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1 Analytical Derivations

1.1 SIS with social distancing
1.1.1 Prevalence

The following section was derived in O’Regan & Drake (3]) (setting 7 = 0 in Eqn. 1) and Dessavre (2), we
present it again here for the ease of the reader. Schematic of the dynamics:
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For the SIS model without external infections, the mean-field equations are given by fl—t = Bé(l — @) — o
where ¢ = <NL>

The following deviation follows from van Kampen (Chapter 8 and 10, (I])). The linear noise approximation
(LNA) for the discrete infectious state [ is given by:

I=No(t)+ NV, (1)



The general form of the master equation for the SIS model based on the transition probabilities given in
Table 1 is,

dp((j?t) = T —1)PUI —1,t)+ T+ 1)P(I +1,8) = T(I — UI)P(I,t) = T(I + 1|[)P(I, 1)
_ SOV - UN_ DU =D pr 1,4+ 4(I+ )P+ 1,8) — AIP(It) — WP(U)

(2)

The master equation can be written using step operators which act on an arbitrary function of n, defined as
Ef(n) = f(n+1) and E7'f(n) = f(n—1).

%ﬁ’w = E'T(I+1I)P(I,t) +ET(I — 1I)P(I,t) — T(I — 1I)P(I,t) — T(I 4+ 1|I)P(I,t)
= (E' =0T+ 1P(I,t)+ (E - 1T - 1I)P(I,1)
= (B!- 1)MN_I)]P(I, t)+ (E — 1)yIP(I,t) (3)
P(I,0) = 67y,

The step operators have a simple expansion involving powers of N~'/29/9¢. Since the operators take

I to I +1 then it follows that it takes, ( = I‘NJY%” to IHA;])[f(t) =(+ N} 7. From here, we can perform a Taylor

expansion and derive the following expression for E:

Ef(Q) = f(C+NT')
= FQ+ N + GNP +

o 1 0?
E = 14N Y2 4 N1 —
+ etV ga
o 1 0?
E' = 1-N2 - +_N"'— —..
ac T2t oo
Define a new probability distribution function IT by P(I,¢) = TI({,t). The derivative of the probability
distribution function with respect to t,

OP(Lt) _ OIdC Ol _ vy dd O O

= 4
ot o¢ dt Ot dt o¢ ot )
is needed for deriving the continuous space master equation.
Combining equations [3| and |4 together, we can write down the continuous space master equation:
d¢ OI1 I1
—N1/2—¢8— - ar-_ E'=D)T(I+1|)P(I,t) + (E—1)T(I —1|I)P(I,t)
dt 9¢ ot
o 1 0?
= (N2 4 N — T+ 1D
o 1 0?
N2 4 N7 L T - D)L, ¢
b N )T = DI
and substitute the linear approximation
o 10
~ (=NY2— 4+ - )p(1l—¢p— N"Y2 N=YV2OTI(C, ¢t
(N2 4 5 5B = 6= NTVRO)(6+ NTEONC )
v 20 v )
o¢  20¢? e
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We collect powers of N in equation |5 and substitute the mean-field deterministic approximation as N — oo
( macroscopic description which ignores fluctuations). This results in the linear Fokker-Planck equation for
this system:

o e N ) SNV R -1/
o0 = NVHBO(L-0) —90)Ge + (N2 + 5 (e + N QI
o0 102
_N12 2 ~ _ N —1/2, —1,2
NV G = (801 = 6) 4 B(1— 20)N VA — BN TG
we collect terms of order NO,
om 8CH H
Or equally we can represent this in terms of the corresponding SDE for (,
I = N¢+ NV, (6)
d¢ = (B(1—2¢) —)¢dt +/Bo(1 — ¢) + yodW,. (7)

1.1.1.1 Variance

The solution for the analytical variance can be deduced from the following equations,

