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Materials and Methods 

Subjects 

Subjects were 13 adult patients being evaluated for surgical treatment of drug-

resistant epilepsy that provided informed consent and volunteered for this study (see 

Table S1). The institutional review boards of Cedars-Sinai Medical Center and the 

California Institute of Technology approved all protocols. We excluded potential subjects 

who did not have at least one depth electrode in medial frontal cortex. 

 

Electrophysiology 

We recorded bilaterally from the amygdala, hippocampus, dACC, and preSMA 

using microwires embedded in hybrid depth electrodes(80). From each micro-wire, we 

recorded the broadband 0.1-9000Hz continuous extracellular signals with a sampling rate 

of 32 kHz (ATLAS system, Neuralynx Inc.). Subjects from which not at least one well 

identified single-neuron could be recorded were excluded.   

 

Spike sorting and single-neuron analysis 

The raw signal was filtered with a zero-phase lag filter in the 300-3000Hz band and 

spikes were detected and sorted using a semi-automated template-matching algorithm 

(81, 82). All PSTH diagrams were computed using a 500ms window with a step-size of 

7.8ms. No smoothing was applied.   

 

Electrode localization (relevant for Figure 1) 

Electrode localization was performed based on post-operative MRI scans. These 

scans were registered to pre-operative MRI scans using Freesurfer’s mri_robust_register 

(83) to allow accurate and subject-specific localization. To summarize electrode positions 

and to provide across-study comparability we in addition also aligned the pre-operative 

scan to the MNI152-aligned CIT168 template brain (84) using a concatenation of an 

affine transformation followed by a symmetric image normalization (SyN) diffeomorphic 

transform (85). This procedure provided the MNI coordinates that are reported here for 

every recording location. Note that the electrode locations shown on the Atlas Brain 

(Figure 1) are for illustration only. Apparent localization outside the target area or in 

white matter are due to usage of an Atlas brain alone. 
 

Eye tracking (relevant for Figure S1) 

Gaze position was monitored using an infrared-based eye tracker with a 500Hz-

sampling rate (EyeLink 1000, SR Research)(86). Calibration was performed using the 

built-in 9-point calibration grid and was only used if validation resulted in a measurement 

error of <1 dva (average validation error was 0.7 dva). We used the default values for the 

thresholds in the Eyelink system that determine fixation and saccade onsets.  

 

Task 

Each session consisted of 8 blocks of 40 trials shown in randomized order. At the 

beginning of each block, an instruction screen told subjects verbally the task to be 

performed for the following 40 trials (categorization or recognition memory), the 

response modality to use (button presses or eye movements), and which visual category is 

the target (for categorization task only; either human faces, monkey faces, fruits, or cars; 
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order was pseudo-random so that each image type was selected as the target at least once) 

(see Figure 1). The task to solve was either “Have you seen this image before, yes or 

no?” or “Does this image belong to the target category, yes or no”. Odd-numbered blocks 

(1,3,5,7) were categorization blocks; even numbered blocks were memory blocks 

(2,4,6,8). Button presses (yes or no) were recorded using a response box (RB-844, Cedrus 

Inc.). Eye movements to the left or right of the image served as responses in the eye 

movement modality (left=yes, right=no). The mapping between button and screen side 

and yes/no responses was fixed and did not change; “yes” was on the left and “no” was 

on the right. Subjects were reminded that left = yes, and right = no, at the beginning of 

each of the 8 blocks. In the first block, all images were novel (40 unique images). In all 

subsequent blocks, 20 new novel images were shown randomly intermixed with 20 

repeated images (the “old set”). The 20 repeated images remained the same throughout a 

session. We used entirely non-overlapping image sets for patients that completed multiple 

sessions. The response modality (button presses or eye movements) was selected 

randomly initially and switched in the middle of each block (an instruction screen in the 

middle of each block showed the response modality to be used for the remainder of the 

block). In sessions where eye tracking was not possible due to problems with calibration 

(5 sessions in 3 patients; see Table S1), all trials used the button presses as the response 

modality. No trial-by-trial feedback was given. In between image presentations, subjects 

were instructed to look at the fixation cross in the center of the screen. 

 

Control Task (relevant for Figure S6) 

In 5 of the 13 subjects in this dataset (6/33 sessions), we ran an additional control 

task in order to help determine if neural responses reflected processing of stimuli, of 

decision variables, or of motor response plans. Unlike the standard task where the 

subjects could respond at any time after the stimulus onset (thus making it difficult to 

distinguish decision from choice), in this control task the subjects were instructed to wait 

until the response cue in order to register their answer, either with a button press or with a 

saccade. The stimulus was presented for a fixed amount of time (1s duration) and after a 

0.5 – 1.5s delay period, the subjects were asked to respond to the question relevant for 

that block. 

