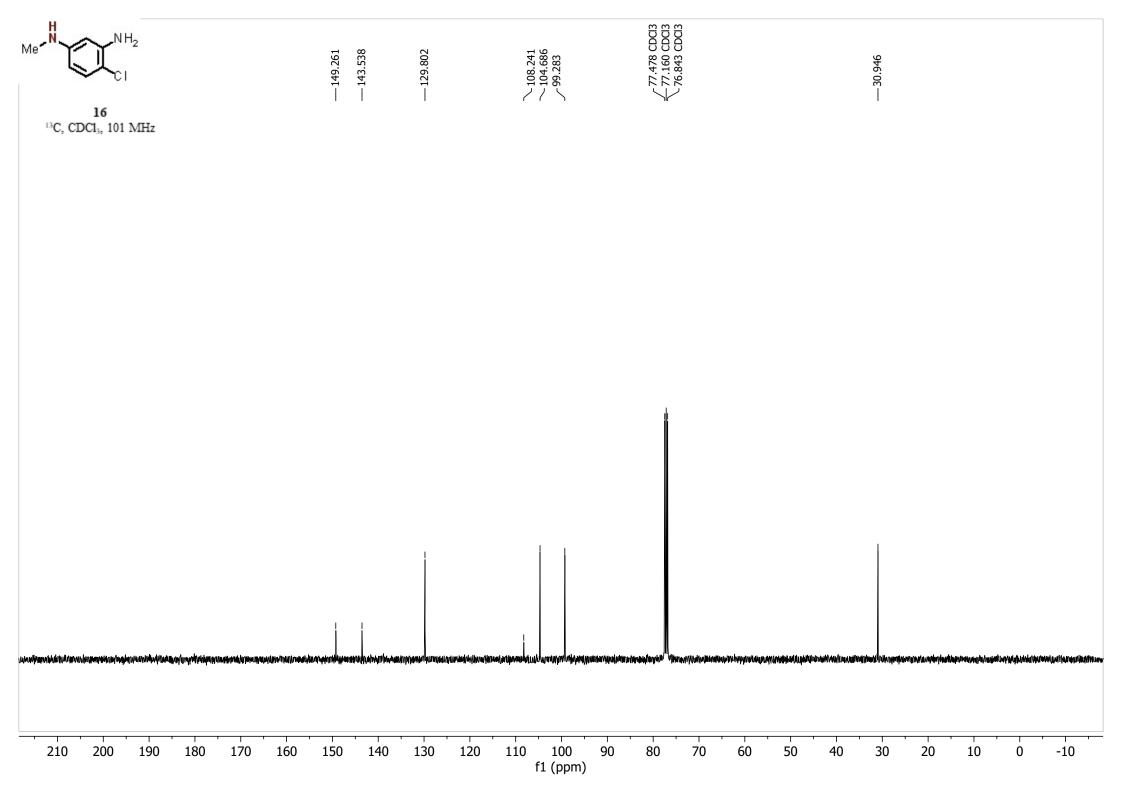


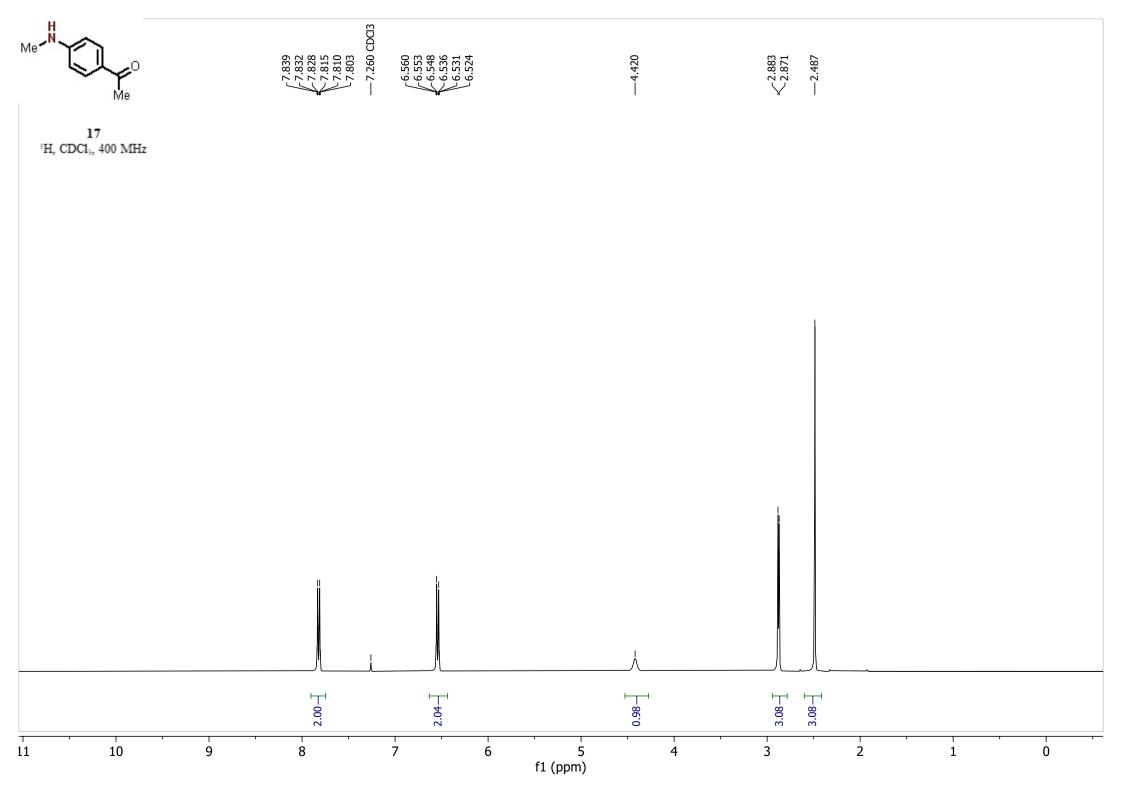


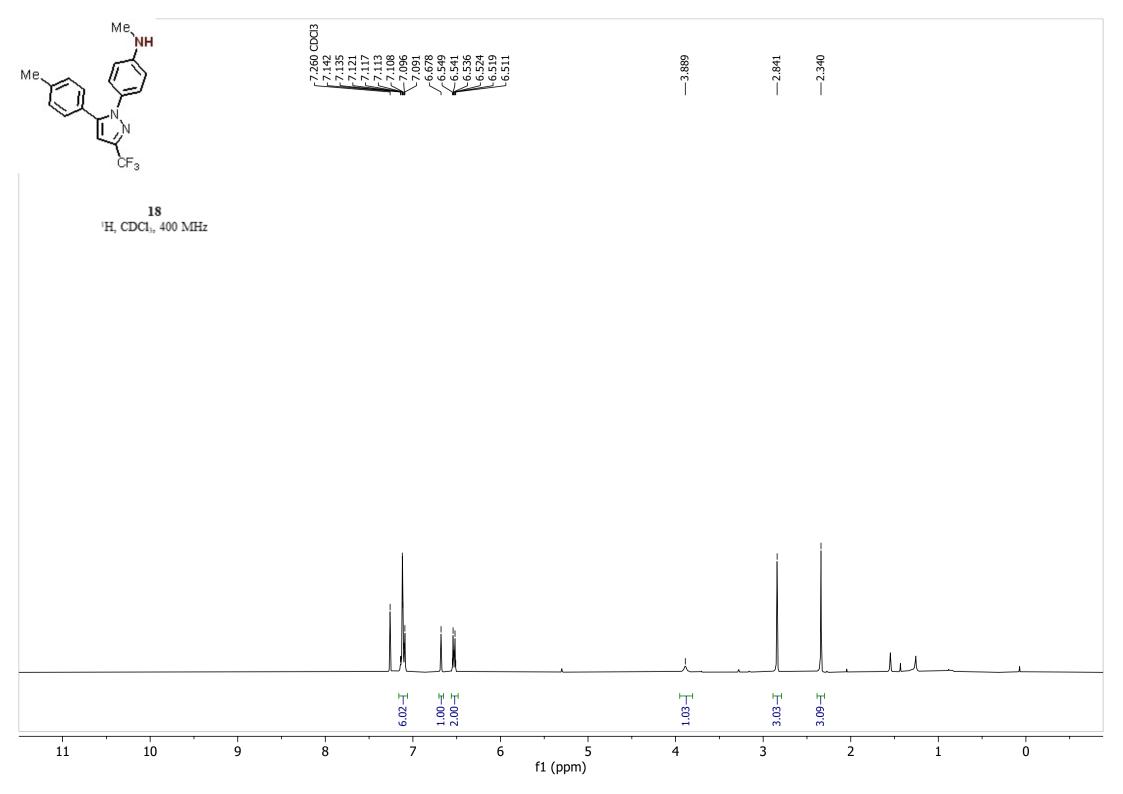


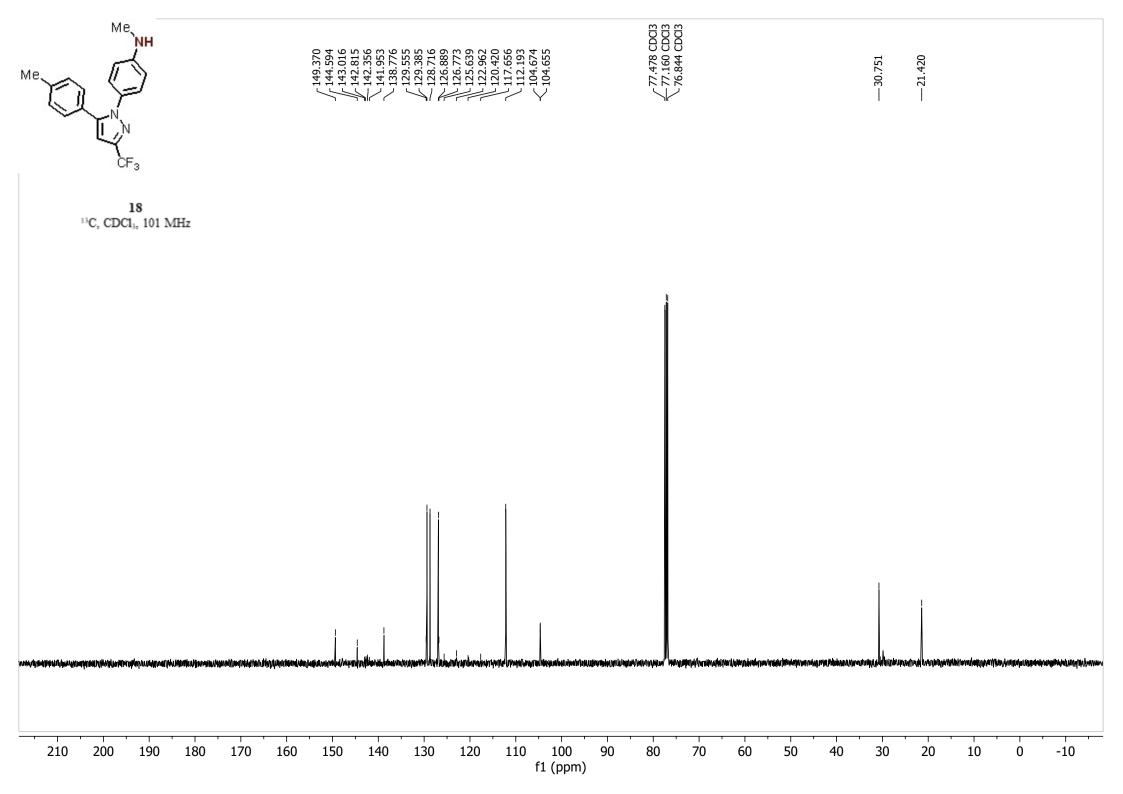


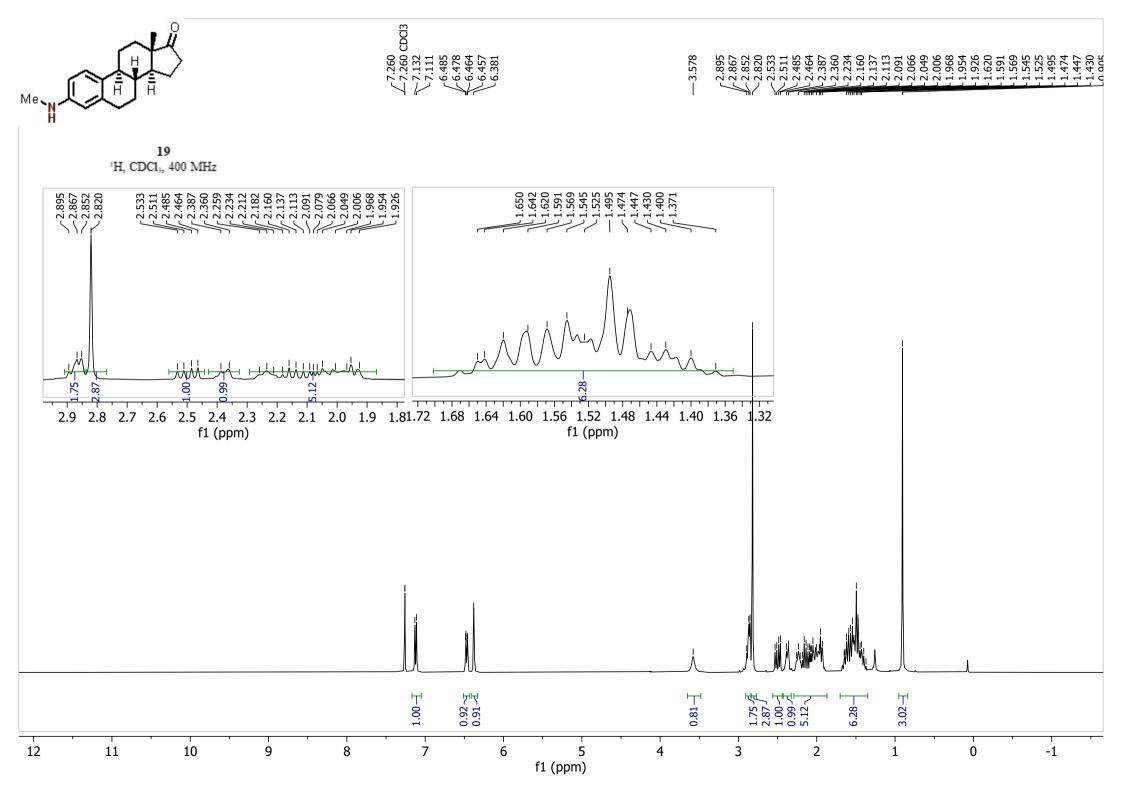

170 160	1 150 14	 1 1		

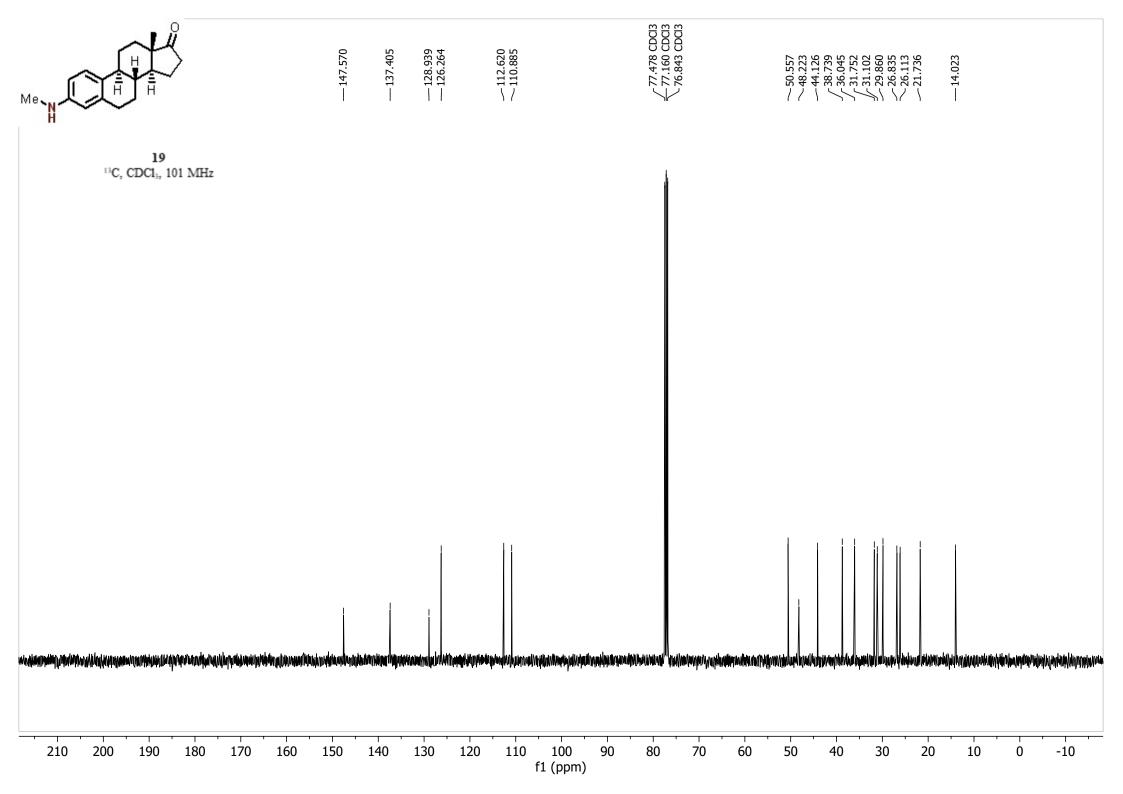


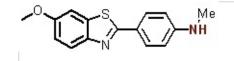


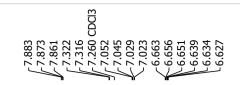