HC)e [T 0l
o / T

— (A1 —26) - / c28CHdc+ S0 -9 ¢+v¢/ 220

(‘3C2
Then, integration by parts twice
— 2B -26) =) [ CHAC+ (51— e)o+0) [ 11aC
a<<2>t o 2(5_ _25 2 1 —
S0 = 28—y — 286)(C)e + B(1 - 6)6 + 76
d

= N (5 - 280)Net 4 51— )0 + 10, ®)

At steady state when ¢ =0 and d" = 0, we obtain ¢x = 1 — % and o2 = %RLO

1.1.1.2 Coefficient of Variation

The coefficient of variation (CoV) represents the ratio of the standard deviation to the mean. The mean of the
fluctuations can be found by taking moments (similar to variance) to achieve,

dp 9O

- 1—2¢) —
(10)
which solving equals to (¢); = (C)oexp(— [ S(1 — 2¢) — vdt). Since we initially have no fluctuations, we find

that for all ¢, (¢):0 or in words the mean of the Gaussian Process is zero.

For this reason, we find the coefficient of variation of the un-detrended data of I to avoid the division by
the zero mean in the fluctuations. From Ito’s Formulae we can write the SDE of I and the following change in
moments of (I) and (I?) to be,

dI = ((B(1—2¢) =)+ N¢°B) dt (11)
+ VB(L — ) +pdW, (12)

B (5 -20)— 1) + N (13)
D~ 2501 26) = 1)) + 2N*BU1) + B(1 - 0)6 + 70 (1)
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Coefficient of variation is defined as,
(1?) — (1)?
(n
1.1.1.3 Skewness

Since we have approximated ¢ with a Guassian SDE, it follows that the Skewness ( is zero. By considering
the 3rd moments and the fact that (¢)p = 0 and (¢*)q = 0 then,

dp_ (),

dt ot (B(1=2¢) = 7){O, (15)
(¢ =0 (16)
a<§t>t = 3(B(1 —2¢) — ) +3(B(1 — @)p + 7))y =0 (a7

However the Skewness of I is non-zero, we can solve the third moment of I to be,

(1%
dt

= 3(B(1 —2¢) — (I°) + 3NG*B(I?) + 3(B(1 — ¢)¢ + yo)(I) (18)
where standardised skewness is defined as,

(I%) = 3{I%){1) +2(1)°
((17) = {1)?)*?

1.1.1.4 Kurtosis

We consider the excess standardised kurtosis statistic, KT:% — 3 which standardises the kurtosis w.r.t the
variance. Excess kurtosis (subtracting 3) is usually reported in order to make a Gaussian distribution have a

kurtosis score of zero. The 4th moment of { can be found to be,

9(¢*)e
ot

4(B(L = 20) = N +6(B(1 = 9)d +76)(C*) (19)

1.1.1.5 lag-7 autocorrelation

We approach solving the analytical solution of ACF for each model about the quasi-stationary states using the
power spectrum with the Wiener-Khinchin Theorem. The same result can also achieved (in a more convoluted
integral) from the Fokker-Planck equation by multiplying through by ((yIly({) and computing the double
integral.

d¢ = (B(1 —2¢) — Y)(dt + /Bo(1 — @) + yddW,

% _ 1/2
o = AT Q)
where,
A=pB(1-2¢) -~
Q=Po(1 —¢)+7¢
N dW,
V(t) = “at
Rearranging we get,
d
¢ = % [d—g - Q”Q’y(t)] :



It suffices to perform a Fourier transformation of the Langevin equation:

(= [ ctwear

Using the inverse Fourier Transformation ((t) = % ffooo ¢ (w)e™'dw, we can write the Fourier Transform of ¢ as

~ _ “1\d 1 s Nt g, 1y / —jwt
=[5 G [ deneas) — @] e
1 00 " (/OO [iwlé_Ql/Q;?] eit(w’—wdw/>

o) U

=53 - [iw’f - Ql/z’y} d(w — w)dw'

The last line resulting from expressing the delta function as §(z—a) = 5= [*°_e?@dpand [ f(t)é(t—T)dt =

F(T).
Bringing this together we have,

The Fourier transform of white noise 7 is only defined on finite intervals,

T/At
F(w) = ALY y(t;)e™"
j=1
ti = jAt
Fw)?) =T
As such,
R I OL
Sw) = Jim 7
. Q
w? + \?