 

Mixed-effects modeling of behavior (relevant for Figures 1, S1) 

For the group analysis of behavior, we used mixed-effects models of the form 𝑦 =
𝑋𝛽 + 𝑍𝑏 +  𝜀, where y is the response, X is the fixed-effects design matrix, 𝛽 is the 

fixed-effects coefficients, Z is the random-effects design matrix, b is the random-effects 

coefficients, and 𝜀 is the error vector. In all analysis, we used a random intercept model 

with a fixed slope. The grouping variable for the random-effects was the session ID. The 

reported p-values in the main text correspond to the fixed-intercept for the relevant 

variable. In the case of measuring the effect of number of expositions (i.e. number of 

times an image was seen) on the subject’s accuracy during the memory trials, we used a 

mixed-effects logistic regression with the independent variable as an ordinal-valued 

whole number ranging from 1-7. The response was a logical value indicating success or 

failure on each memory question. Prior to running any analysis of reaction time data, we 

excluded outliers from the distribution using the following procedure: a sample was 

considered an outlier if it was outside the 99th percentile of the empirical distribution.  
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Reaction time matching procedure  

As a control, we matched for RTs between the two tasks (categorization and 

memory) to exclude for potential differences due to difficulty. To achieve this, we first 

added noise to all reaction times (s.d. = 1ms), followed by locating pairs of trials with 

RTs that were equal to within a tolerance of 0.1s. Matching pairs were then removed and 

this procedure was repeated iteratively until no further matches could be found. 

Unmatched trials were excluded (resulting in reduced statistical power due to fewer trials 

available). We only used the resulting match if the RTs between the two groups were not 

significantly different. If not, the procedure above was repeated. 

 

Selection of visually (VS) and memory-selective (MS) cells (relevant for Figure S3) 

A cell was considered as a VS cell if it response co-varied significantly with visual 

category as assessed using a 1x4 ANOVA test at p<0.05. For each selected cell, the 

preferred image category was set to be the image category for which the mean firing rate 

of the cell was the greatest. All trials were used for this analysis. MS cells were selected 

using the following linear model: 

 

frcell ~ 1 + β1category + β2new/old + β3rt 

 

where category is a categorical (1x4) variable, new/old is a binary variable, and rt is a 

continuously valued variable. A cell was determined to be memory selective if the t-

statistic for β2 was significant with p<0.05. We excluded the first block of trials (40 

images) from the analysis, in order to keep the number of new and old stimuli the same. 

Spikes were counted for every trial in a 1s window starting at 200ms after stimulus onset.  

 

Selection of choice cells (relevant for Figure S5) 

Choice cells were selected using a regression model applied to the firing rate in a 1s 

size window starting 200ms after stimulus onset. We fit the following regression model:  

 

frcell ~ 1 + β1category + β2response + β3rt 

 

where the response is binary (yes or no), category is a categorical variable with four 

levels, and RT is the reaction time. We fit this model separately to trials in the memory-

and categorization condition, assuring independent selection of cells. RT was included as 

a nuisance regressor to control for reaction time differences between the two possible 

responses (see Fig. S1A). A cell qualified as a choice cell if the t-statistic of the β1 term 

was significant at p<0.05 for at least one of the two task conditions. The response 

preference of significant cells for either yes or no was determined based on the sign of β1 

(positive = yes, negative = no).  Notice that the selection process uses separate trials for 

memory choice cells and categorization choice cells. All trials regardless of whether the 

answer was correct or incorrect were used for selection. To estimate the significance of 

the number of selected cells, we generate a null distribution by repeating above selection 

process 1000 times after randomly re-shuffling the response label. We estimated this null 

distribution separately for choice cells in for the memory-and categorization condition 

and used each to estimate the significance of the number of selected cells of each type.  
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Chance levels for cell selection (relevant for Figure S2, S3, S5) 

To estimate the chance levels for cell selection, we repeated above procedures for 

selection of visual category, memory selective, and choice cells after randomly 

scrambling the order of the labels determining the category membership being selected 

for (yes/no response, visual category, and new/old ground truth, respectively). We 

repeated this procedure 1000 times.  

 

Single-cell decoding (relevant for Figure S5) 

Single-cell decoding was done using a Poisson naïve-bayes decoder. The features 

used were spike counts in a 1-second window, in the interval [0.2 1.2s] relative to 

stimulus onset. The decoder returns the probability of a class label, given the observed 

spike count. The class label was binary (“yes” or “no”). The model assumes that the spike 

count is generated by a univariate Poisson distribution, and a separate mean rate 

parameter (λ) is fit to each feature-class pair. For a new observation, class membership is 

determined on the likelihood value. Notice that we used a single spike-count as a feature, 

so the naïve assumption of the decoded is no longer relevant in this case. 

