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In Section 1, we provide the proofs of technical lemmas, Corollary 1-2, and Theorem
1-3. In Section 2, we present additional simulation results about the accuracy of Cauchy
approximation under multivariate t distributions and power comparison of different com-
bination tests. In Section 3, we provide a toy example and some discussions to illustrate
the finite-sample power of the Cauchy combination test.

1 Proof of main results

We introduce some notations. Let ¢(z) and ®(x) be the density function and the cu-
mulative distribution function of the standard normal variable, respectively. Let h(x) =
tan{[2®(|z|) — 3/2]7} and p(z) = 2{1 — ®(|z|)}. The Cauchy combination test statistic is
defined as T'(X) = Zle wih(X;), where w; > 0 for any 1 < ¢ < d and Ele w; = 1.

1.1 Technical Lemmas

We first prove a few useful technical Lemmas. Note that d is fixed in Theorem 1. The
notation o(1) and O(1) in the following proofs is with respect to ¢ tending to +oc.
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Lemma 1 (Bonferroni inequality). Let A = U4, A;. For any k < [d/2], we have
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Lemma 2 (Mill’s ratio inequality). For any x > 0,
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Lemma 3 (Properties of function h). (i) For any |z| > ®71(3/4),
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(i) For any constant 0 < |a| < 1, we have
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where ¢, is some constant only depend on a.
(i11) Suppose Wy has a standard Cauchy distribution and X, has a standard normal
distribution, then we have

P{W, >t} = P{h(X,) >t} = % +O(1/t%). (3)

Proof. (i) Note that p(z) < 1/2 when |z| > ®71(3/4) and h(x) = sin{[1/2—p(x)|7}/ cos{[1/2—
p(z)]r} = cos[p(z)r]/sin[p(x)x], then (1) follows from the elementary inequalities that
zcosz <sinz < z for any z € (0,7/2).
(ii) Since h(x) = h(—x), we only need to consider the case where 0 < a < 1. To simplify
the exposition, we write f(x) =< g(x) if lim, 1 f(x)/g(x) = co, where constant ¢4 > 0
and f(z) and g(x) are two functions. Simple calculation gives that for x > 0,
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Through Mill’s inequality and (1), we have h(z) =< ze”/? and h/(z) = 22" /2. By the

mean value theorem, h(z) = h(azx) + h'(a,x)(1 — a)x for some constant a < a, < 1. Then,
for z > ®71(3/4)/a, we have

> 0.
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(iii) Let Uy = p(Xo) ~ U|0,1]. It follows from (1) that
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By Taylor’s series expansion, we have
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Hence, we complete the proof.

1.2 Proof of Theorem 1

Since h(z) = h(—z), then h(X;) = h(X;) if X; = X, or X; = —X,. Hence, we only need
to consider the case where |0;;| < 1 for any 1 <1i < j < d. Without loss of generality, we
assume w; > 0 for any 1 <1 < d.

Let A,y = {h(X;) > (140)t/w;, T(X) >t} and B;; = {h(X;) < (14+8:)t/w;, T(X) > t},
where constant §; only depends on t and satisfies that §; > 0, §; — 0 and &;¢t — 400 as
t — +o0. Further let A, = UZ LAy, By = ﬂl 1 Bit, then we can decompose the rejection
region {7'(X) > t} into the two disjoint sets A, and B;, and then

P{T(X) >t} = P(A;) + P(By).

Step 1. We first show that P(B;) = o(1/t). The event {T'(X) > t} implies that there
exists at least one ¢ such that h(X;) > t/(w;d). Then we have

P(B) < ZP(Bi,tﬂ{h(Xi)>t/(wid)})_ZP{ ! <h(Xi)§M7T(X)>t}
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It is easy to see the Iy = o(1/t) by noting that §; — 0 and using Lemma 3(iii). Regarding
I;, we have
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Because of the pairwise normality assumption of X, we can write X; = 0;; X; + 7i; Zij,
where aizj —|—7Z-2j = 1 and Z;; is independent of X; and follows a standard normal distribution.
If 0;; = 0, then (4) directly follows from Lemma 3(iii). Note that we also have |o;;| < 1.
Hence, we only need to consider the case where 0 < |o;;| < 1. Let h™!(:) be the inverse
function of h(x) when x > 0. The event in (4) implies that |X;| > h7'(-L) — +oo.

w;d
Therefore, applying Lemma 3(ii), for sufficiently large ¢, we have

h(X;) (1 — 6t t
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where ¢y > 0 is a constant only depending on o¢;;. Then by choosing d; such that

8i[h 1 (g5)]? — +o0, we have k(04 X;) < o((df;gwj). Recall that h(X;) > (dff)wj in (4) and