The Wiener-Khinchin theorem states that the inverse transform of S(w) is the autocovariance function
C(7) which offers a fast numerical estimate of the autocorrelation function: C(7)/C(0),

T/2
1 [~ ,
= — S(w)e™ " dw
2m J_ o



Notably, variance is given by (¢?) = % ffooo S(w)dw. For this example,

1 [ @
2 — - -
7 T o oo W2 )\de
_ @
2|l

Lag-7 autocorrelation,

C(r) ! /°° ¢ e“T dw

T or oo W2 A2
o Q —|AlT
TN

In particular, lag-1 autocorrelation for prevalence ACEF = e~ = ¢~ 18(1-26)=7|
So at steady state, lag-1 ACF is e~ 1#=71.

1.1.2 Rate of Incidence

We define the rate of new infectious cases to be given by the incoming transition probability in class 7,

BSI BN —1I)I
N N

At) =TI —1) =

We are interested in the fluctuations about this rate, as such we similarly consider the LNA:

Ne = N0+N1/277
o =Pl —¢)

A; can also be written in terms of the fluctuations about I (defined by variable ¢ above),

ne. = BSI/N
= NBo(1 — ¢) + N1/2)B(1 — 2¢)¢ — B¢

n=pB(1—2¢) — BN"V2¢?
Take the limit N — oo

n=pB1=2¢()¢ = f(C1)

We can use the previously derived results for the SDE describing d{ with Ito’s change of variable formula
for a function dependent on ¢: f((,t), to evaluate:

df(¢,t) = fedC + fudt +1/2fccbdt
df (¢, 1) = [B(1 = 20)(B(1 = 2¢) — 7)¢ = 28((Bd(1 = ¢) —19)]dt + B(1 = 26)\/Bo(1 — ) + 1ddW;

= 081 =20) =) = 2775 (86(1 = ) = 76) | dt + (1 — 20)V/Fo(T = 6) + 16V,

The Fokker-Planck equation which is equivalent to the above SDE is given by,

dll(n,t) 0
dt

1
1—2¢

((6(1 C2) )2 (81— ) - W)) (. 1)

an
+ %6)6_772 (B%(1 —2¢)*(B(1 — ¢) + v9)IL(n, t))



1.1.2.1 Variance

To give an analytical expression for the variance we can take moments using the FPE. In general, for a FPE of

the form % = —2(a(y)zIl(z,t)) + %aa—;(b(y)ﬂ(x, t)) then the variance is given by d<;:> = 2a(z?) + b, this

can be shown using integration by parts (see above “Prevalence - Variance”). The variance of 7 is given by,

1
1—2¢

d<n®>
dt

) ((B(l o)) 2t (pe— ) w)) <1 > +5(1 = 26)2(B(1 — 6) + 1)

At steady state,

(n") = =(2y - B)°

™2

1.1.2.2 lag-7 autocorrelation

It can be shown similarly as with prevalence, that we can use a Fourier Transform on the SDE equation of dn.
As such, we find that

Qv

T (20)
A= 81— 26) =y = 2= (86(1 = 6) = 70) 1)
Q = (1~ 20(59(1 - 6) +79) (22)

Then the lag-1 ACF is e”M = ¢~ 180-20)7= 55 (360-9)%9]  Fyaluated at steady state (¢* =1 — %) both
ACF lead to e~1#=1.