 

Population decoding (relevant for Figures 2, 3, 4, S2, S3, S4, S5, S7, S8) 

Single-trial population decoding was performed on a pseudo-population assembled 

across sessions (87). We present decoding results for a variety of task variables: (1) 

image category, (2) new vs. old, (3) choice during memory trials, (4) choice during 

categorization, (5) task, and (6) response type. In order to estimate the variance of the 

decoding performance, on each iteration of the decoder (minimum of 250 iterations), we 

randomly selected 75% of the cell population that was being analyzed. For example, to 

measure choice decoding in MFC (as shown in Fig. 4), we would randomly select 

575/767 cells on each iteration of the decoder. The total number of available cells 

depended on the variable that was being decoded. For example, for response type 

decoding, the number of cells in MFC was 593, since 28/33 sessions included both 

response types.  We matched the number of trials per condition contributed by each cell 

that was selected to participate in the population decoding. For most task variables 

(image category, new/old, context, effector-type) the number of samples from each cell 

was equal since the task structure remained the same across all subjects and sessions. For 

choice decoding, however, the number of instances varied, since the subjects were free to 

respond with a “yes” or a “no” for each stimulus. We therefore matched the numbers for 

the smallest group across all subjects. Note that this matching procedure can further 

reduce the number of cells we included in the decoding that do not have the minimum 

number of trials needed per condition. For the population decoding and cross-condition 

generalization of familiarity presented in Figure 3, we used all image categories for 

which the subjects showed above chance recognition performance (see Fig. S1B). 

Therefore we used images of cars, fruits, and faces, excluding images of monkeys from 

the analysis. For all other analysis, we used all available trials.  

 A series of pre-processing steps were carried out before training the decoder. 

Firing rates for each cell were first de-trended (to account for any drift in the baseline-

firing rate) and then normalized (z-scored) using the mean and standard deviation 

estimated from the training set. We then performed 10-fold cross validation using a linear 
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support vector machine (SVM) decoder to estimate performance, as implemented by the 

‘fitcecoc’ function in MATLAB. We used an SVM with a linear kernel and a scale of 1. 

Decoding results are reported either as a function of time or in a fixed time window. 

Time-resolved decoding was done on spike counts measured in 500ms moving window, 

with a 16ms step size. For fixed-window decoding, we used spike counts in a 1-second 

window. The location of the window depended on the analysis. In Fig. 2, for example, we 

used a [-1, 0] relative to stimulus onset for task type and response type decoding. In Fig. 

3, we used spike counts in [0.2, 1.2] relative to stimulus onset, for decoding image 

category and new/old.  

 

Null models for testing significance of decoding performance 

Throughout the manuscript, we compare the performance of our decoders against 

the 95th percentile of a null distribution. The way that this null distribution is generated 

depends on the variable being decoded. For variables such as image category, new vs. 

old, and response (i.e. yes vs. no), we used a simple shuffling procedure for the labels. 

For variables such as task-type, which had structure over time (memory blocks were 

always preceded by categorization block), small drifts in firing rate might lead to inflated 

decoding accuracy. Therefore, for such variables, the shuffling was done in such a way as 

to preserve their temporal relationship. Specifically, we offset (i.e. circular shift) the 

labels by a random integer value (sampled from the range ±10 – 20 trials).  In the case of 

task decoding from the baseline firing rate, this is a very conservative measure of the null 

decoding performance since many trials retain their original label, thereby inflating the 

accuracy. This also means that the mean performance of the null distribution will not be 

the theoretical chancel level. In the case of task decoding, the theoretical chance level is 

50% (binary classification). Using the circular shift method for scrambling labels, the 

mean of the null distribution was ~60%.  

To compare the performance between different decoders, for example choice 

decoding from the HA vs. MFC population, we constructed an empirical null distribution 

from the pairwise differences in the performance of these two decoders trained using the 

shuffled labels. For example, if we get N estimates of the null performance (i.e. after 

shuffling the labels) of the HA decoder and N estimates of the null performance of the 

MFC decoder, we construct a distribution of the NN = N2 pairwise differences. We can 

then compute the significance of the true difference in decoding performance between 

MFC and HA, Δtrue, relative to this distribution. Note that the variance of the null 

distribution is sensitive to the number of trials available for decoding because it changes 

the resolution (stepsize) by which decoding accuracy can change. For example, for 10 

trials, the accuracy can take values from 0 to 1 in increments of 0.1. This results in 

different values for the 95th percentile of the null distribution and is the reason why in 

some cases a given difference in decoding accuracy is significant while it is not in others. 

Unless otherwise specified, all p-values for comparing decoding performance between 

conditions or brain areas are calculated using this approach. In the one case where the 

number of trials in a condition was too low to reliably estimate the null distribution (Fig. 

S5I) and for comparing the generalization index (Fig. 3J) we  used a bootstrap test for 

equality of means (88) to compare the two conditions to assign a p-value to the true 

difference (repeated 1000 times to estimate the null distribution).  
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Multidimensional scaling (relevant for Figures 3, 4) 

Multidimensional scaling (MDS) was used only for visualization. We computed 

MDS using Euclidean distances (MATLAB function mdscale) on z-scored spike count 

data in the [0.2 1.2s] window relative to image onset. In Fig. 3E, for example, MDS was 

computed on the activity across the entire population of HA and MFC cells, averaged 

across the 8 conditions plotted (new/old ⨂ task ⨂ image category, where ⨂ denotes the 

Cartesian product). Here the image category was restricted to images of human faces and 

fruits, for visualization purposes. For the cross-condition generalization performance, we 

use all four image categories. In Fig. 4D we compute MDS on the population of MFC 

cells, averaged across 8 conditions (response ⨂ task ⨂ effector, where ⨂ denotes the 

Cartesian product). In all cases, we use MDS to map the neural activity to a 3-

dimensional space. 