X; = 04 X; + ijZ;;. These indicate that |Z;;| > A\, where ); is some constant depending
on t and tends to +o0o0. Hence, by Lemma 3(iii),
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Step 2. In this step, we show that P(A;) = 1/(¢7) + o(1/t). By Bonferroni inequality,

d

d
D P(A)— Y P(AunAj) < P(A) gz
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Using a similar argument of proving I; = o(1/t) in step 1, it is easy to see that P(A;; N
A;) =o(1/t) for any 1 < i < j < d. Further, observe that

P(A;:) = P{h(X;) > (1 + 0)t/w;} — P{h(X;) > (1 + 0y)t/w;, T(X) < t}
and

P{R(X;) > (1 + 6,)tfw;} = m +o (ﬁ) = ‘;— +o(1/t),
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it suffices to show
P{h(X;) > (14 & )t/w;, T(X) <t} = o(1/t) (5)

for any 1 < ¢ < d. The event in (5) implies that there exists at least one j # i such
that w;h(X;) < —0;t(d — 1), then it can be easily seen that (5) also follows from a similar
argument of proving Iy = o(1/t) in step 1. Therefore, we complete the proof.

1.3 Proof of Corollary 1

From Theorem 1, we have
1
P{T(X) >t} — o < o(1/t),
T

for any given fixed weights w = (wq,- -+ ,wy) and 2?21 w; = 1. Since w is independent of
X, it suffices to show that the upper bound o(1/t) does not depend on the weights.

In the proof of Theorem 1, we provide the upper bound for multiple terms. First, we
consider the term [ ;; in (4) and show that the upper bound for it does not depend on the
weights. It is obvious that

t t
I < P{ < h(X;) < —,h(X;) > 5tt}.
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Let € > 0 be a sufficiently small constant. If 0 < w; < 1/¢°, then
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If 1/t* < w; < 1, we have
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1
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As in the proof of Theorem 1, by choosing d; such that §;[h~!(t!7¢)]? — +oo, we have
h=(8:t) — |osj|h (#17¢) = +o00. Combing the two cases about w; together, we obtain an
upper bound for I; ;;, which does not depend on the weights and is o(1/t).

For the other terms, it is easy to see or can be shown using a similar argument above

for I, ;; that their upper bounds does not depend on the weights and is o(1/t). Hence, we
omit the details of the proof.



1.4 Proof of Theorem 2

To simplify the exposition, we introduce a new notation that a < b if a is smaller than
or equal to b up to multiplying some positive constant independent of ¢ and d. Similar to
the proof of Theorem 1, we first decompose the rejection region {7'(X) > ¢} into the two
disjoint sets A; and B;.

Step 1. We show that P(B;) = o(1/t). The event {T'(X) > ¢} implies that there exists
at least one ¢ such that h(X;) > t/(w;d). Then we have
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It is easy to see the Iy = o(1/t) by noting that J; — 0 and using Lemma 3(iii). It remains
to show I; = o(1/t). Because the largest eigenvalue of 3 = (o;;) is bounded by Cjy, we have
max;<i<q ijl 0} < Cp. Let 0 < 0§ < 1 be a constant and J; = {j # i : 0;; > o3}. For
any 1 < i < d, the cardinality of J; is less than or equal to Cy/02. Let §; = (Co/o2)t™¢,
where constant 0 < e < 1. Then we have

d
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Recall the definition of the notation “=<” introduced at the beginning of the proof. Let
d = t* for some 0 < o < 1/2. Note that minj<;<qw; > ¢o/d and the cardinality of J; is

bounded by a constant Cy/ 08 for any 1 < i < d. Then we have

d
Ly = 30N P{t=A(X) 2t e <n(x;)}
i=1 jeJ;
= =< ) < 14+a 1+O¢—5_< ]
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and

d
Ly = 33 P{E=h() 20 < (X))}
i=1 jEJE j#i

= & max  P{t<h(X;) """ < h(X;)}.

1<i<d,jeJs,j#1

It follows from Mill’s inequality and (1) that e /2 < h(x) < |z|e**/? for |z| > ®1(3/4).

Hence,
V2logt < h7Ht) < (14 0(1))y/2logt, (6)

where o(1) is positive.