1.2 SIS with vaccination
1.2.1 Prevalence

This work is being presented for the first time here. The schematic for this model is:

Bol
MNO_—ZZ(?)/\I
p| S—=—"n]

Following the same steps as the SIS model with social distancing, we derive for the SIS with vaccination
model. As it is no longer true that N = S + I, since we will have an immune class following vaccination,
this results in a Multivariate Fokker-Planck equation. The mean-field dynamics are described by a system of
ODEs, where ¢(t) = == and ¢(t) = == and,

dip
dt
dcb

= (1 = p(t) =) — Bood + 79,
= Lo — d(p + ).

The critical point of the mean-field equations gives rise to the basic reproduction ratio, Ry = ﬁ‘)(lT{’y We
can describe the stochastic dynamics using the master equation with two step operators Eg,E; and the
corresponding transition probabilities for these dynamics.

% — (BB — 1)P(S, ,OT(S — 1,1 + 1|5, 1)
+ (Eg' — 1)P(S, I,)T(S +1,1|,S,1)
+ (Eg'Er — 1)P(S, I,)T(S + 1,1 — 1|5, 1)
+ (E; — D)P(S, I,0)T(S, I —1|S,1I). (23)

Equation [23|is non-linear and results in the N-expansion being necessary to determine variance in fluctuations.
The linear noise approximation anzats are taken to be
S = Ny(t) + N3¢,
I = No(t) + NV,
where (; defines the fluctuations about the susceptibles (¢ = %) and (, defines the fluctuations about the

infecteds (¢ = %) We can define a new probability distribution P(S,I,t) = I1(((1,¢2),t) and substitute this
into the master equation 23| to get:

dip 011 de oIl Ol

_]\/1/2%8_Cl _ N1/2E3_C2 + =

= (EsE;' — DT(S — 1,1 +1|S, 1)
+ (Eg'Er — )T(S + 1,1 —1|,5, DI
+(Egt — D)T(S + 1,118,
+ (Es — 1)T(S — 1,1|S, 11T
= (EsE;' = 1)BN(Y + N7Y2¢) (¢ + NG, 1)
+(E5'Er — 1)(v + p)N(o + N7V2G)(C 1)
+(Eg' — DuN(1 =2 — ¢ = N0 — NTV2G)(C 1)
+ (Es — DuNp()IL(C, 1) (24)



The multivariate Fokker-Planck Equation is fully described in terms of matrices A and B, where B is
symmetric and positive definite. If both A and B are constant matrices then the solution is Gaussian (linear
Fokker-Planck Equation),

M), 0
o~ 2 Mgy Gl ZB”agacj %)

17.]

A;; and B;; can be found by substituting the mean-field equations and collecting leading order and next to
leading order terms. For the SIS model with vaccination the matrices are given by:

A:{—ﬁcb—u Y ]

Bo B —p—]’
B [ﬁww(l—ww(t))ﬂsb —o(BY + 1+ )
—o(B 4+ pu+7)) (LY + 1 +7)

Then the Gaussian solution is determined by the first and second moments, which are used to derive
analytical solutions to important statistical indicators such as variance and coefficient of variation:

- 54 G (26)
O (CrCr) Z Api{GQ) + ZAZJ CeGj) + B (27)

We can combine equations and [27] by defining the covariance matrix ©, where each element equals,
Oij{(wiz;)) = (wix;) — (i) (x;) and

0,0 = AO + OAT + B, (28)

where variance of the infectious fluctuations, (o, is given by ©q9

1.2.1.1 lag-7 autocorrelation

The fluctuations of the system can be described by the equivalent form of the SDE:
L1 _ 4 fa] . [mo
=g | 1 29
)= [e)+ [, 2

where I';(t) and T'y(t) are white noise processes with the covariance matrix B. To analyse system [29 about the
quasi-stationary approximation, we take the Fourier transformation of A¢ = %g — v where ¢ = ((, (2) and

1 = (Fl, FQ)
Then Fourier Transform (using the FT of a derivative, if Y (¢) = £-(X(t)) then Y (w) = (iw)"X (w)),
et )]
iw | >
{Cé(ai)
(w)

0 e+
)= ter=a )

Interested in the F'T of the infectious noise term, (;, to derive the Power Spectrum and from this the quasi
stationary variance and autocorrelation. Then,

&) = T [T () = (an — )Tl
d = det(A)
T = trace(A)



Power Spectrum is defined as,

SCz (W) = <<:2<:2 >
a3, Bi1 — 2a51011Byz + af, Byy 4 Boow?
(d — w?)? + T2w?

