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A Appendix: Background

In this appendix, we present a brief overview of the underlying stochastic process used for
modeling in this paper. An extensive discussion can be found in [1, 2].

A.1 Partially-observable Continuous-time Markov Population Pro-
cess

Suppose {Xt, t ≥ 0} is a continuous-time Markov population process with the unknown pa-
rameter vector θt. The vector θt parameterizes the q-matrix (generator) Q(θt) of the model.
We restrict our attention to CTMPPs where the range of the random variable Xt includes non-
negative integers, and the initial value of this process, x0, is known. Moreover, we suppose
that the process is time-homogeneous, that is the conditional probability P(Xt2 |Xt1 )

(xt2 |xt1)
for any values of t2 > t1 ≥ 0 depends only on xt1 , xt2 and t2 − t1.

In order to estimate the unknown parameter vector θt, we take n observations of {Xt, t ≥
0} at times 0 < t1 ≤ · · · ≤ tn. Suppose that at each observation time ti, we do not observe
Xti directly, but rather only a random sample. This may be due to practical restrictions such
as time or budget constraints which limit the ability to survey comprehensively, or might be
because of an implicit component of the data collection process. A common model for the
sampling is binomial, where the state of the system, or each component of the system, is
observed with a probability pt at observation time t. Definition 1 provides a formal definition
of a partially-observable continuous-time Markov population process.
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Definition 1 ( [1]). Consider the CTMPP {Xt, t ≥ 0} with the parameter vector θt.
Suppose the random variables Yt are defined such that the conditional random variable
(Yt|Xt = xt) follows the Binomial(xt, pt) distribution, that is

P(Yt|Xt)(yt|xt) =

(
xt
yt

)
pytt (1− pt)xt−yt for yt = 0, 1, . . . , xt .

Then the stochastic process {Yt, t ≥ 0} is called a PO-CTMPP with the parameter vector
(θt, pt).

Remark 1. It is readily seen that a PO-CTMP model with parameter vector (θt, 1) reduces
to a CTMP model with parameter vector θt.

In order to find the MLE of the unknown parameter vector (θt, pt), we first need to
construct the likelihood function of partial observations, that is,

LYn(yn;θt,pn) = Pr(Yn = yn),

where the random vector Yn := (Y0, Yt1 , · · · , Ytn), the realization vector yn := (x0, yt1 , . . . , ytn),
the probability vector pn := (1, pt1 , . . . , ptn), and Pr(Y0 = x0) = 1.

Bean et al. [1] utilized the Conditional Bayes’ Theorem [3] and derived the following
analytical results:

Theorem 1 ( [1]). Consider a PO-CTMP process with the parameter vector (θt, pt).

(i) The conditional p.m.f. of the true value of the underlying process given the partial
observations is

P(Xtn |Yn)(xtn|yn) =
%
xtn
n

∞∑
`=ytn

%`n

for xtn = ytn , ytn + 1, . . . ,

where,

%`n := eytn !

(
`

ytn

)
p
ytn
tn (1− ptn)`−ytn

∞∑
j=ytn−1

P(Xtn |Xtn−1 )
(`|j)%jn−1,

for ` = ytn , ytn + 1, . . ., n = 1, 2, . . ., and the initial conditions %x00 = 1 and %`0 = 0 for
` 6= x0.
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(ii) The conditional p.m.f. P(Ytn+1 |Yn)(ytn+1 |yn) for ytn+1 = 0, 1, 2, . . . equals

∞∑
xtn+1=ytn+1

∞∑
xtn=ytn

(
xtn+1

ytn+1

)
p
ytn+1

tn+1
(1− ptn+1)

xtn+1−ytn+1P(Xtn |Xtn−1 )
(xtn|xtn−1)%

xtn
n

∞∑
`=ytn

%`n

,

for n = 1, 2, . . ..

A.2 Partially-observable Pure Birth Process

A popular model in the class of CTMPP is the stochastic pure birth process (PBP). Let {Xt, t ≥
0} be a time-homogeneous PBP, with the parameter λt (known as the birth/growth rate) at
time t, and known initial population size of x0. If Xt = xt, then the transition rate equals
λtxt. It can be shown [4] that if the birth rate over a given time interval [t1, t2] does not vary
and equals λt1 , then the transition probability at times 0 ≤ t1 ≤ t2 is given by

P(Xt2 |Xt1 )
(xt2|xt1) =

(
xt2 − 1

xt1 − 1

)
e−λt1 (t2−t1)xt1 (1− e−λt1 (t2−t1))xt2−xt1 for xt2 = xt1 , xt1 + 1, . . . .