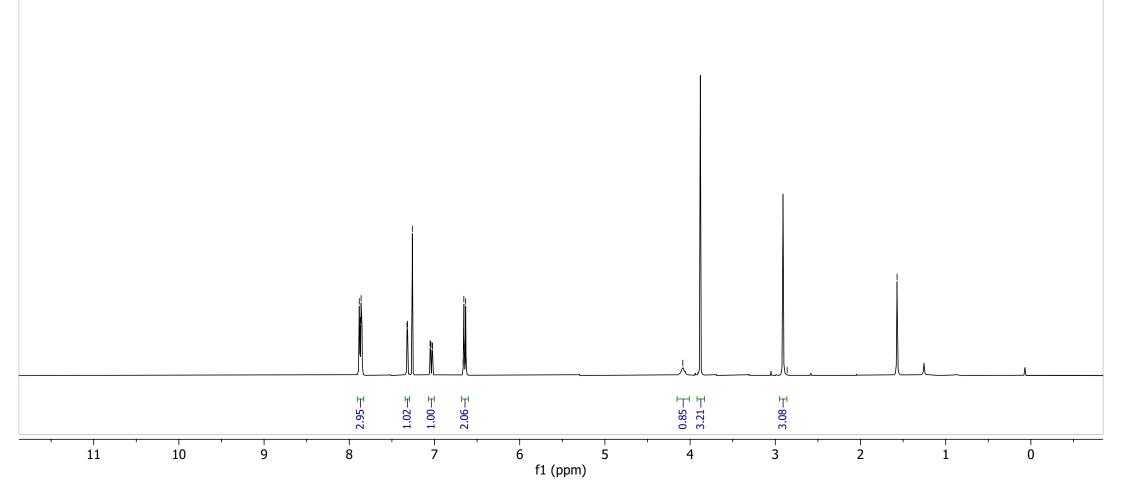


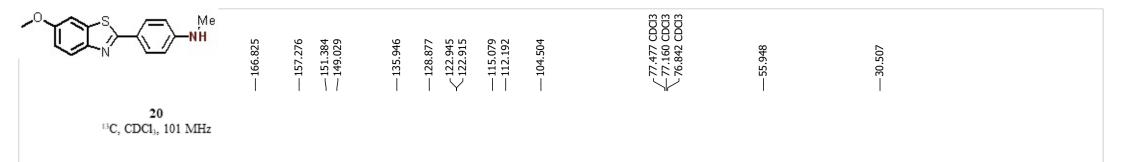


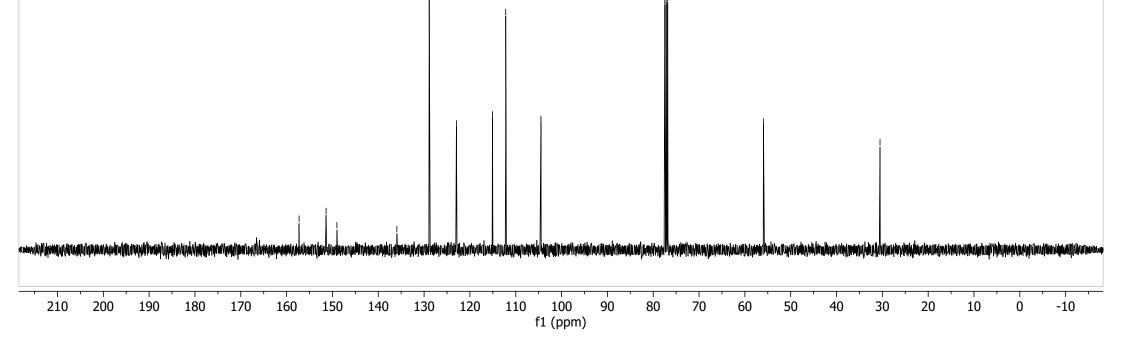


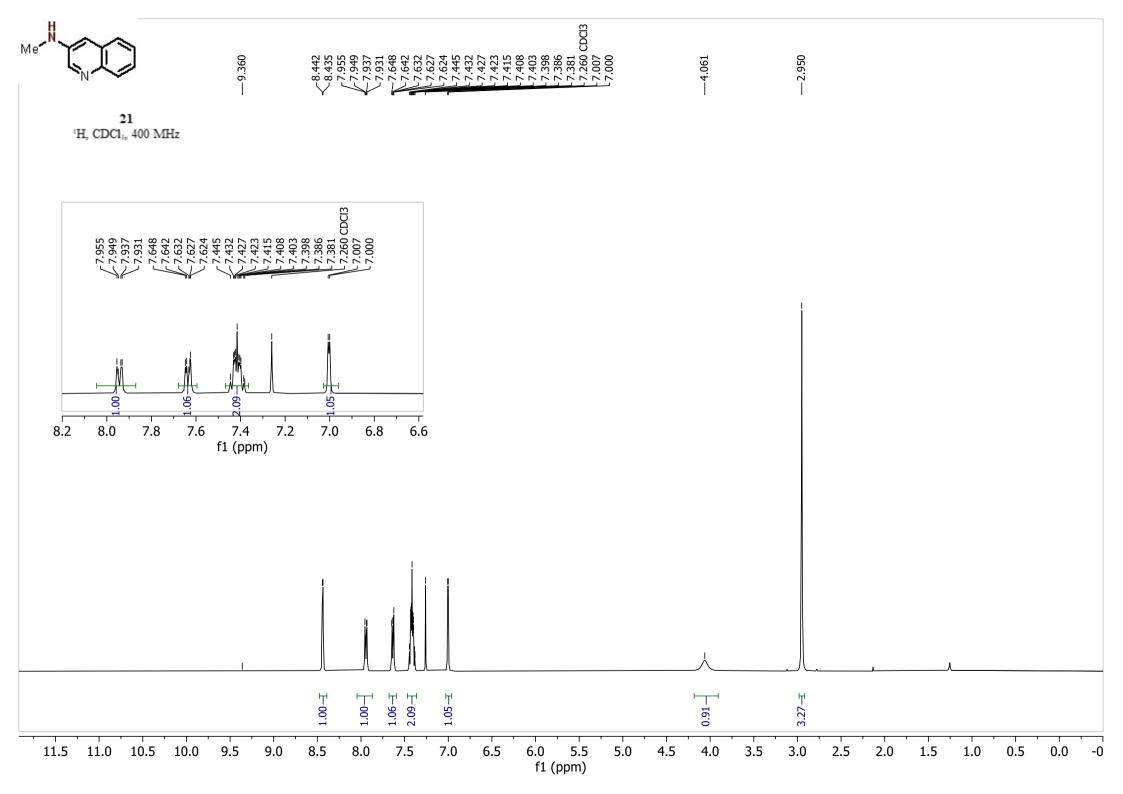

	— 153.251	— 130.836 — 126.528	— 111.078	77.478 CDCl3 77.160 CDCl3 76.842 CDCl3		
17 ¹³ C, CDCl ₃ , 101 MHz						
				1		
210 200 190 180 170	160 150 140	0 130 120	110 100 f1 (pp	D 90 80 70 60 Dm)	50 40 30 20 10	0 -10