 

Normalized weight metric (relevant for Figures 4, 5, S5, S7, S8, S10) 

The normalized weight metric is computed from the weight that a decoder assigns to 

a particular cell for a given classification. This weight is denoted as 𝑤𝑖
𝑡, where the index i 

denotes the cell and the index t, denotes the condition (for example, categorization or 

memory). The weight is converted into a normalized measure called an importance index, 

defined as: 

     𝜔𝑖
𝑡 =  

|𝑤𝑖
𝑡|

∑ |𝑤𝑖
𝑡|𝑛

1
 

 

State-space analysis (relevant for Figure 4I) 

We used Gaussian Process Factor Analysis (GPFA) (45) to analyze the dynamics of 

the average population activity for the 8 conditions arising from the combination of 

choice (yes, no), response modality (button press, saccade), and task (memory, 

categorization). The recovered latent space was 8 dimensional and all similarity 

measurements between trajectories were performed in this space (not in the 3D 

projections shown in the figure). The activity was binned using 20ms windows. All 

analysis was computed and visualized using the DataHigh (89) MATLAB toolbox. 

Similarity measurements between two conditions were computed and averaged over the 

first 500ms after stimulus onset as follows: 

 

    𝑠𝑖𝑚(𝒓𝟏(𝑡), 𝒓𝟐(𝑡)) =  
𝒓𝟏

′ (𝑡)

‖𝒓𝟏
′ (𝑡)‖

 ∙  
𝒓𝟐

′ (𝑡)

‖𝒓𝟐
′ (𝑡)‖

  

 

where 𝒓𝟏(𝑡) and 𝒓𝟐(𝑡) are the 8D state-space trajectories for condition 1 and 2 

respectively. 

 

ANOVA model (relevant for Figure S4, S11) 

 We used a single-cell ANOVA model to tease apart the contributions of choice, 

visual category, memory, and response time on the firing rate of a cell. The model was of 

the following form: 

   frcell ~  β1category + β2familiarity + β3choice + β4rt 

frcell is the mean firing rate in a fixed window (0.2-1.2 s following stimulus onset) or a 

moving window of 500msto analyze the time course. The ANOVA model is fit 
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independently at each point of time. We then compute the F-statistic for each of the 

regressors and report the average F-statistic across the entire population of recorded cells, 

fit twice to each cell for the memory and categorization task (Fig. S4D-E, S11). To 

compare the effects of task on the representation of individual variables, we compare the 

distribution of F-statistics estimated separately on each task, for each cell in the population. 

We use this approach as a measure of modulation in the strength of representation for a 

variable induced by task switching. Note that this comparison does not make predictions 

about generalizability from one task to the next since the model is fit independently.  

 

Generalization index (relevant for Figure 3, 4) 

To compare the within-condition decoding to the across condition generalization, 

we used a generalization index defined as following: 

 

    𝑔 =  
𝑐𝑟𝑜𝑠𝑠−𝑐ℎ𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛−𝑐ℎ𝑎𝑛𝑐𝑒
 

 

Where “within” is the decoding performance within condition, “cross” is the decoding 

across condition, and “chance” is the chance decoding performance for the variable of 

interest (choice = 0.5, new/old  = 0.5, familiarity = 0.5, image category  = 0.25).  

 

Spike-field coherence analysis (relevant for Figure 5, S9) 

LFP preprocessing: The local-field potential recordings were highpass filtered at 

1Hz. The raw recordings, sampled at 32kHz, were then downsampled to 500Hz. The 

downsampling procedure was done with the ‘resample’ command in MATLAB, which 

applies the appropriate antialiasing filter prior to reducing the sampling rate. For each 

session, we screened all MFC and HA electrodes in order to make sure that there were no 

artifacts that could contaminate the spike-field metrics. We excluded all electrodes with 

interictal discharges (IEDs) visible in the raw trace (by visual inspection). Specifically, in 

screening for IEDs, we looked for large stereotyped, recurring transients in the raw 

recording that did not correspond to cellular spiking activity. The presence of such 

transients would disqualify an electrode from further consideration.  