Because of the pairwise normality assumption of X, we can write X; = 0;;X; + 7i; Zij,
where Ufj + %2]» =1, 0575 > 0, and Z;; is independent of X; and follows a standard normal
distribution. Combing this result with (6), we have

P{t = h(X;) 2t < h(X;)}
P{t 2 h(X;), | X S R7HET), AN =X}
P{t 2 h(X0), 1X] = (14 o(1)V2(T + a)logt, /2blogl < |0y X, + 7] }
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where b > 0 is some positive constant. Specifically, b =1+ « for I1; and b =1 — ¢ for [5.
If b < (1+0(1))(1 + @), then the function {\@ =/ o)1+ a)agj} J\J1= s

monotonically decreasing with respect to afj for 0 < afj < 1. For both I1; and Iy, the
values of b, i.e., b=1+a and b =1 — ¢, is less than (14 o(1))(1 + «) by noting that o(1)
in (6) is positive. Therefore, the maximum in both I1; and I can be bounded by using
the maximum of 7.

Inln,afjSagmx<1forany1§i§d,j€ji. In]u,afjSagforanylgigd,je

JEf,j #i. Note that P{t < h(X;)} =< 1/t by Lemma 3(iii). Hence, we have
V1 — 1 1))(1 2
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V1I—e—4/(1 1)(1 2
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where Z; is a standard normal variable.
Through Mill’s inequality, to prove that I;; = o(1/t) and ;5 = o(1/t), it suffices to
show that for some 0 < o < 1/2,

Vit a—+/(1+0(1)(1+a)d?,,

N > a (7)
and
V1—e—+/(140(1)(1+ a)o? < 2. (8)

It is obvious that the inequality (7) holds. By letting € and o2 sufficient small, it can be
easily seen that the inequality (8) also holds for any constant 0 < o < 1/2.

Step 2. We show that P(A;) = 1/(tw) + o(1/t). This can be done by using a similar
argument in step 2 in the proof of Theorem 1 and a similar argument in step 1 in the proof
of Theorem 2. Therefore, we omit the proof.

1.5 Proof of Corollary 2

The proof strategy is analogous to that of Theorem 1 or 2. Thus, we provide an outline
here and omit the detail of the proof.

Let X = (X3, -+, Xy) denote a vector of standard normal variables that has the same
correlation matrix as X and satisfies the bivariate normality condition, where var(X;) = 1
for any 1 < ¢ < d. Note that in the proof of Theorem 1 and 2, we essentially did the
following decomposition:

P{T(X) >t} = ZP{h ) > twd + 1,

where I contains multiple terms and we showed that I = o(1/t). 3
Given the bivariate normality condition and the assumption that var(X;) < 1, we have

P{h(X;) > t} < P{h(X;) > t} (9)

and
P{h(X;) > t,h(X;) > s} < P{h(X;) > t, h(X;) > s}, (10)

forany 1 <i<j<d.
Then it follows from (9) that

ZP{h >t/wl}<ZP{h ) > t/wi}.



The terms in I are all about the tail probabilities and we derived the upper bound for
them. Through (9) and (10), it can be easily shown that I = o(1/t) for X;’s. Hence, we
obtain

P{T(f() >t} < P{T(X) >t} + o(1/t).

1.6 Proof of Theorem 3

We first recall some notations and conditions for Theorem 3. Let h(x) = tan{[2®(|z|) —
3/2]r} and p(x) = 2{1 — ®(|z|)}. The Cauchy combination test statistic is defined as
T(X) = Z?Zl wih(X;), where min; <;<4 w; > ¢o/d for some constant ¢y > 0. We assume that
the individual test statistics X ~ Ny(u, X)), where ¥ is a banded correlation matrix, i.e.,
o;; = 0 for any |i — j| > d for some positive constant dyp > 1. Let S ={1 <i <d: p; # 0}
denote the set of signals. Suppose that the number of signals |S| = d7, where 0 < v < 1/2
and |S| is the cardinality of S. The non-zero y;’s are assumed to have the same magnitude,
ie., || = po = +/2rlogd for all i € S, where /r > 1 — /7.

Now we are ready to prove Theorem 3. Let X = p + Z, where Z ~ N(0,3). We can
decompose T'(X) into two parts:

€S €8¢

Since ¥ is a banded correlation matrix, it is easy to see that the second part in the decom-
position is O,(1). Hence, to prove that lim; , . P{R.(X) = 1} = limg,, o P{T(X) >
to} = 1 for any o > 0, it suffices to show that the first part in the decomposition converges
to oo with probability 1.