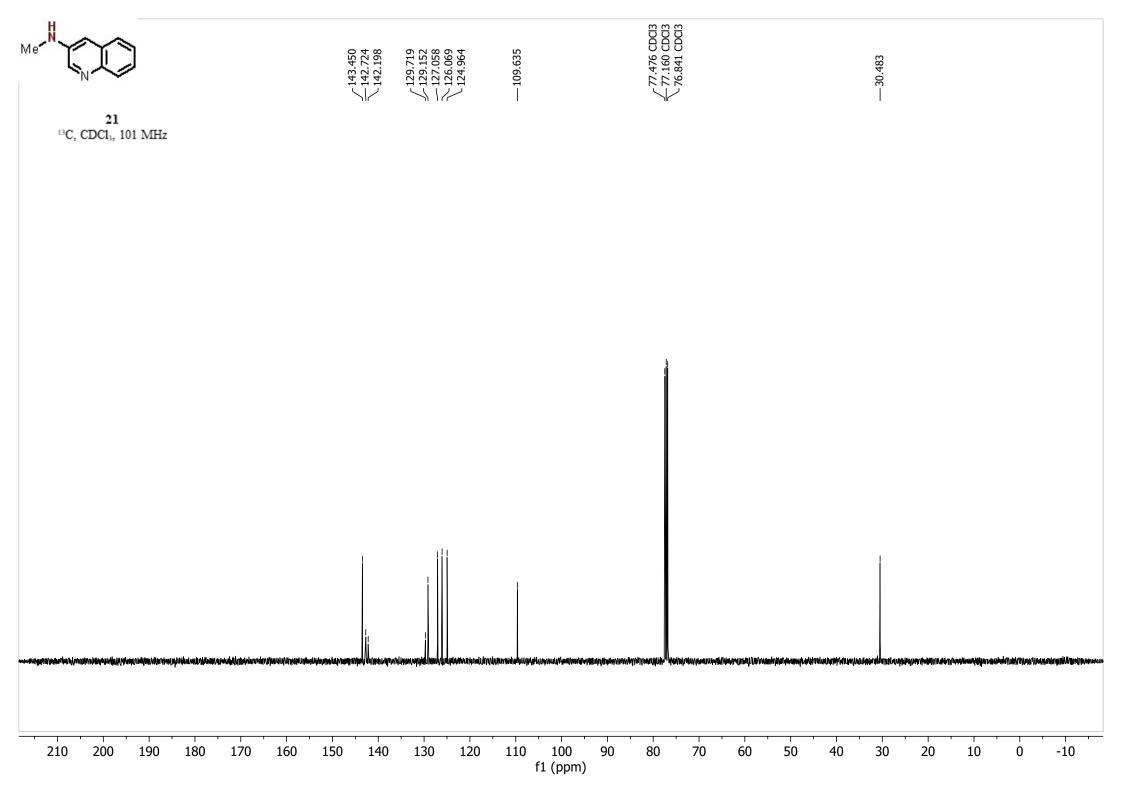


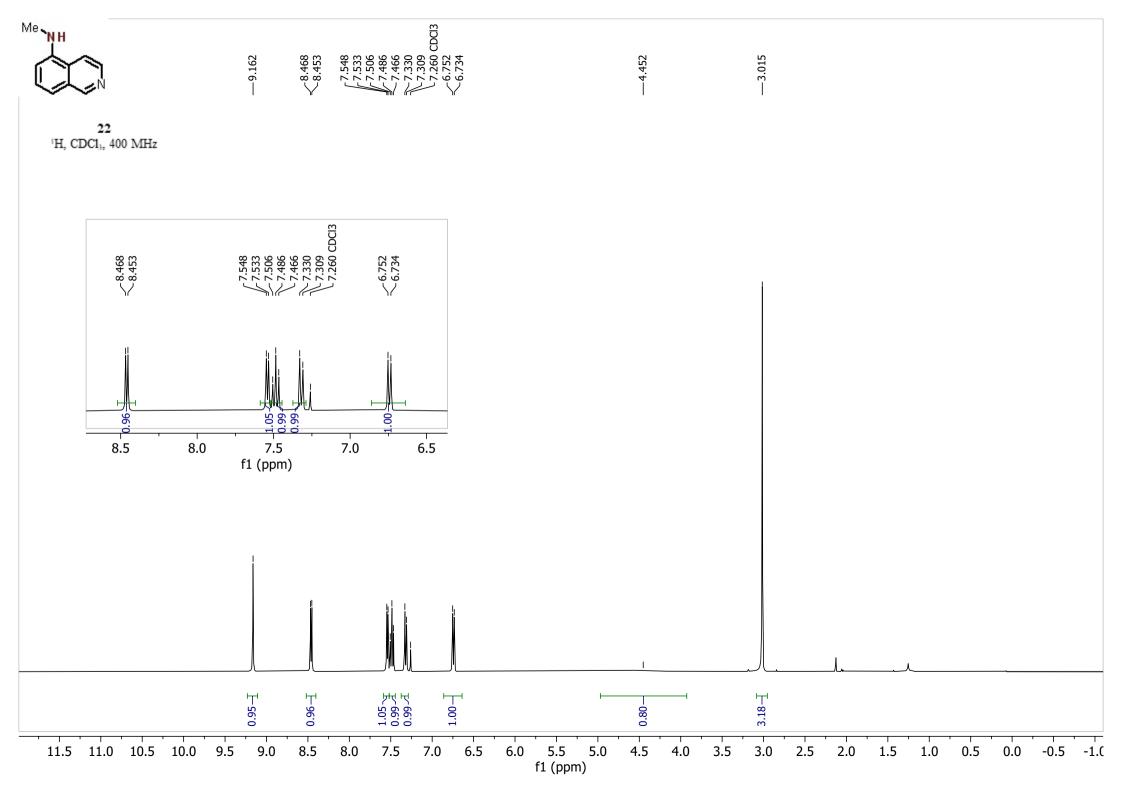


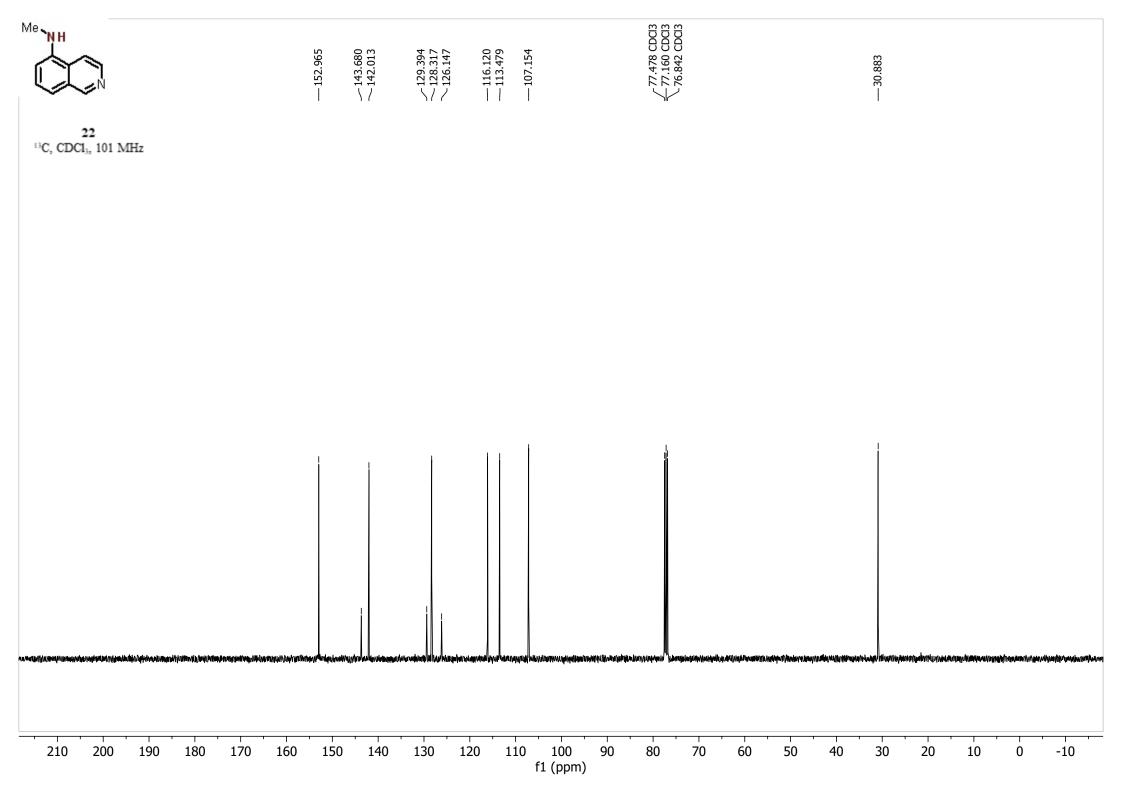


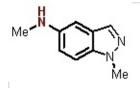

-4.085

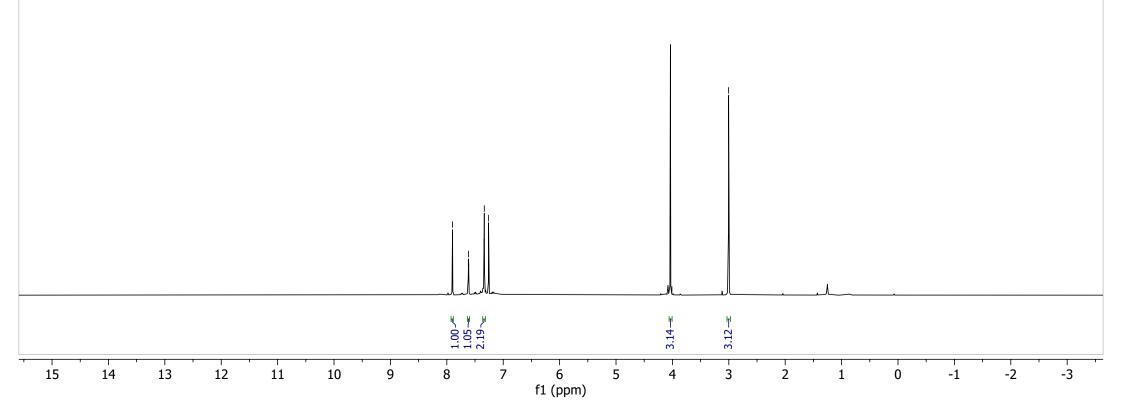

—1.571 H2O

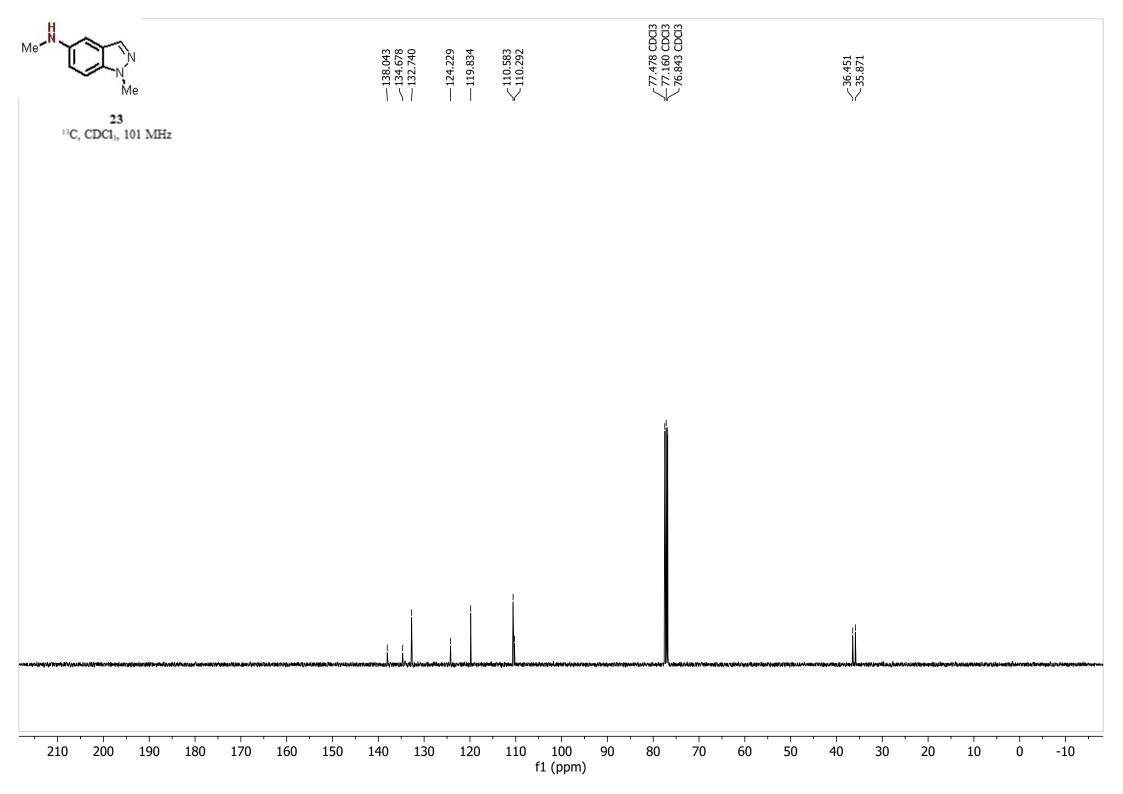

20 ¹H, CDCl₃, 400 MHz

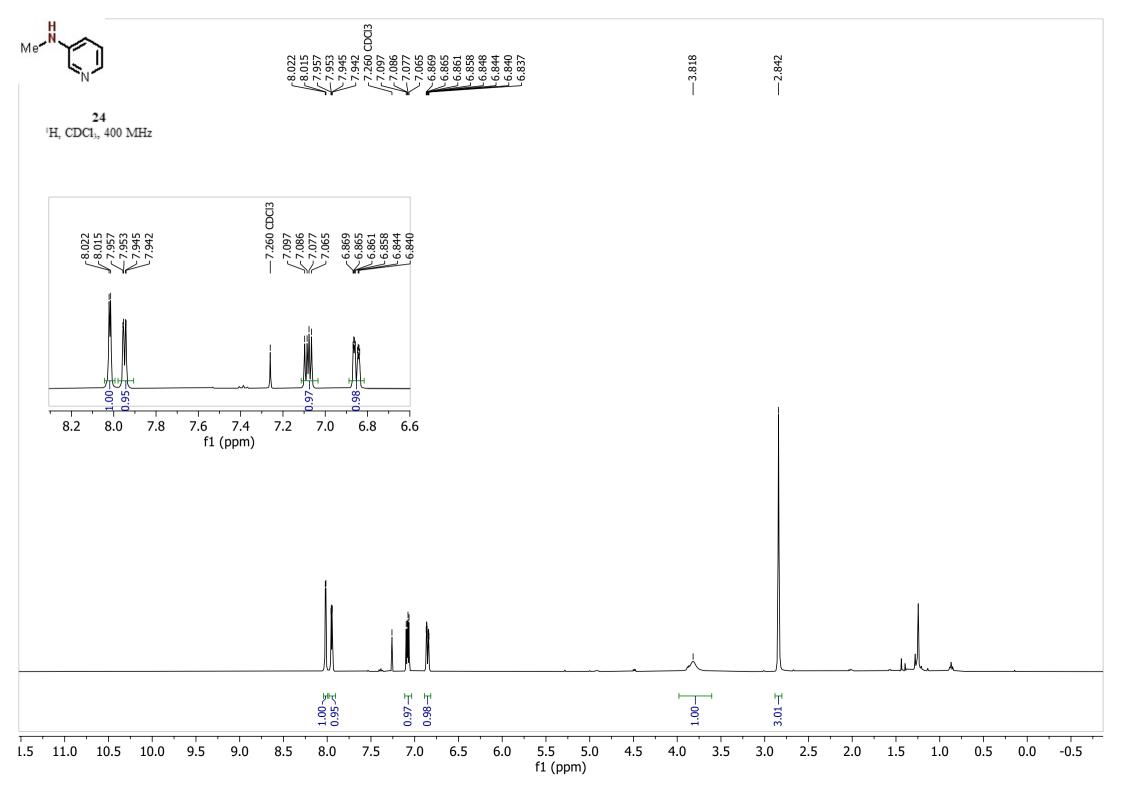


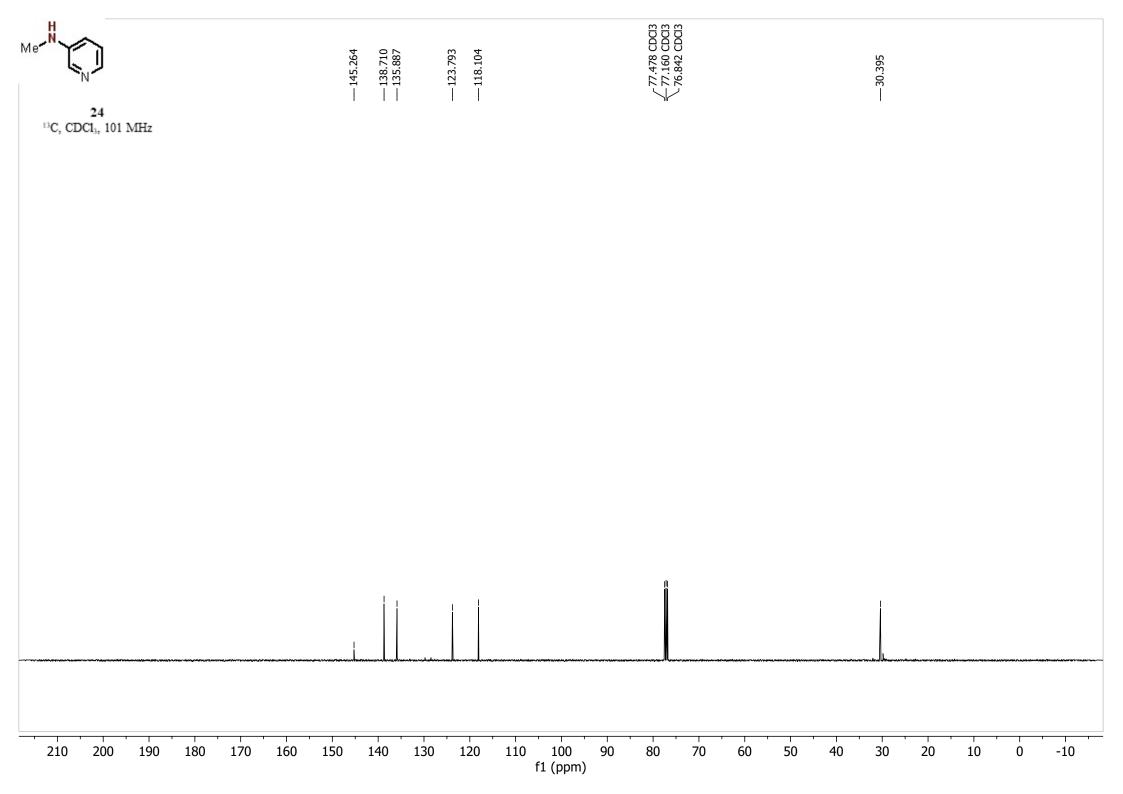


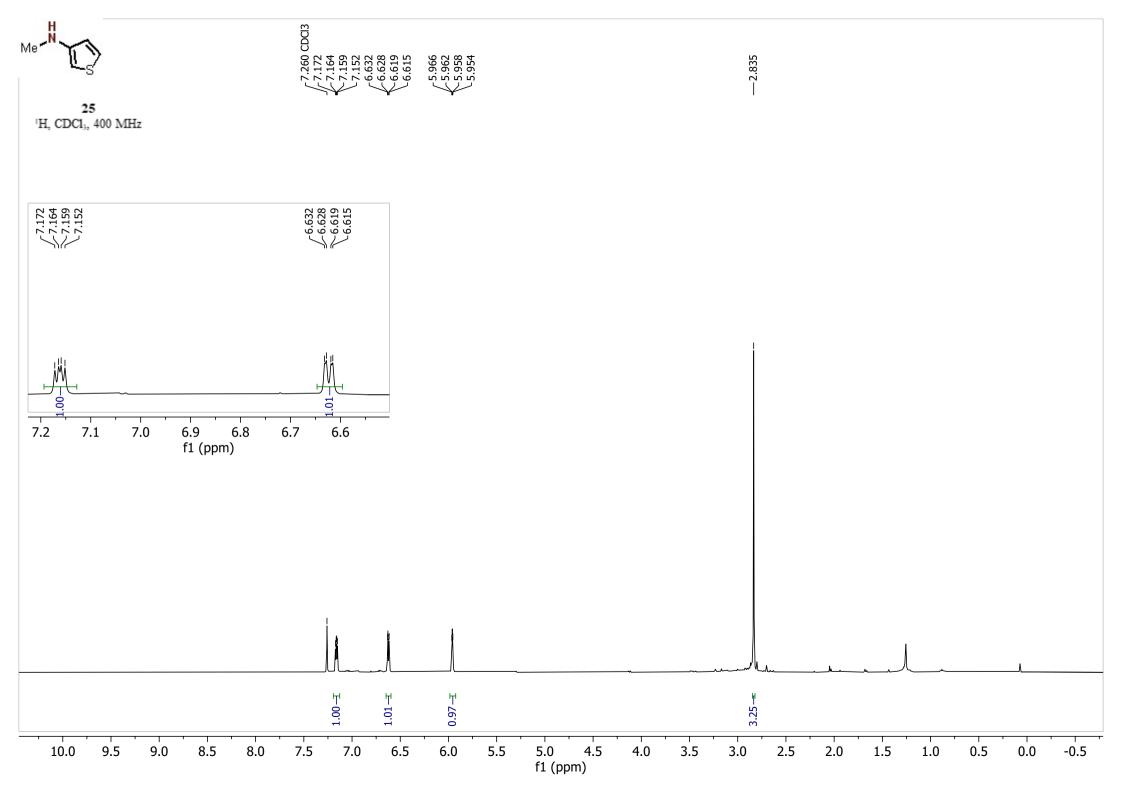


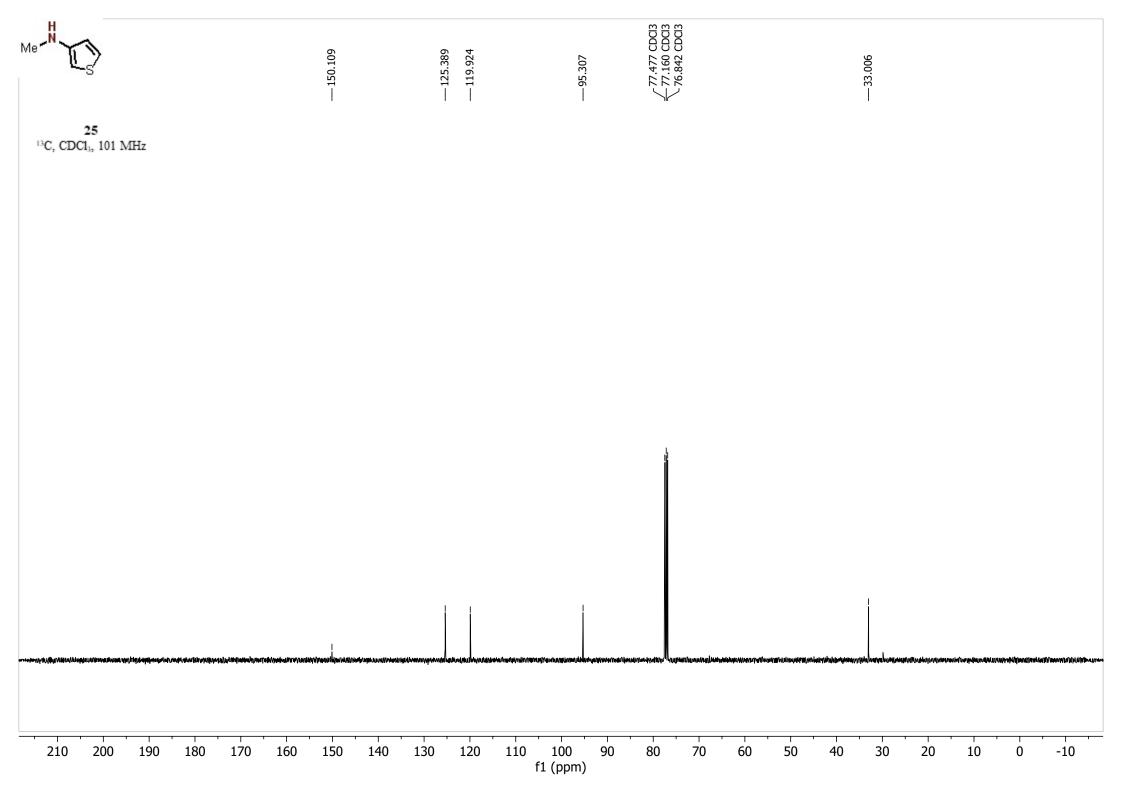