Spike-field coherence (SFC): All spike-field coherence analysis was performed on 

snippets of the LFP extracted around the spike. We extract snippets for every cell-

electrode pair. For example, to measure inter-area SFC between a single cell in preSMA 

and HA LFPs, we extracted n snippets each (n = number of spikes) from each of the 8 

ipsilateral electrodes in hippocampus and 8 electrodes in the ipsilateral amygdala. For 

sessions where we used a local reference (i.e. bipolar referencing), we exclude the 

reference wire. For intra-area coherence (ex. HA spikes to HA field) we also exclude the 

wire on which the cell was recorded to avoid contamination by spike waveform. For each 

snippet and for each cell-electrode pair, we compute the spike-triggered spectrum using 

the FieldTrip ‘mtmconvol’ method, which computes the Fourier spectrum of the LFP 

around the spikes using convolution of the complete LFP traces. The spectrum was 

computed with a single ‘hanning’ taper, at 56 logarithmically spaced frequencies ranging 

from 2 Hz on the low end, to 125 Hz on the high end. The length of the snippet window 

was dynamic as a function of the frequency examined; the snipped length was set to 

equal to two cycles of the underlying frequency at which the spectrum was estimated (i.e. 

2 Hz → 2 s snippet). We estimated the phase for each snippet and for each of the 56 
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frequencies from the complex-valued Fourier coefficients (i.e. phasor). We use the pair-

wise phase consistency (PPC) metric as the measure of coherence. For the spike-triggered 

power, we compute the magnitude of the spectral coefficients returned by the Fourier 

transform (also computed for each cell-electrode pair) for each snippet and averaged the 

spectra. Unless otherwise stated, all SFC results in the paper are based on spikes recorded 

during the baseline period between trials (1s window preceding stimulus onset).  

Group comparisons using the SFC metric: When comparing two or more groups 

using PPC (such as memory vs. categorization), we balanced the number of spikes 

between the two groups. To reduce bias involved in subsampling the larger group, we 

resampled the spikes from the two groups 200 times, and computed the PPC metric on 

each iteration. The final coherence measure for a given cell-electrode pair was an average 

across all 200 iterations.  

To ensure that the underlying local field potential does no vary in a consistent way 

across conditions, we compare the distribution of average voltage values for each of the 

conditions in our spike-field coherence analysis. In the case of the task contrast during 

baseline (i.e. memory vs. categorization), we show the distribution of AUC values 

computed separately for each electrode in the amygdala and hippocampus (Fig. S9D 

shows that there was no significant difference). The AUC for each electrode is computed 

using the average baseline magnitude across memory and categorization trials. In the case 

of the spike-field coherence results during the stimulus onset (Fig. 5H), to reduce any 

potential confounds related to event-related potentials, we used only sessions with local 

referencing (bipolar). The local reference (set to one of the 8 microwires in the electrode 

cluster implanted in each brain area) significantly diminishes the magnitude of any event-

related potentials after stimulus onset. To confirm this, we repeated the AUC analysis 

mentioned above, for the contrast in Fig. 5H (i.e. true positive (TP) vs. false negative 

(FN)). The results (shown in Fig. S9E) show that there is no significant difference 

between the two conditions of interest.  

 

 

Supplementary Text 

Pupillometry (relevant for Figure S1) 

To test whether levels of engagement and arousal varied between tasks, we used 

pupillometry (pupil size; see Fig. S1J for an example session). We compared two 

metrics, the baseline pupil size (0-100ms after stimulus onset, Fig. S1K) and the slope of 

the pupil as it responds to the stimulus on the screen (measured from 350-600ms, Fig. 

S1L). Neither metric showed a significant modulation as a function of task (p = 0.12 and 

p = 0.11 for size and slope respectively, sign test), thereby indicating that levels of 

arousal were similar for the two tasks. This analysis is based on 25 of the 28 sessions 

where we measured eye movements. The remaining 3 sessions were not used because the 

measurement of the pupil was determined to be too noisy.  

 

Relationship between decoding weight and single-cell response (relevant for Figures S5J, 

S11A) 
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What does the weight index measure? In Fig. S5J, we correlate the weight index for 

each cell, as assigned by a population-level choice decoder, with the d’ measure 

computed for each cell individually. The sensitivity index is computed as follows: 

 

     
where µ1  is the average firing rate for condition 1 (in this case this corresponds to 

one of the two possible choices) and  µ2  is the average firing rate for condition 2. In the 

denominator, σ 1 and σ 2 correspond to the variance of the firing rates for condition 1 and 

2 respectively.  

 

Upper limit of cross-task generalization performance) 

The maximal possible across-task decoding performance is limited by the within-

task decoding performance. For example, if training and testing within the same task is 

possible with 70% accuracy, the maximal possible cross-condition performance is 70%. 

Thus, to compare cross-condition performance between situations where within-task 

performance is similar the absolute values can be compared directly (i.e. Fig. 4F, G). In 

situations where within-task performance differs (i.e. Fig. 3G), cross-condition 

performance needs to be considered relative to the within-task condition performance. To 

operationalize this intuition, we quantified the generalization index g (see methods), 

which is a ratio (normalized to chance level) between the between relative to within-

chance performance. A g value of 1 means the maximum possible generalization was 

achieved, i.e. the representation is maximally abstract given the underlying representation 

strength within each task.  
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Fig. S1. 