It is obvious that

4 —
g wih > — h (max|X |) y @ p (mlél‘Xz|) .
1€

€S

Let Sy = {i € S, ; > 0} and assume that |[S;| > |S]/2 without loss of generality. Given
the assumption that 3 is a banded correlation matrix, it follows from Lemma 6 of Cai
et al. (2014) that max;cg, Z; > \/2log|S4| + 0p(1). Then we have

max | X;| > max |X;| = max |Z; + po| > po + max Z; = po + v/21og|S4| +0,(1)  (11)
i€S €S, 1€S4 €S54

Hence,
> ~1/2 . )2
h (I?ea}qx|X \) > (2m) 1£1€%X|X1]exp{(r?ee}qx|XzD /2} +0,(1)
> (2m) 2 (\/210g [S1| + po) exp {log [ S| + 13/2 + po/210g [S1 [} + 0,(1)
> exp {ylogd+ p3/2 + por/27vlog d} + 0,(1 1) = dVTHYD* 4o »(1),
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where the first inequality follows from the left-hand side of (1) and Mill’s inequality and
the second inequality follows from (11). Given the condition that \/y + /7 > 1, we obtain
(co/d)h(max;ecs | X;|) — +o00. Hence, it suffices to show that

d'h (misn |X,~|) > 0,(1). (12)
1€
Let ¢4 be constant such that ¢, > 0 and ¢; — 0 as d — +o00. First of all, we have

P{min | X;| < 4} < ; P{|X;| < eq} = d'P{|X1| < &4}

= d'{P(po+eq) — (o — €a)} < 20(po —€q)deq < dey.

Following a similar argument in the proof of Lemma 3(i), it is easy to show that h(z) >
—1/[{1 — p(z)}x] when |z| < ®~*(3/4). Therefore,

-1 -1 2 1
St o) - Vi e +o(1/eq),

h(€d)

where the last equality follows from ®(g4) = 1/2+¢e4/v2m+0(e4). Note that 0 < v < 1/2.
By letting 4 = d"°~! where v < vy < 1/2, we have

2
P{migl 1X;| <eql <dleg=d™ 1 =0(1) and d 'h(gy) > —\/j-dV_“’O%—o(dV_”’O) =o(1).
UIS ™

Note that h(z) is increasing when z > 0, thus we prove (12).

2 Supplementary Figures

The simulation setting of Figure 1 is the same as that of Figure 1 in the main text, except
that the individual test statistics X is generated from a multivariate t distribution with
4 degrees of freedom. The result demonstrates that the p-value calculation is also very
accurate even if the normality assumption is violated.
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Figure 1: The ratio of empirical size to significance level under a variety of hypothetical
and real-data-based correlation matrices. The simulation setting is the same as that of

Figure 1 in the main text, except that X ~ t4(0, ¥). The z-axis is the significance level at
a=10"110"2,10"3,10"%,107°.

The simulation setting of Figure 2 is the same as that of Figure 3 in the main text,
except that the critical values of CCT are calculated analytically through the Cauchy ap-
proximation. Figure 2 also demonstrates that C'C'T has more robust power across different
correlation and sparsity levels, compared with the other three tests.
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Figure 2: Power comparison of CCT, MinP, HC and BJ. The critical values of CCT are
calculated analytically. The z-axis is the correlation strength p. The columns from left to
right correspond to the dimension d = 20,40, 60. The rows from top to bottom correspond
to the signal percentage 5%, 10% and 20%.

3 Finite-sample power

As discussed in the main text, the Cauchy combination test essentially only uses a few
smallest p-values to represent the overall significance. We illustrate this by a toy example
provided in Table 1. In this example, there are seven p-values, where two of them are
substantially smaller than the others. The Cauchy values for the smallest two p-values are
much larger than those for the other p-values and dominate the summation. Although our
combination test also relies on a sum of distributions, it essentially only uses a few smallest
p-values to represent the overall significance and therefore would be very powerful in the
presence of sparse signals.
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Table 1: A toy example
P-values 0.45 1 0.35 | 0.25 | 0.15 | 0.05 | bE-03 | 2E-03
Cauchy values | 0.16 | 0.51 | 1.00 | 1.96 | 6.31 | 63.7 159

If there is one p-value very close to 1, the Cauchy combination test would tend to not
reject the null hypothesis even if there are multiple other p-values that are moderately small.
In comparison, the minimum p-value method (MinP) would reject the null hypothesis in this
situation and might be more reasonable than the Cauchy combination test. However, the
distribution of the p-value (under the null or alternative) is always stochastically larger than
or equal to U[0, 1]. Therefore, the p-value could be very close to 0 with a high probability
(when from the alternative) but the chance to have a p-value close to 1 is always very small.
Hence, the situation with p-values very close to 1 could but rarely happen and therefore
would only lead to little power loss. Furthermore, from both the power theorem (i.e.,
Theorem 3 in main text) and the simulation studies (i.e., Figure 3 in the main text), we
can see that the power of the Cauchy combination test is comparable with that of MinP.
More importantly, the Cauchy combination test has fast p-value calculation and can be
applied to analyze massive data but the MinP cannot.
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