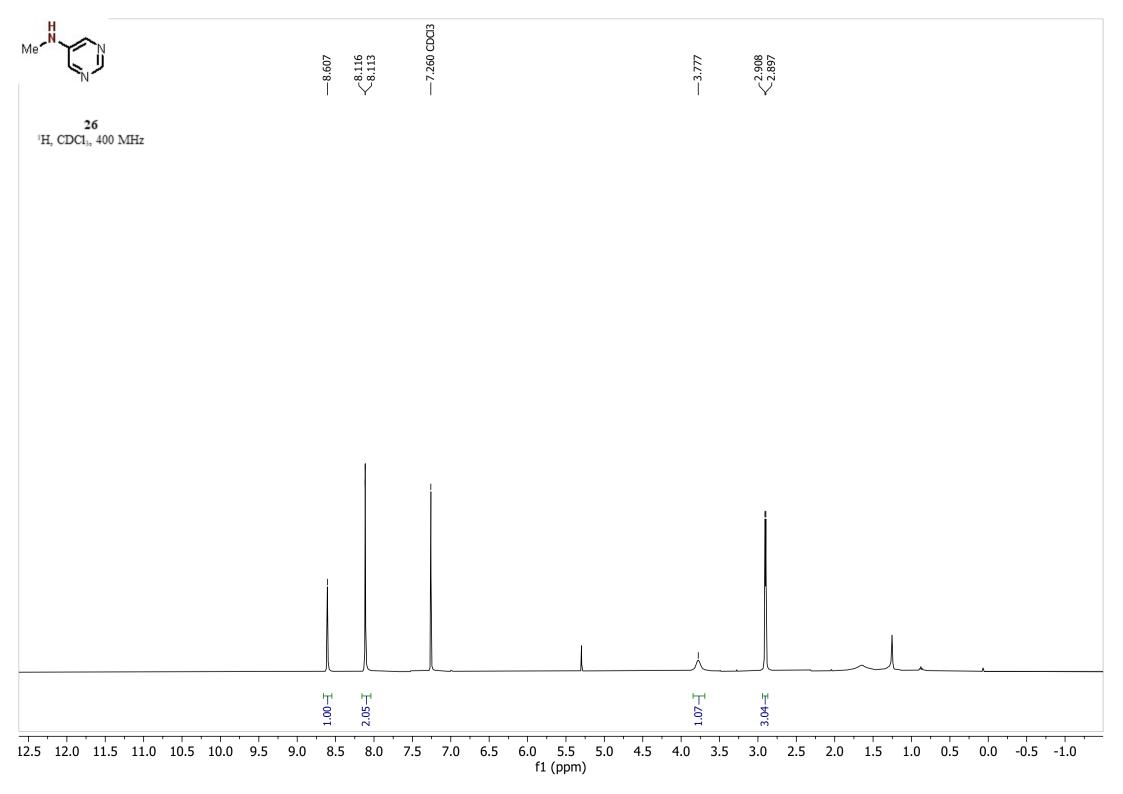


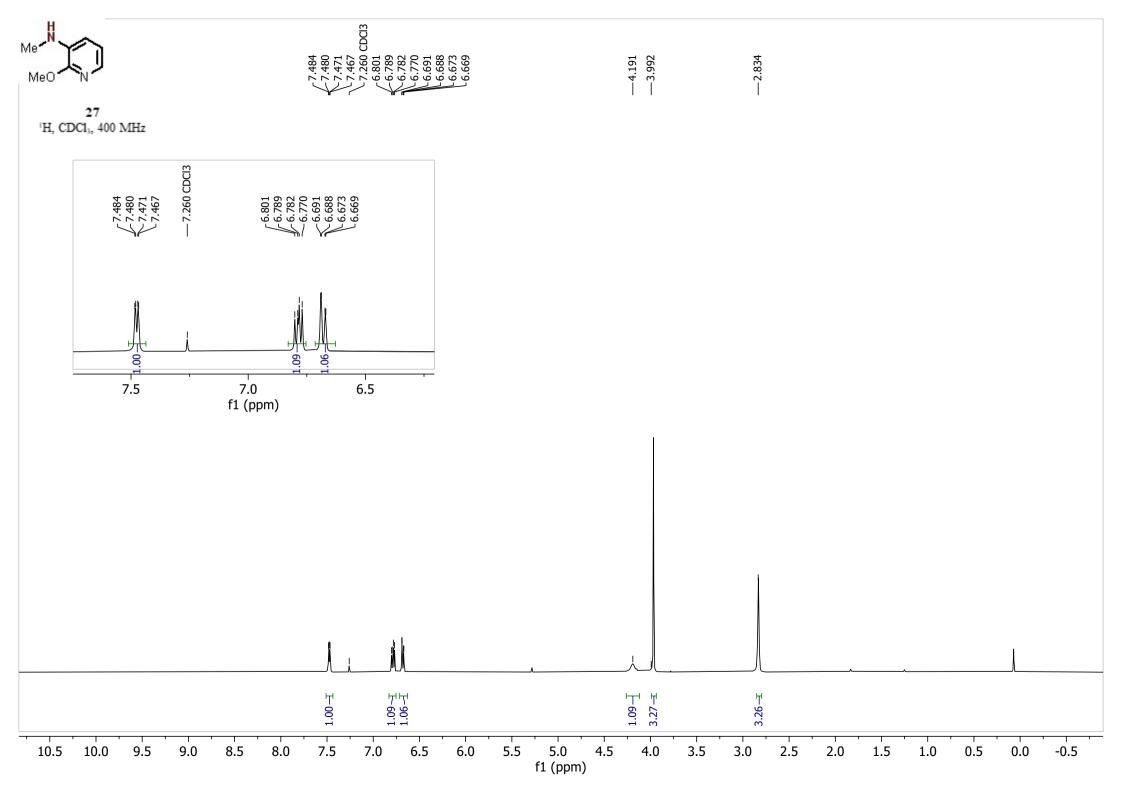


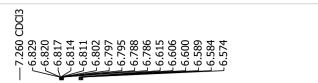


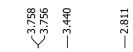

23 ¹H, CDCl₃, 400 MHz



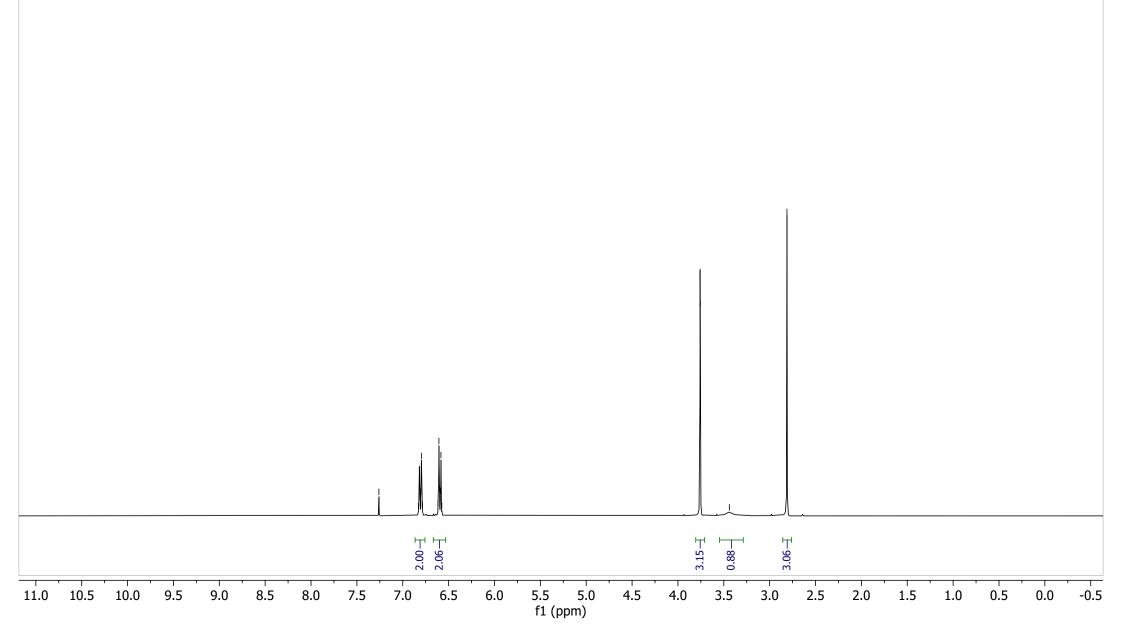


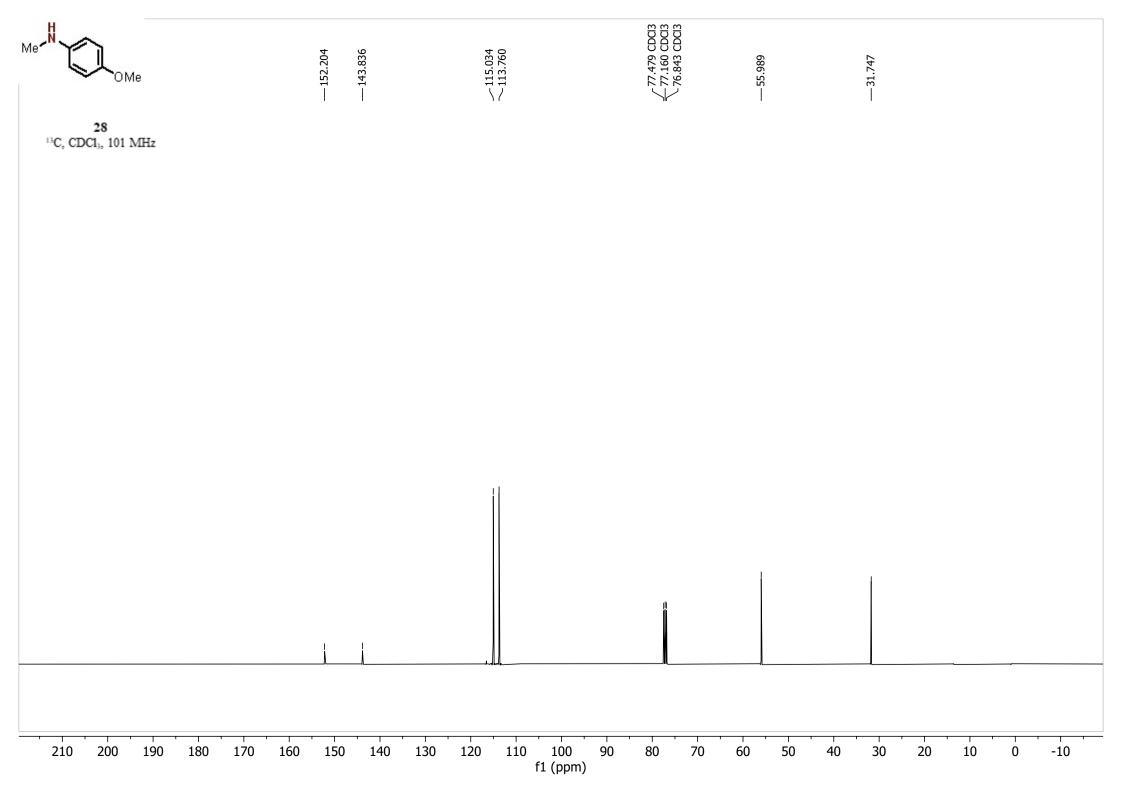


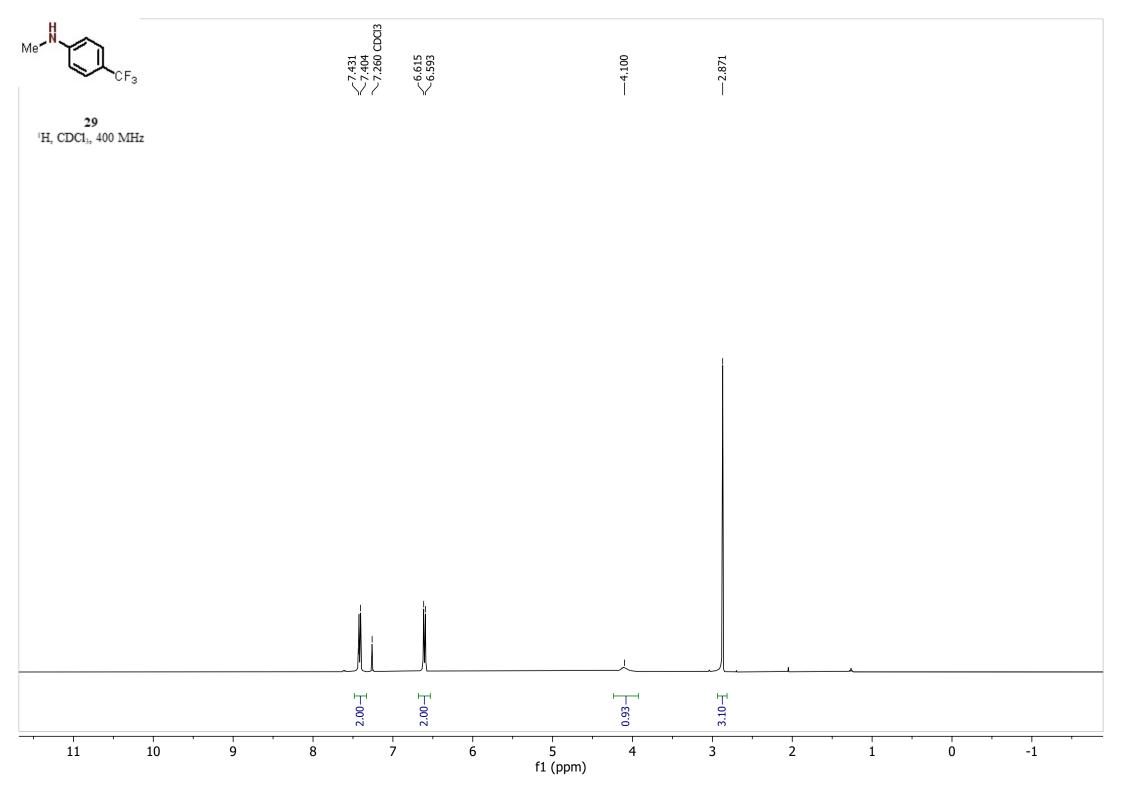


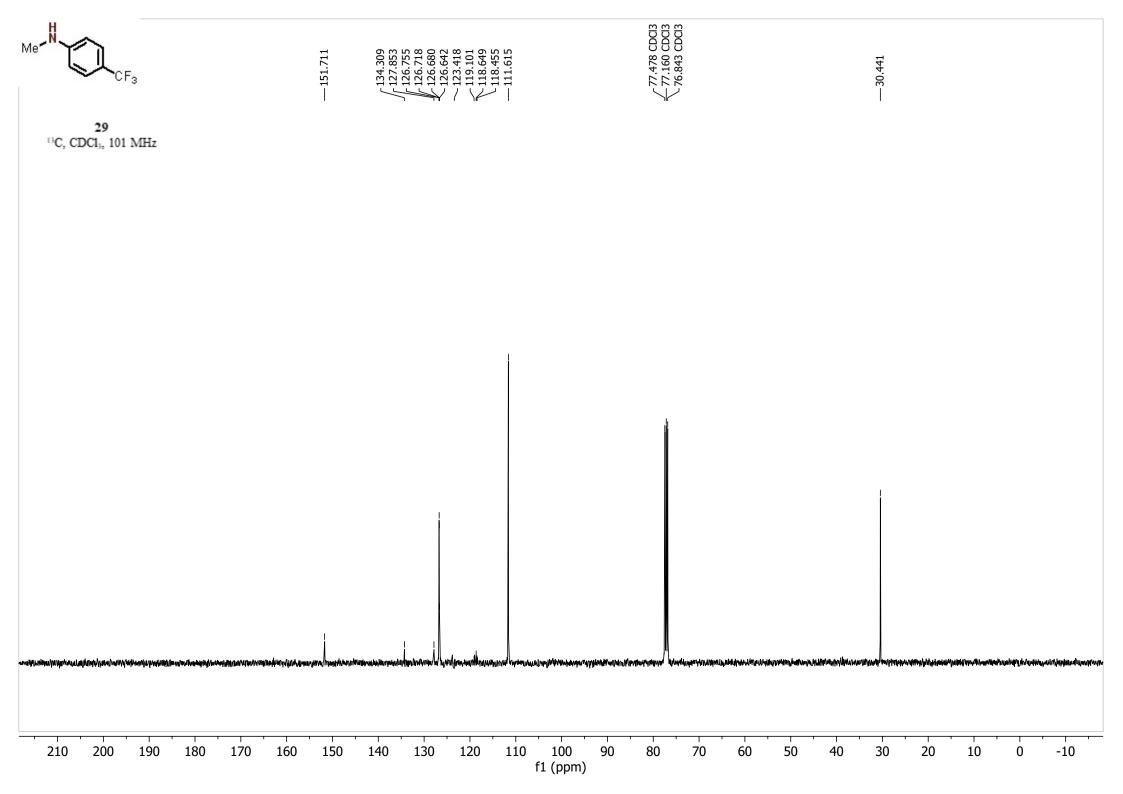

		77.478 77.160 CDCl3 76.843	
26 ¹³ C, CDCl ₃ , 101 MHz			