Additional behavioral and pupillometry results. (A) RT difference between “yes” and 

“no” responses for both tasks. RTs were significantly different for the memory task 

(p=3.4e-4; as expected from a declarative memory task but not for the categorization task 

(p=0.21) task (t-test, light shading indicates ± std, whereas darker shading indicates ± 

sem). (B) Performance on memory trials varied as a function of image category (1x4 

ANOVA, p = 3.45e-19). (C) Making an image category the target on a categorization 

block did not significantly change recognition accuracy for that category on follow-up 

memory blocks (p = 0.97, t-test). (D) Same as (c) but shown separately for each category. 

Recognition performance increased significantly after being a target only for the monkey 

category (p = 0.02, t-test; uncorrected).  (E) Performance on the categorization trials did 

not significantly dependent on image category (1x4 ANOVA, p = 0.74). (F) ROC 

analysis of the performance on memory trials for the two best image categories (human 

faces and fruits). (G) ROC analysis of the performance on memory trials for the two 

difficult image categories (cars and monkeys). While the true positive rate (TPR) is not 

different between these two image groups, (p = 0.24, t-test), the subjects produced 

significantly more false positives for the more difficult group (p=1.2e-13, t-test). (H) d’ 

as a function of block number (4 memory blocks). d' increased significantly across blocks 

(1x4 ANOVA, p = 2.6e-11). (I) The response bias for each session as a function of block 

number. The response bias did not vary significantly across blocks (1x4 ANOVA, p = 

0.6). (J) Example pupil response during a session. We focus on two measures: (1) the 
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baseline size, measured shortly after image onset, and (2) the slope of the pupil response. 

The differences that emerge after 600ms are due to response time differences between the 

tasks (the image goes off the screen earlier for categorization trials).  (K) Scatter of the 

pupil size, measured shortly after image onset, for all sessions with stable pupillometry 

(25/28 sessions with eye tracking). There was no significant difference between tasks (p 

= 0.12, sign test). (L) Scatter of the slope size across sessions with good pupillometry 

(25/28 sessions with eye tracking). There was no significant difference between the tasks 

(p = 0.11, sign test). 
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Fig. S2 

Context information in the medial frontal cortex. (A) Average reaction time as a 

function of trial number, averaged across all subjects and block switches. Trial 41 marks 

the transition from a categorization task to a memory task. Halfway through each block, 

there is a change in response modality. Reaction time is smoothed with a 5-trial kernel. 

(B) The proportion of cells sensitive to either task type or response modality, as a 

function of hemisphere and area in the medial frontal cortex (L=left, R=right). The 

proportion of cells sensitive to context during the baseline period was significantly 

greater in the dACC than pre-SMA (χ2 test of proportions, p = 0.02). (C) Selected cells 

are sorted into two groups, memory task-preferring or categorization task –preferring 

based on their firing rate during the baseline period. Shown here is a histogram of the 

modulation index, 𝑚𝑖 =  
𝐹𝑟𝑚𝑒𝑚−𝐹𝑟𝑐𝑎𝑡

𝐹𝑟𝑚𝑒𝑚+𝐹𝑟𝑐𝑎𝑡
.  (D) Context can be decoded from both the dACC 

and pre-SMA. Also shown is decoding accuracy for the control sessions (labeled as 

"control"), in which the response time does not differ between task types. The numbers 

indicate the number of cells that were included for each of the three decoders.  Bars are 

standard deviation of decoding accuracy across all iterations of the fitting procedure (n = 

250). The dotted lines mark the 95th percentile of the null distribution of decoding 

accuracy, computed by shuffling the labels, and performing the fit 250 times.  (E) An 

example cell recorded in the pre-SMA that shows baseline modulation of firing rate with 

effector type (left side) but not task type (right side). (F) Decoding of task and effector 

from the MFC population after excluding choice cells (n = 207).  (G) Task decoding is 

not due to post-stimulus processes from the previous trial. Shown is task decoding 

accuracy after removing all cells that show a significant difference in firing rate during 

the response period (middle bar). This ensures that any firing rate differences between 

tasks must arise after the response on the previous trial and during the baseline period of 

the next trial. Shown on the left for reference is the decoding accuracy using all MFC 

cells. Shown on the right is the decoding accuracy after removing the selected task cells 

(see Methods for selection model), reducing decoding to chance level. (H) Decoding of 

task type (left panel) and response type (right panel) in the MFC and HA with an 

increasing number of features. We sweep all population sizes from 100 to 663 (size of the 

HA population) in increments of 10. The MFC population consistently outperforms the 