The autocovariance function C(7) is defined below and in particular the variance is given by C(0) and
autocorrelation lag 7 is given by C'(7)/C(0),

C(r) = % /_00 S, (w)cos(wT)dw
o2 = C(0) = % /_Oo S, (w)dw

1.2.2 Rate of Incidence
Similarly to SIS with social distancing, the rate of new infectious cases is defined by the incoming transition

probability in class I,

n. =TI —1) = BSI/N

We are interested in the fluctuations about this rate, as such we similarly consider the LNA:

Ne = NO'—|—N1/277
o= pBoy

For this model, n. is written in terms of the fluctuations about I (defined by variable {, above) and the
fluctuations of S (¢1),

= NBoy + N'1/2)3(¢G + 9G2) + 561G

n = B(¢C + i) + BN GG
Take the limit N — oo

n = (¢ + ()
1.2.2.1 Variance

We are interested in the variance of the fluctuations of new cases: (n*). We can derive this in terms of elements
of the Covariance matrix ©,

(n*) = (B* (oG + ¥¢2)?)
= B2 [200(GiG) + VHE) + 67(¢D)]
= (7 [201O12 4 ¢¥* O + ¢°O11
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1.2.2.2 lag-7 autocorrelation

To derive an analytical approximation for autocorrelation of the rate of incidence (Rol, 7), we take the Fourier
Transformation of the identity, n = 5(¢¢1 + 1¥(2). From linearity of the Fourier Transform (as considering this

identity evaluated at fixed points, ¢* and 1?),
7= B¢+ 1)

For this reason, we also require the F'T of the susceptible fluctuations (7, which we can similarly derive
along with the Power Spectrum to be,

~ 1 ]
G1= m(amrz + (Cl22 — ZW)Fl)
Se (w) = angn — 2a12a22 812 + a%2322 + Byw?
‘1 (d — w?)? + t2w?

Bringing this together, we achieve,

= ﬁ [(Waz + d(az — )Ty + (a12 — v(an — iw))To]

52
Sn(“) = (d—w?)? + t2w2((a32¢2 — 2a1a2200 + @§1¢2)Bn
+ (afy0* — 2a12a119 + Va3, ) Bao
+ 2((6112@21 + G22G11)¢¢ - 022G12¢2 - a21011¢2)312

+ (¢QB11 + %02322 + 2¢¢B12)w2)

11



1.3 SIS Emergence

1.3.1 Prevalence

This model includes external force of infection, governed by parameter v, making it an extension of the SIS
model shown in section 1.1. The following work has been derived by O’Regan and Drake (3)) and has been
reproduced for ease of the reader to make comparisons to other models.

BOI

N

7N
S I

~_

Y

As such, only the transition rate T'(I 4+ I|I) changes and becomes w + v(N —I). Hence,

dP(1,1)

di +u(N = 1)P(I,t) + (B — 1)yIP(I,t)

Following this new transition through, we achieve a similar FPE:

oI o1l o 102
S = NYABo(1—6) — 6 +v(l - Mg + (Nlﬂa—c T30 NI 1)
2
+ N I/Qa% *3 aa_@)(ﬂcb(l — §)+ B(L = 26)N2C — BN AT, )
2
N S - 6 - NG,
o1l ocIl 1 o°Il
= = —(B1-20)—7- V)a_C +5(B(1=9)+76+v(1 - ¢))8—C2-