Let the stochastic process {Yt, t ≥ 0} be the corresponding partially-observable pure
birth process(PO-PBP), with the parameter vector (λt, pt). Bean et al. [1] simplified Theorem
Theorem 1 for a PO-PBP, as provided in Corollary 1.

Corollary 1 ( [1]). Consider a PO-PBP {Yt, t ≥ 0} with the parameter vector (λt, pt),
and the underlying PBP {Xt, t ≥ 0} with the known initial population size of x0.

(i) The quantity %`n for ` = ytn , ytn + 1, . . ., and n = 1, 2, . . ., is given by

eyn!

(
`

yn

)
pyntn (1− ptn)`−yn

∑̀
j=xtn−1

(
`− 1

j − 1

)
e−λtn−1 (tn−tn−1)j(1− e−λtn−1 (tn−tn−1))`−j%jn−1,

where xtn := max{x0, yt1 , . . . , ytn}. The initial conditions are as provided in Theorem 1.

(ii) The conditional p.m.f. of the next partial observation, given all past n partial ob-
servations equals
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P(Ytn+1 |Yn)(ytn+1|yn) =
1
∞∑

`=xtn

%`n

 ∞∑
xtn+1=xtn+1

xtn+1∑
xtn=xtn

(
xtn+1

ytn+1

)
p
ytn+1

tn+1
(1− ptn+1)

xtn+1−ytn+1

×
(
xtn+1 − 1

xtn − 1

)
e−λtn (tn+1−tn)xtn (1− e−λtn (tn+1−tn))xtn+1−xtn%xtnn

)
,

for ytn+1 = 0, 1, 2, . . ., and n = 1, 2, . . ..

An important question that may arise here is the dependency structure of the stochastic
process {Yt, t ≥ 0} which is addressed in t ∈ (0,∞). Theorem 2.

Theorem 2 ( [1]). The PO-CTMP process is not Markovian of any order. That is, for
any fixed value of k = 1, 2, . . ., there exist 0 ≤ t1 ≤ · · · ≤ tn, y1, . . . , yn, and n > k, such
that,

Pr(Ytn = ytn|Yt1 = yt1 , · · · , Ytn−1 = ytn−1) 6= Pr(Ytn = ytn|Ytn−k
= ytn−k

, · · · , Ytn−1 = ytn−1).

Likelihood function. Although, Theorem 2 makes finding the likelihood function of a
PO-PBP more challenging and complicated, one can use the chain rule along with Corollary 1
to construct the likelihood function:

LYn(yn;λn,pn) =
n∏
k=1

P(Ytk |Yk−1)(ytk |yk−1), (1)

where λn := (λ0, λt1 , . . . , λtn). Now, by having the likelihood function at hand, one can find
the MLE of unknown parameters for a PO-PBP. However, there are some infinite sums involved
with the likelihood function which should be handled carefully in numerical computations.
One approach to deal with those infinite sums is to truncate them by exploiting Chebyshev’s
inequality. More precisely, Chebyshev’s inequality prescribes to truncating the infinite sum
over the realizations of the conditional random variable (Xtn | Yn = yn) at

E [Xtn | Yn = yn] + 20
√

Var(Xtn | Yn = yn) , (2)

to guarantee that at least 99.75% of the corresponding probability distribution is covered.
Bean et al. [2] derived those expected values involved in the truncation point (2) analytically.
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Proposition 1 ( [2]). Consider a PO-PBP {Yt, t ≥ 0} with the parameter vector (λt, pt),
and the underlying PBP {Xt, t ≥ 0}. We have,

E [Xtn | Yn = yn] =
xtn + (1− ptn)(1− e−λtn tn)

ptn + (1− ptn)e−λtn tn
,

Var(Xtn | Yn = yn) =
(xtn + 1)(1− ptn)(1− e−λtn tn)

(ptn + (1− ptn)e−λtn tn)2
,

where xtn is as defined in Corollary 1.

Prediction. In order to predict the future values of the process given the past partial
observations, we use the MLE of the conditional expected value E

[
Ytn+1 | Yn = yn

]
. Due to

the invariant property of MLEs, we only need to find the MLE of the unknown parameters
λt and pt and replace them in the equation provided in Proposition 2.

Proposition 2 ( [2]). Consider a PO-PBP {Yt, t ≥ 0} with the parameter vector (λt, pt),
and the underlying PBP {Xt, t ≥ 0}. We have,

E
[
Ytn+1 | Yn = yn

]
= ptn+1e

λtn (tn+1−tn)E [Xtn | Yn = yn] ,

where E [Xtn | Yn = yn] is as given in Proposition 1.
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