	1		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		**************************************	
210 200 190 180 170 160	150 140 130 120 110 100 90 f1 (ppm)	80 70 60 50 40	30 20 10 0 -10

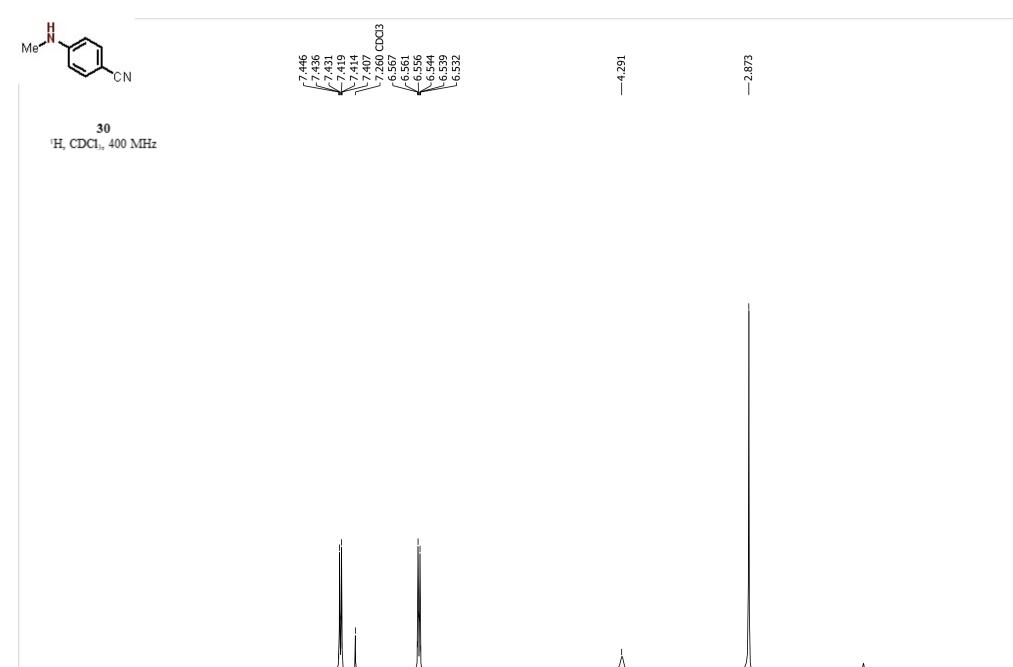


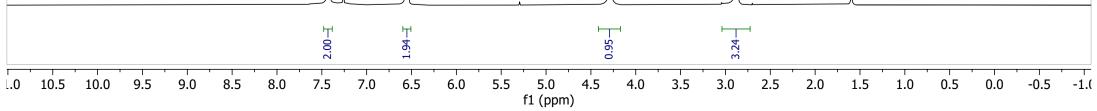

Me MeO ²⁷ ¹³ C, CDCl _i , 101 MHz	— 152.596	134.249 132.587		77.478 CDCl3 77.160 CDCl3 76.842 CDCl3	53.270	
210 200 190 180 17	0 160 150	140 130	120 110 100 f1 (ppr	90 80 70	60 50 4	 