HA population in decoding task. The dots at the top of the plot indicate if the decoding 
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performance is better than the 95th percentile of the null distribution, where the null is 

estimated using a circular shifting (see Methods) and not just a random shuffle of the 

decoder labels. (I) Same as (H) but for decoding of response type (saccade or button 

press).  
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Fig. S3 

Comparison of visually-and memory selective HA cells between tasks. (A) Example 

visually selective cell recorded in the amygdala. (B) Average normalized response to 

preferred vs. non-preferred images for all visually selective cells in the amygdala and 

hippocampus (n=264/663, see methods for selection criteria). (C) Breakdown of the 

preferred category of visually selective cells in the amygdala and hippocampus. As 

previously reported, most cells respond to faces of conspecifics. (D) Trial-by-trial 

decoding of image category over the 8 blocks within a session. The gray shading 

indicates the standard deviation across 200 iterations of the population decoder (see 

methods), using the [0.2 1.2s] time bin after stimulus onset. The decoder was trained 

using all trials. Shown here is the cross-validated accuracy of the decoder on each block 

separately, with categorization blocks in blue and memory blocks in red. The dotted 

black line shows the 95th percentile of the null distribution, computed by shuffling the 

labels. The chance level is 25%. (E) Same as in (d) but collapsed across task types.  The 

dotted lines once again indicated the standard deviation across 200 iterations of the 

decoder, using different subsets of cells and trials (see methods of details). (F) Example 

memory selective cell in the HA. (G) Average AUC across all memory selective cells 

(n=73/663, see methods for model used to identify this cell type) for new vs. old stimuli, 

shown across all memory blocks. The number of new and old stimuli in each block is 

equal (20 of each). In light green, we show average AUC across all cells, for all the 4 

image categories. New and old stimuli became more separable over the blocks (GLM, 

AUC ~ 1 + Block_Number, t-stat = 2.6, p = 0.01).  If the category with weakest memory 

is removed (monkey images), the effect becomes more evident (t-stat = 3.32, p = 0.001), 

which is expected from a memory strength signal. (H) Trial-by-trial population decoding 
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of new vs. old (using selected cells, n = 73) across all blocks in the session. The first 

block is excluded because it does not contain “old” stimuli. The dotted line shows the 

95th percentile of the null distribution of decoding performance (chance level is 50%). (I) 

Same as (f) but collapsed across task type.  
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Fig. S4 

Additional analysis of new/old and image decoding. (A-B) Single-trial population (all 

recorded cells) decoding accuracy in (A) hippocampus, (B) amygdala of new/old (left 

column) and image category (right column). Decoding performance is shown separately 

for all trials, categorization trials, and memory trials. (C) Rotated version of the MDS 

plots shown in Fig. 3E, with example decision boundaries for a new/old (left) and image 

category (right) decoder. The locations of the condition averages are computed from the 

population activity in the HA, whereas the decision boundary is schematized to show an 

example decoder that would generalize well across tasks.  (D) Changes in the amount of 

information related to the familiarity and visual category of an image present in the 

population quantified using an ANOVA with regressors for familiarity, choice, image 

category and response time fit to each cell individually (identical to Fig. S11C), but here 

in the single time window ([0.2 1.2] seconds relative to stimulus onset).  Average F-

statistic for familiarity (left panel) and image category (right panel) for all cells in the 

HA. (E) Same, but for MFC. (D, E) F-values were significantly different for familiarity 

in the MFC (p = 0.001, parried t-test) but not the HA (p = 0.83, parried t-test). F-values 

were significantly different in both the HA and MFC (p = 3e-12 and p = 8e-13, in HA 

and MFC, respectively).  
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Fig. S5 

Additional single-cell analysis of choice cells in MFC. (A) Average PSTHs for memory 

choice cells (green, n = 101/767) and categorization choice cells (yellow, n = 82/767), 

shown separately for the two tasks. Memory and categorization choice cells were selected 

independently using trials from the corresponding task (see methods for selection model).  

Omitted from this visualization are choice cells that were selected in both task conditions 

(n=26/767). (B) Population summary. AUC values were computed separately for 

response made during the memory and categorization condition. A negative AUC value 

indicates a preference for “yes” responses and a positive one indicates a preference for 

“no” responses. Yellow indicates categorization choice cells, green indicates memory 

choice cells, and purple indicates cells that signal choice in either task. (C) Single cell 

decoding across all memory choice cells (101/767). Decoding performance is shown for 

choice during the memory trials (green), new vs. old during the memory trials (cyan), 

new vs. old during the categorization trials (purple), and choice during the categorization 

trials (yellow).   (D) Single cell decoding across all categorization choice cells (82/767). 

Decoding performance is shown for choice during the categorization trials (yellow), 

image category during the memory trials (orange), and choice during the memory trials 

(gray). (E) Comparison of choice decoding (collapsed across both tasks) performance 

between response modalities. There was no significant difference. (F-G) Population 

decoding performance as a function of time during the memory (g) and categorization (h) 

task. Performance was reduced significantly after choice cells were removed from the 

population. (H) Proportion of selected choice cells in medial frontal cortex, separated by 



 

 

19 

 

area and hemisphere. The proportion of choice cells found is greater in the pre-SMA than 

dACC (χ2 comparison of proportions, p = 0.004). (I) Trial-by-trial choice decoding at the 

population level was possible in both correct and incorrect trials. The decoder was trained 

on equal examples from the following memory trials: (1) yes-correct, (2) yes-incorrect, 

(3) no-correct, (4) no-incorrect. The decoder was then tested on two subsets of trials: 

incorrect (FN and FP) and correct (TN and TP) trials. Cells were included in the analysis 

only if there were at least 10 instances of each of the four trial types (n=347 cells). 