1.3.1.1 Variance

Using the FPE, we can multiple through by ¢? and integrate this over the domain to achieve the variance of
the fluctuation,

(%)
ot

= (81— 26) — 7 — V){C2)e + B — B)b + 16+ v(1 — ) (30)

1.3.1.2 lag-7 autocorrelation

We again extend the work from SIS model with social distancing using a Fourier Transformation of ¢ about
the quasi stationary state. To this extent we achieve,

Q'3

w—A

(B(1=2¢) —v—v)
Bl—=9¢)p+719+v(l—9)

¢
A
Q

Then the power spectrum, S(w) is,
RSy

19



And the variance and autocorrelation are,

s @
MY

ACF = e W

_ o 180-20)—y—v|

1.3.2 Rate of Incidence

We define the rate of new infectious cases to be given by the incoming transition probability in class 7,

ne =TI —1) = BSI + vS

We are interested in the fluctuations about this rate, as such we similarly consider the LNA:
ne=No+ N 1724
o=p¢(1-9¢)+v(l—9)

n. can also be written in terms of the fluctuations about I (defined by variable ¢ above),

n.= PBSI/N +vS
= NBo(1 — ¢) + Nv(1 — ¢) + N1/2)(B(1 — 2¢) — v)¢ — —B¢?

n=(B(1—2¢) —v){— BN
Take the limit N — oo

n=(B(1—=2¢(t) —v)¢ = f((, 1)

We can use the previously derived results for the SDE describing d( = (8(1 — 2¢) — v — v)dt +
\/ﬁ(l — @)+ 70+ v(1 — ¢)dW; with Ito’s change of variable formula for a function dependent on ¢: f(, ),
to evaluate:

df(C.t) = fedC + fidt +1/2fcbdt
df (¢, 1) = [(B(1 = 2¢) = v)(B(1 —2¢) — v — v)( — 2B¢(BS(1 — ¢) — ¢ + v(1 — ¢))] dt
+(B(1 = 20) = v)V/Bo(1 — ¢) + 79 + v(1 — 9)dW,

dn — {w(l ) ) e (861 = ¢) = e (1~ ¢>>] ndt

B(1—2¢)—v
+(B(1 = 2¢) = v)V/B(1 — ¢) + 70 + v(1 — ¢)dW,
The Fokker-Planck equation which is equivalent to the above SDE is given by,
dli(n,t) 0 23
=7 ((5(1—2@—7—”)—m

dt an
(B(1 =2¢) = v)*(Bo(1 = @) +v¢ + v(1 — )II(n, 1))

(B6(1 - 6) — 7 + (1 - ¢>>) ()

T30p
1.3.2.1 Variance
The variance of 7 is given by,

d<n®>
dt

=2 ((80-20) = =)~ 52 (o1~ 0) 10— v(1=0) ) <>

+ (B(1=2¢) —v)*(Bo(1 — @) +v¢ + v(1 — ¢))

12



1.3.2.2 lag-7 autocorrelation

It can be shown similarly that the Fourier Transform of 7.
As such, we find that

Q3
T
A= (B(1 = 20) =y = v) = Zr =y (301 — ) = 36+ v{1 = 9)

Q= (B(1—20¢) —v)*(Bo(1 — ¢) +v¢ +v)

Then the lag-1 ACF is e — e*|5(1*2¢)*7*’/)*ﬁi),y(5¢>(1*¢)*’Y¢+V(1*¢))\

1.3.3 Incidence results from O’Dea et al.

Results by O'Dea et al. finding the mean ((N(At))) and variance (var(N(At))) of incidence-type data
evaluated at steady state for the BDI process are given,

~ vyAt
_(7— AAD)AL
2
g B (1= enp(—2w)
N(A)H =1+ == (1_T) ’

var(N(At)) =(N(At))*(N(AH)ZH — 1) + (N(At))

where N(At) is the number of infectious individuals who are removed in the period At.
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