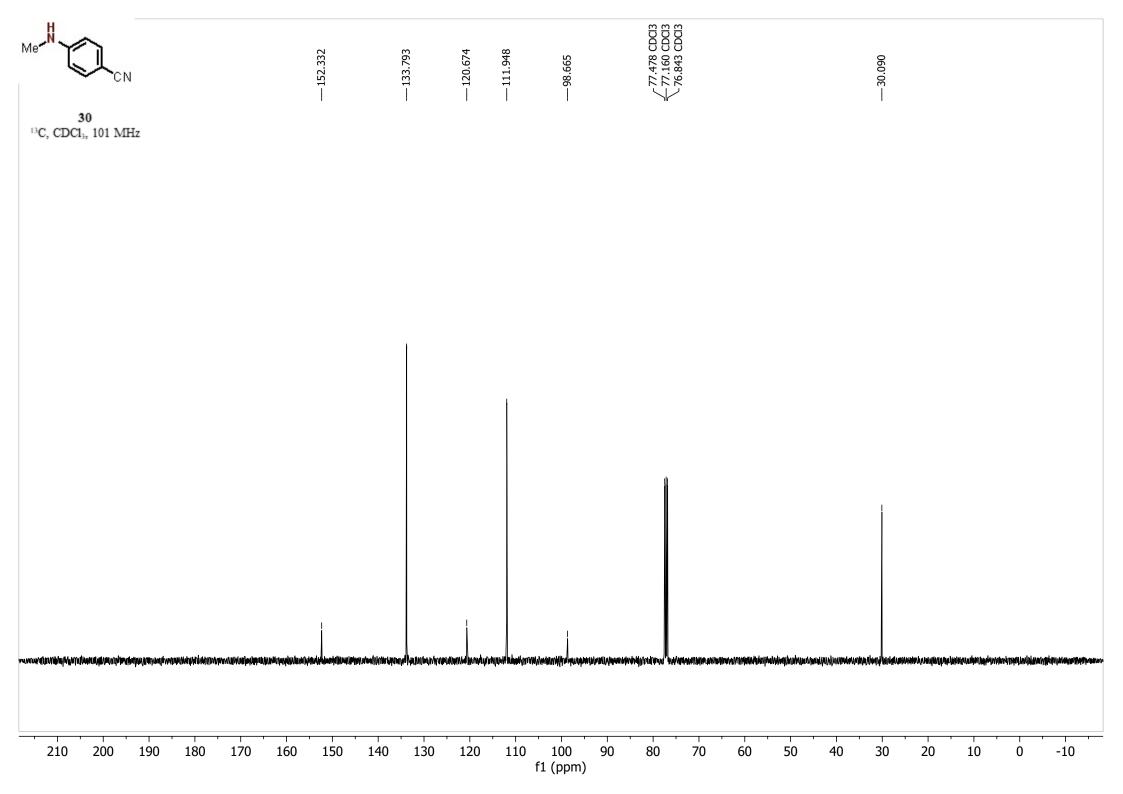


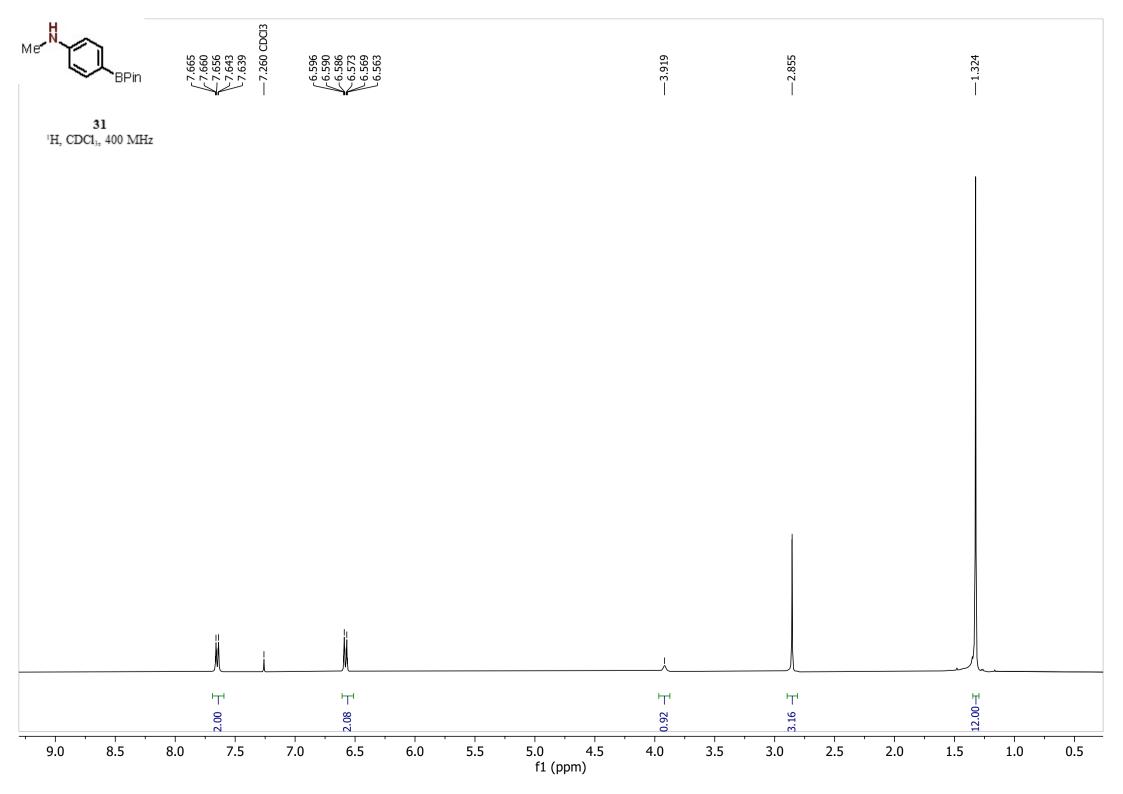



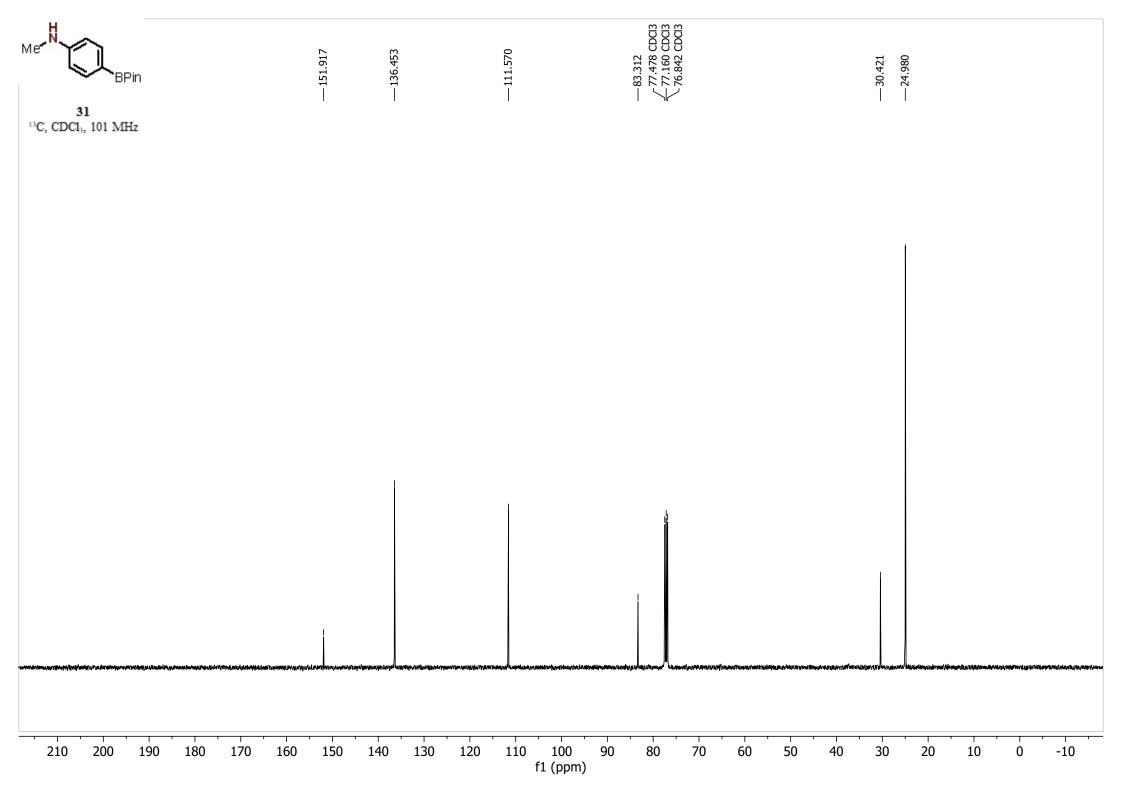



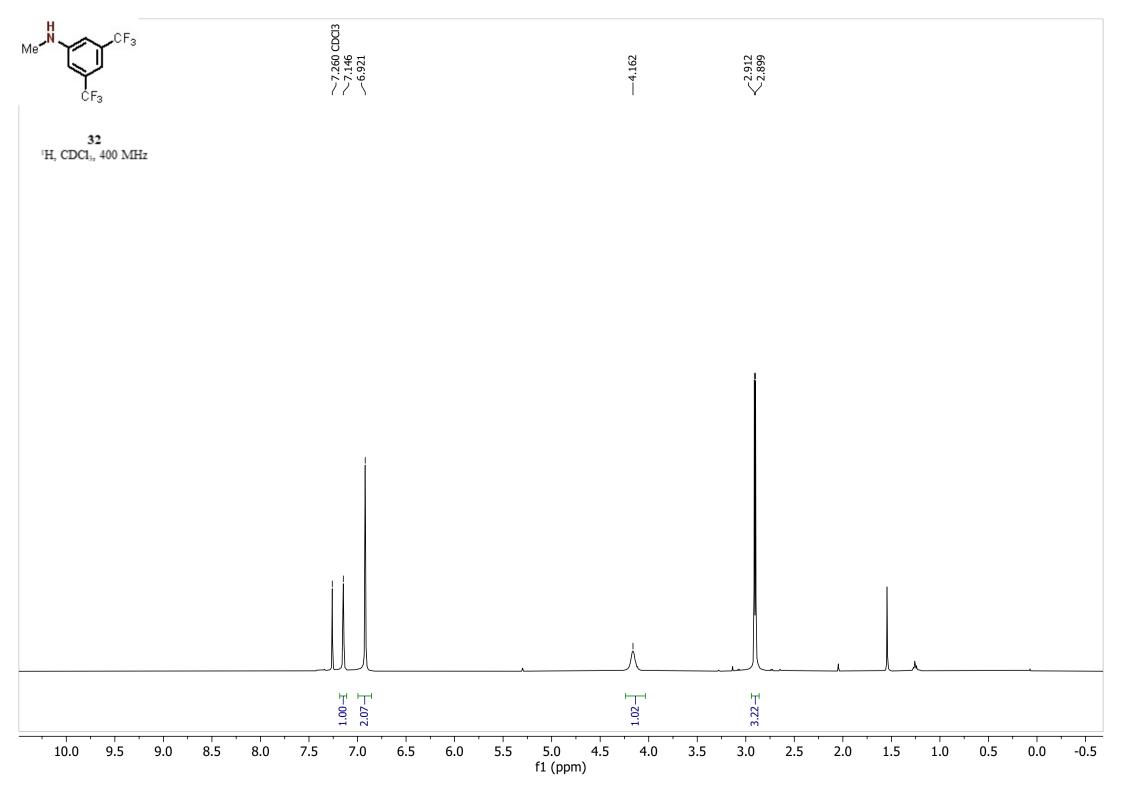


28 ¹H, CDCl₃, 400 MHz

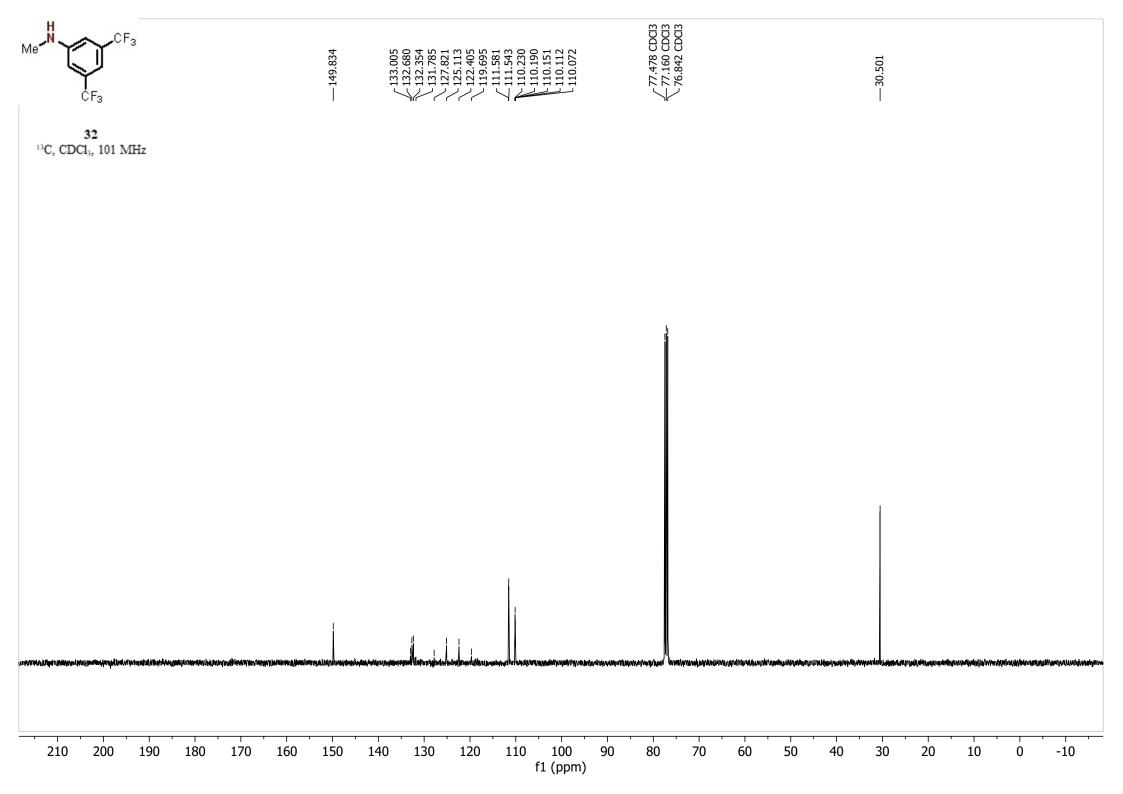


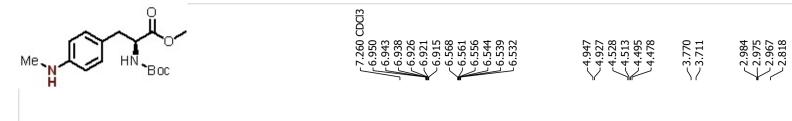



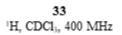



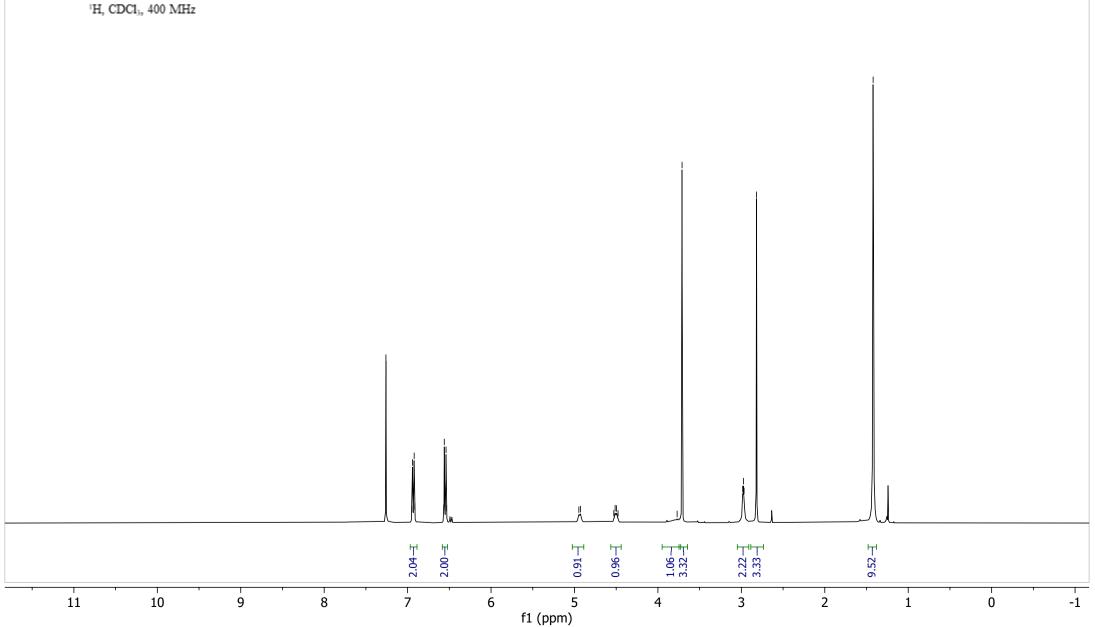



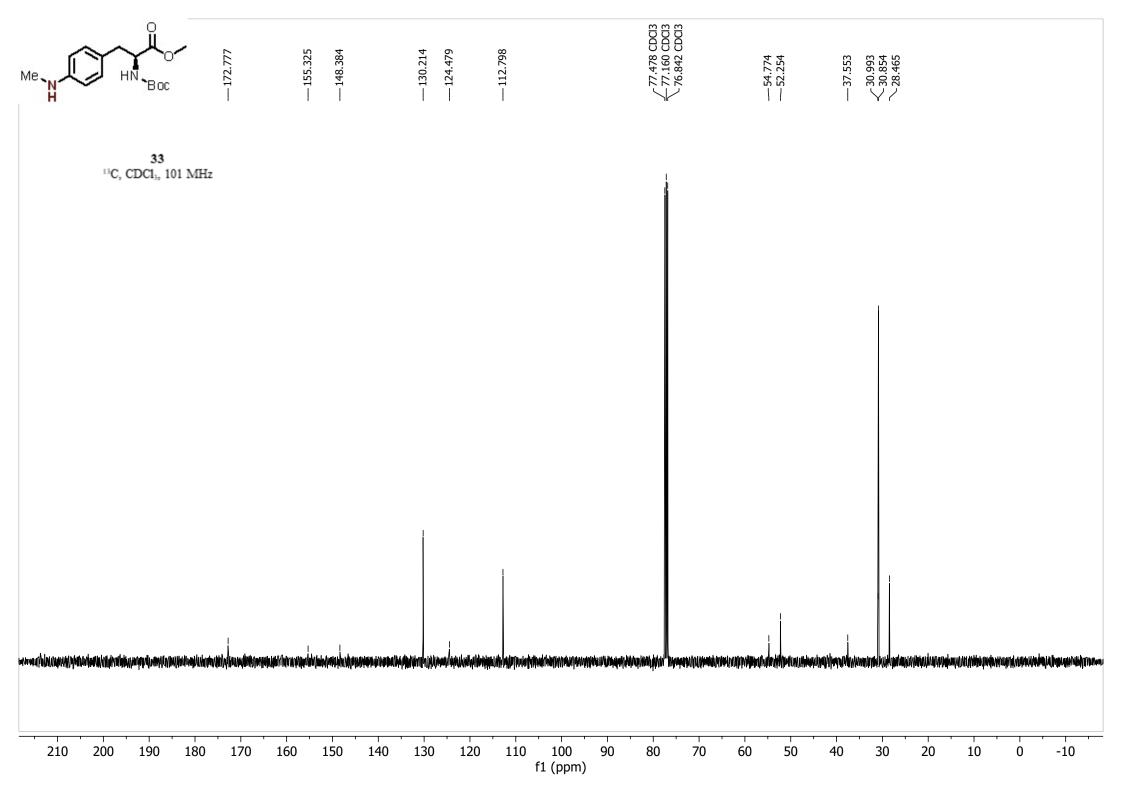



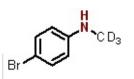



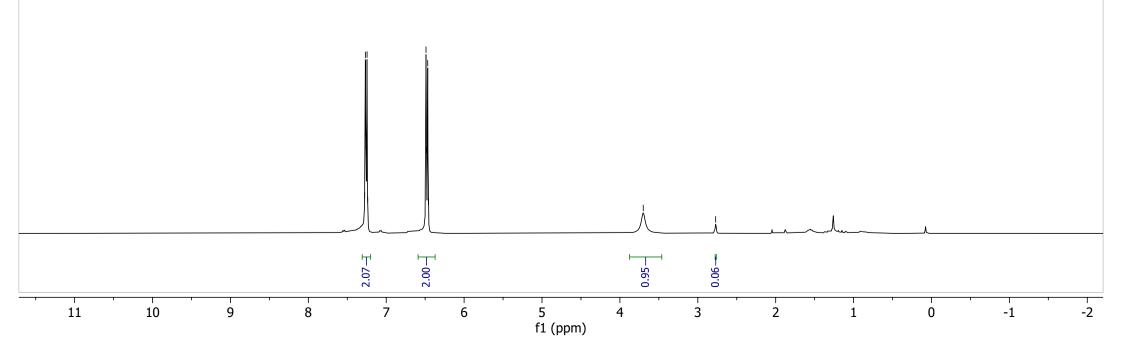



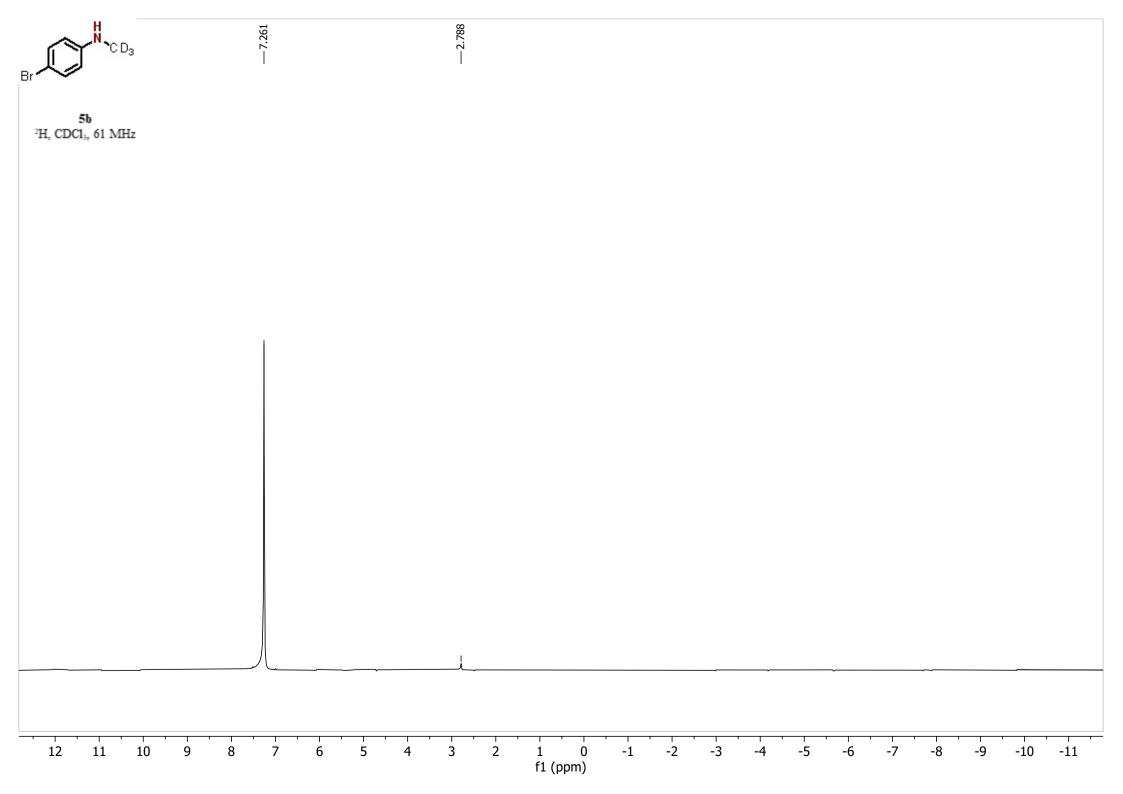



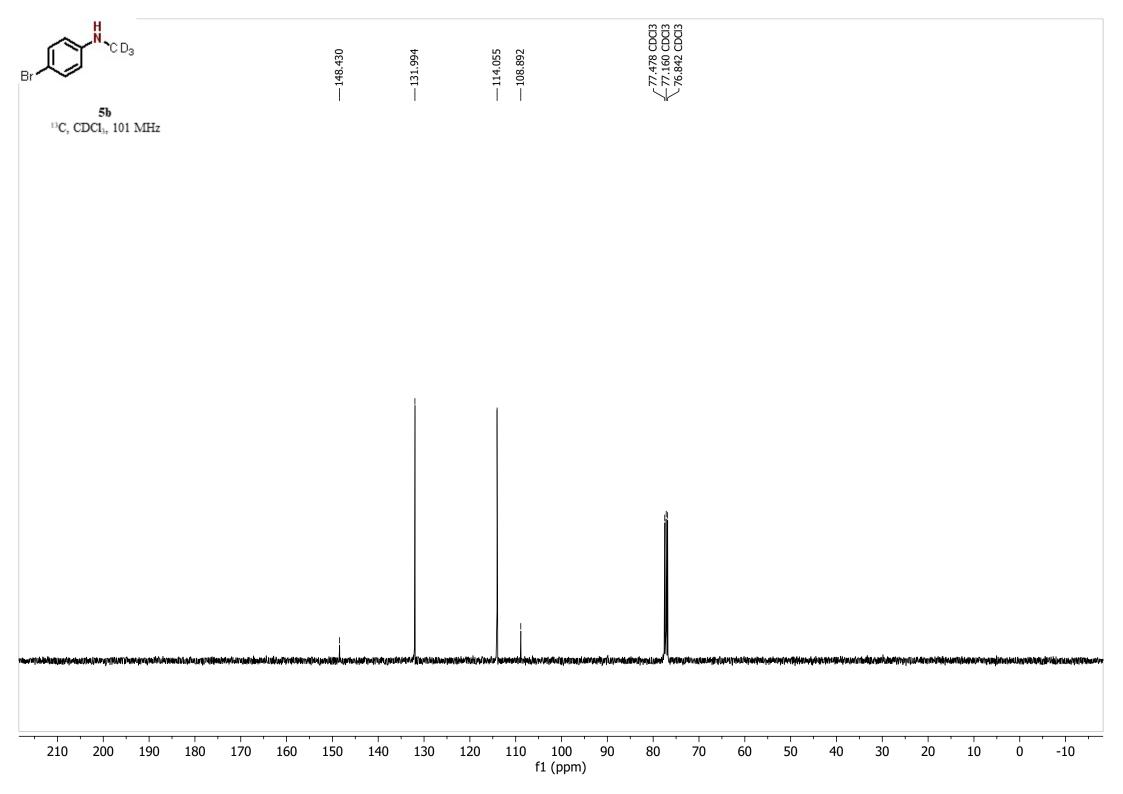


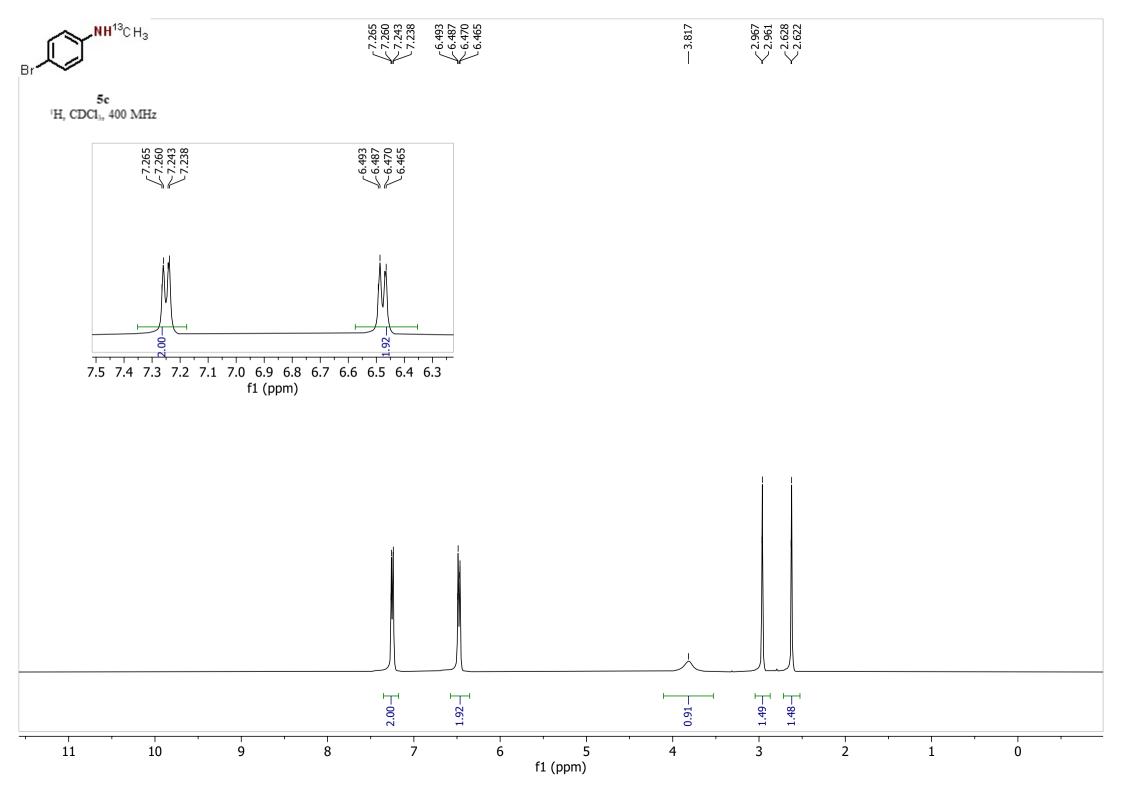


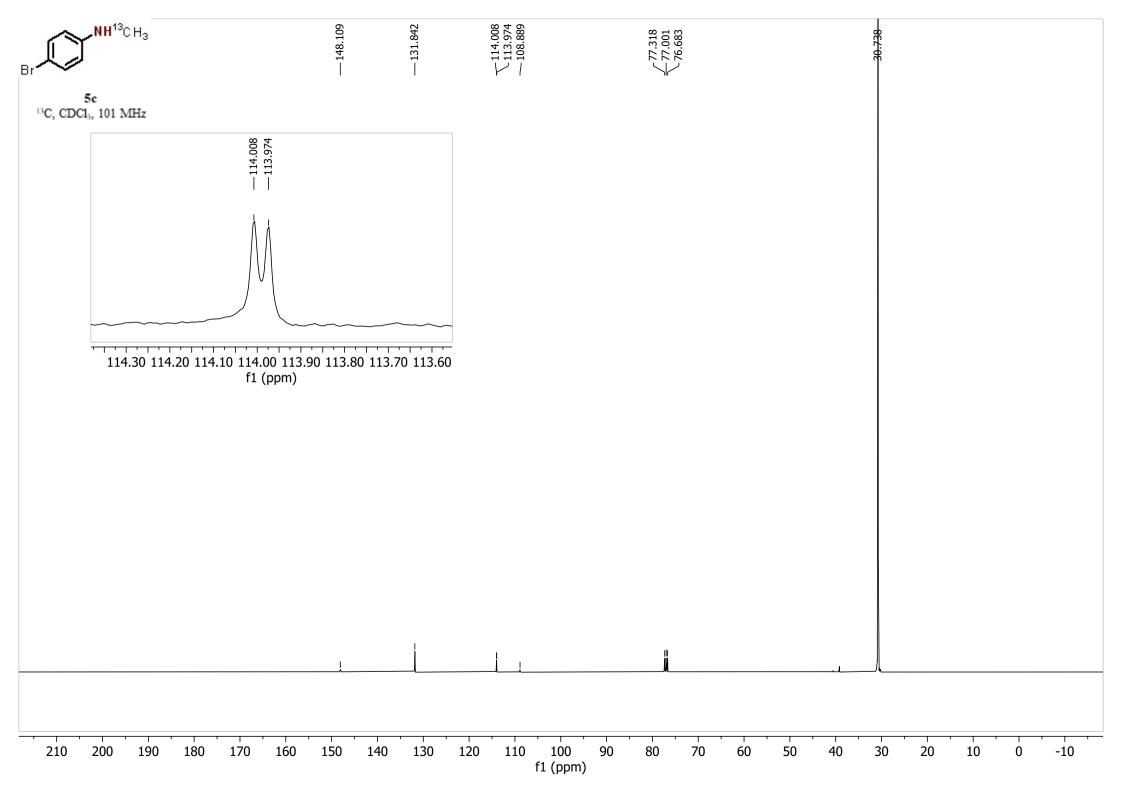


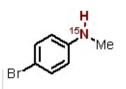





----3.700


5b 'H, CDCl₃, 400 MHz

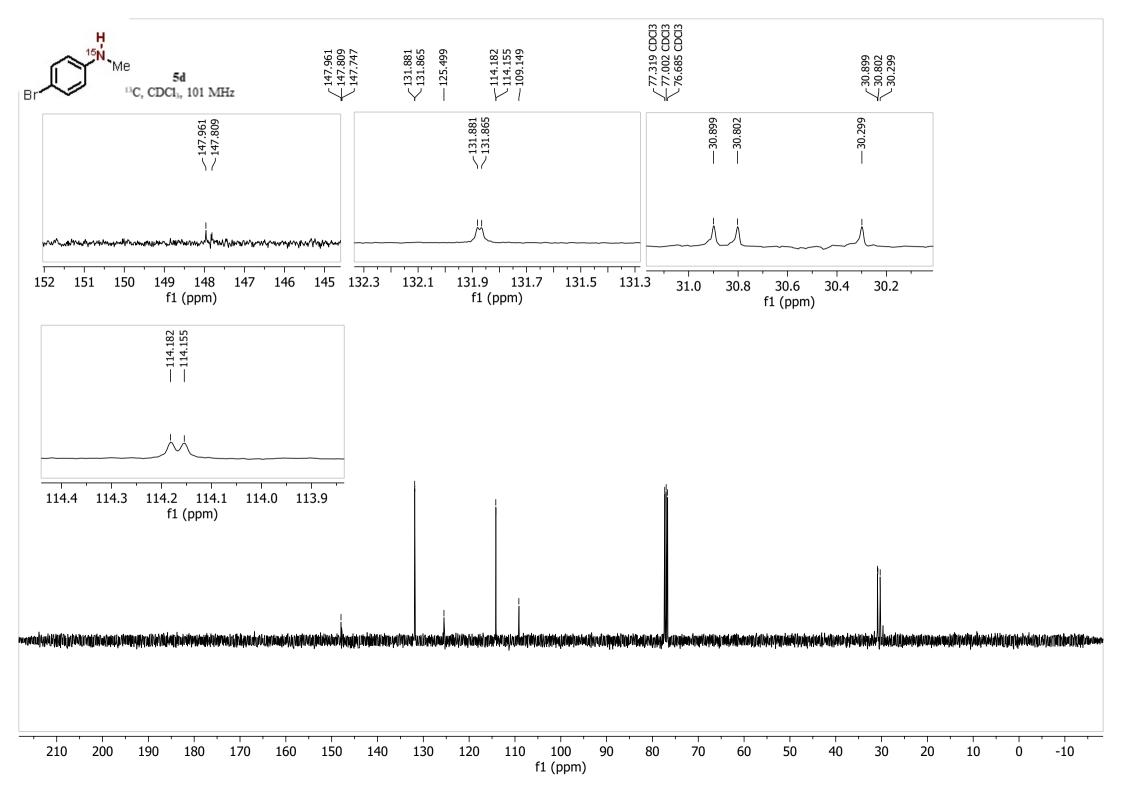


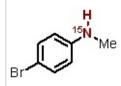






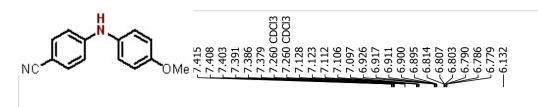


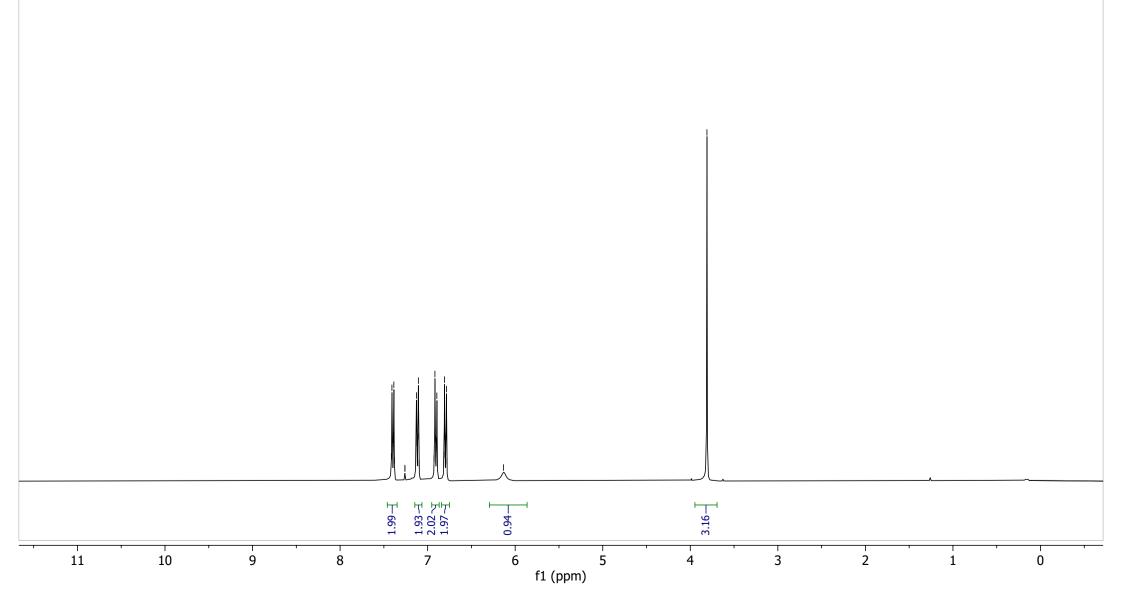



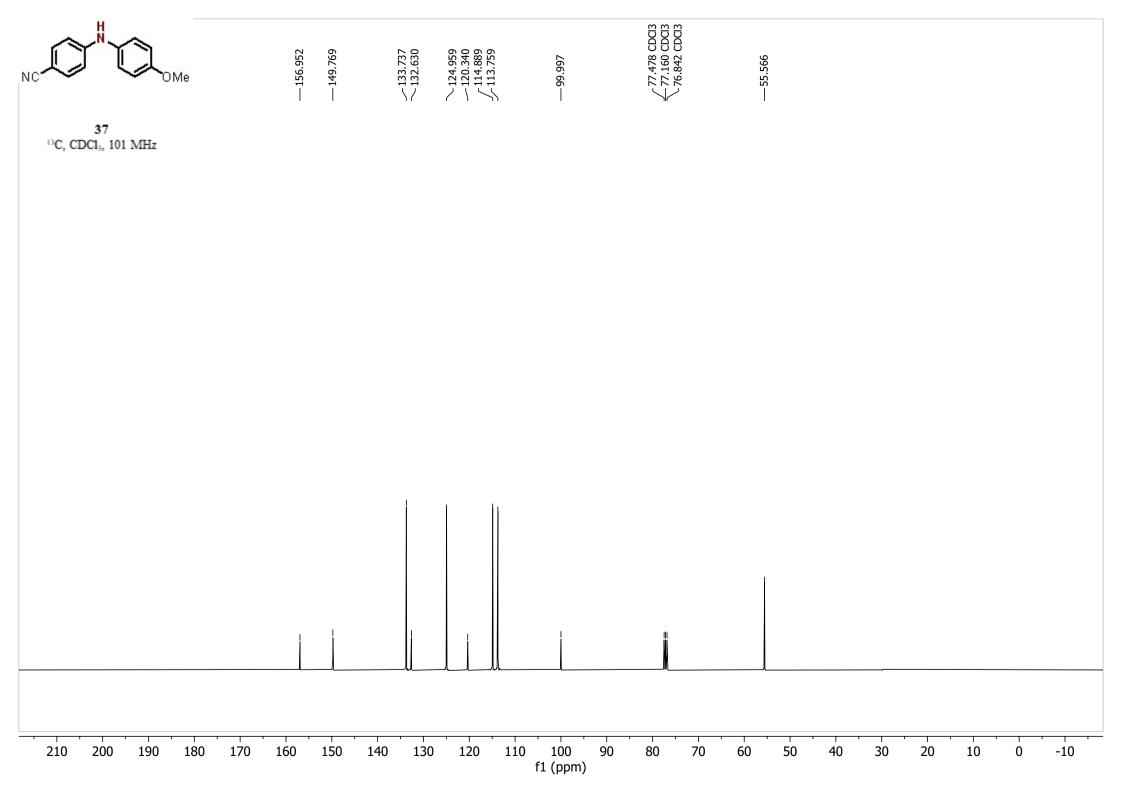

-3.934

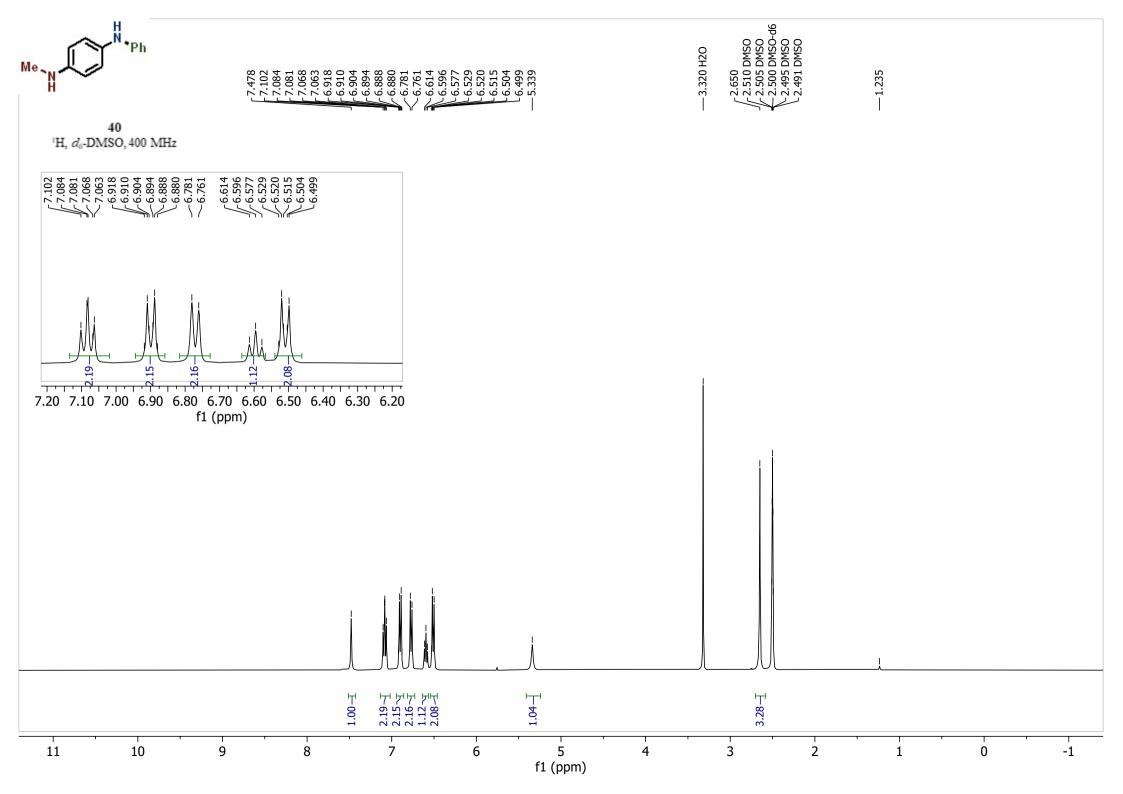
5d 'H, CDCl₃, 400 MHz

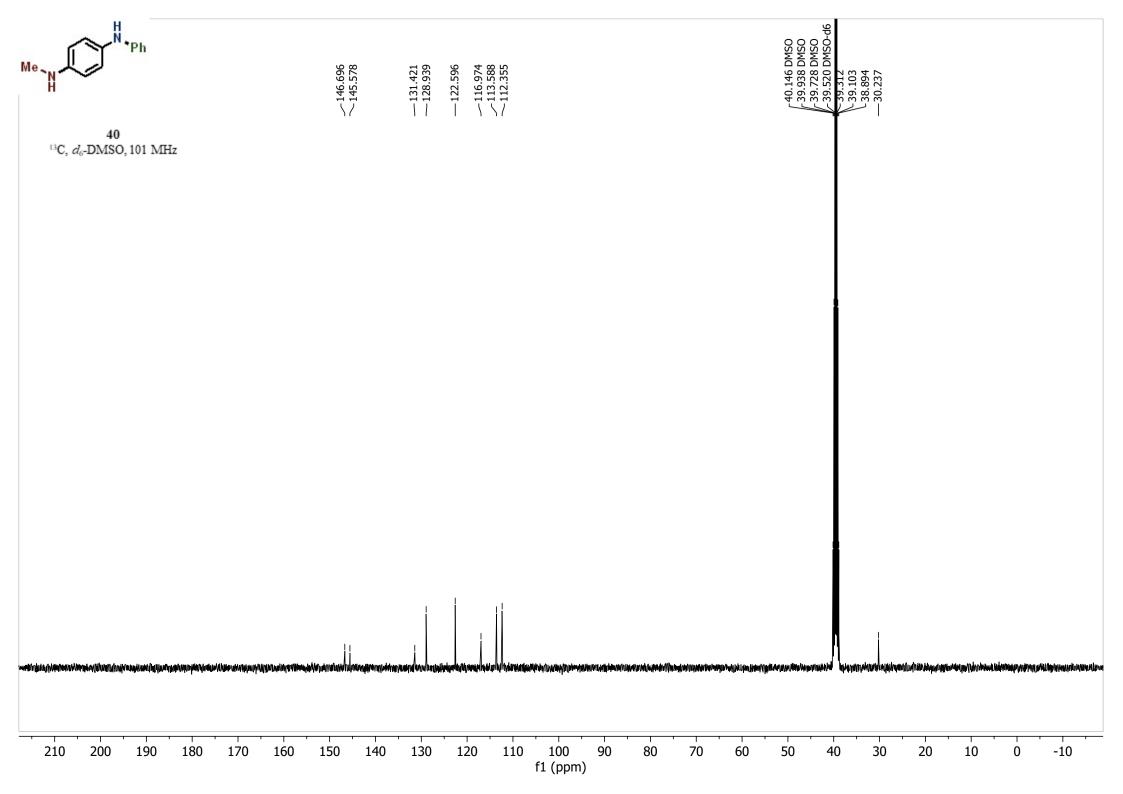


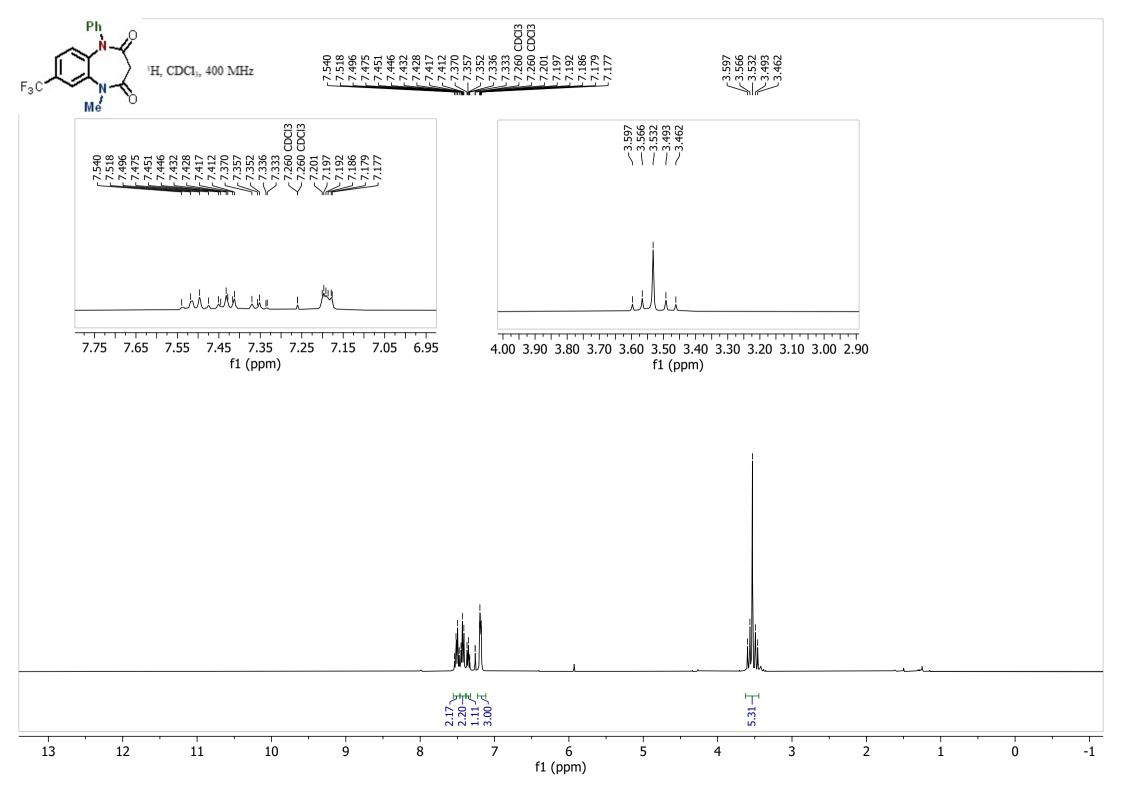


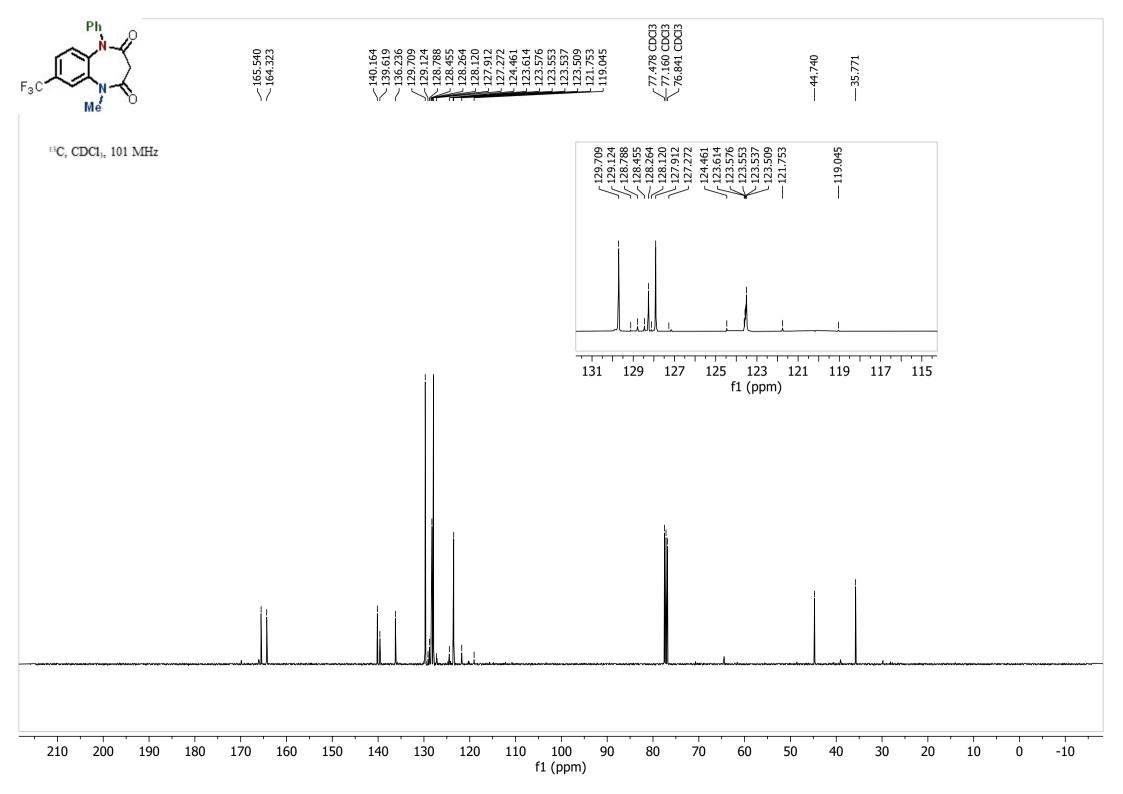





**5d** ¹⁵N, CDCl₃, 41 MHz


220 200 f1 (ppm) -20 Ó 





37 ¹H, CDCl₃, 400 MHz














## **Reference:**

¹ Murata, M.; Sambommatsu, T.; Watanabe, S.; Masuda, Y. An efficient catalyst system for palladiumcatalyzed borylation of aryl halides with pinacolborane. *Synlett*, **2006**, *12*, 1867.

² ¹³C NMR peak for CD₃ was not resolved. Similar report see: Reznichenko, A. L.; Hultzsch, K. C. The Mechanism of Hydroaminoalkylation Catalyzed by Group 5 Metal Binaphtholate Complexes. *J. Am. Chem. Soc.* **2012**, *134*, 3300.

³ Mansuy, D.; Battioni, P.; Chottard, J. C.; Riche, C.; Chiaroni, A. Nitrosoalkane Complexes of Iron-Porphyrins: Analogy between the Bonding Properties of Nitrosoalkanes and Dioxygen. *J. Am. Chem. Soc.* **1983**, *105*, 455.