Decoding accuracy did not differ significantly between correct and correct trials, 

indicating that neurons signaled choices regardless of whether they were true or false (as 

expected from a choice signal; p = 0.3; Δtrue = 0.09, compared to the empirical null). Note 

that error bars in this figure are larger compared to main paper due to low number of 

trials used due to equating the number of trials in each of the four categories (i.e. FN, TN, 

FP, TP). (J) The weight index assigned to each cell by a population decoder (trained on 

choices) was strongly correlated to the d’ (see Methods for calculation) estimated for 

each cell individually.  
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Fig. S6 

Choice signals during a non-reaction time control task.   (A) Task layout for the non-

reaction time control task. Subjects are instructed to wait until the response screen comes 

up before registering their response with a button-press or a saccade. The stimulus length 

is fixed at 1 second, for both the categorization and memory trials. (B) The response 

times between the categorization and memory trials are no longer different (mean ± std, 

0.67 ± 0.57s and 0.72 ± 0.77s for categorization and memory trials respectively, p = 0.1, 

2-sample t-test). (C-D) Raster plots and PSTH of two example choice cells recorded in 

the dACC (C) and pre-SMA (D) during the standard task (left panel) and control task 

(right panel). Notice that there is no button press or saccade prior to 1.5 second during the 

control task.   (E-F) The preferred response for the cell shown in C (“no” during 

categorization) and the cell shown in D (“no” during memory condition) split up by 

effector type, with saccade responses in green and button press in purple. (G) Average 

PSTH for preferred and non-preferred responses across all the choice cells identified in 

the control task. Top row shows the preferred vs. non-preferred response of memory 

choice cells during the memory task (left panel) and categorization task (right panel). The 

same is shown for categorization choice cells in the bottom row.  
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Fig. S7 

Cross-task generalization of choice signals in MFC and HA. (A) Population-level 

decoding of choice during the categorization trials (left) and memory trials (right) using 

firing rates that are aligned to the response time instead of stimulus onset. Compare with 

Fig. 4E. (B) Cross-task generalization of choice decoding in the dACC (left) and pre-

SMA (right) shown as a function of time. This is the same analysis as that in Fig. 4E, but 

shown separately for the two areas. (C) The cells that are in the top 25th percentile of the 

weight index distribution for either task (see Fig. 4I) can be used to train a new decoder 

that predicts choice in the other task, albeit with a significantly diminished performance. 

Note that this is not cross-condition generalizations since we are training a new decoder 

on a subset of the MFC cells. (D) Same as Fig. 4C, but as a function of time. The three 

traces show (1) strong decoding of pure choice during the memory task (blue), (2) this 

decoder cannot predict new/old (magenta), and (3) this decoder does not generalize to the 

choices during the categorization task (cyan, as expected). (E) Cross-task generalization 

of choice decoding in the hippocampus (left) and amygdala (right) shown as a function of 

time. (F) (Left) Summary of within and cross-task choice decoding performance in the 

HA in a fixed window after stimulus onset ([0.2 1.2] second interval). (Right) Within and 

cross-task decoding of response modality. (G) Decoding of choice in categorization trials 

(left panel) and choice in memory trials (right panel) in the MFC and HA with an 

increasing number of features. We sweep all population sizes from 100 to 663 (size of the 

HA population) in increments of 10. The MFC population consistently outperforms the 

HA population in decoding both variables. The dots at the top of the plot indicate if the 

decoding performance is better than the 95th percentile of the null distribution, where the 

null is estimated using a random shuffling of the labels (see Methods).  
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Fig. S8 

Comparison of task and choice cells using assigned decoder weight. (A) Scatter plot 

of the weight assigned by a decoder to each cell in decoding categorization choice (y-

axis), and task (x-axis). The features for the choice decoder are firing rates across the 

entire MFC population in the [0.2 1.2s] window after stimulus onset. The features for the 

task decoder are firing rates computed during the pre-stimulus baseline period, [-1 0s] 

with respect to image onset. As in Figure S6, the decoder weight is converted into a 

normalized measured (importance index).  Superimposed are the populations of 

categorization choice cells and task cells, as identified by the choice and task selection 

models described in the Methods section. (B) Same as in (a), but shown for memory 

choice decoding and task decoding. Highlighted in green are the memory choice cells, 

and in pink are the task cells (see Methods for selection model). The cells that qualify as 
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both are shown in blue. (C) Similar to Figure S6D, we look at the cells that have a high 

weight index for either categorization-choice or task decoding. Specifically, we take the 

union of the sets of cells whose weight index is in the top 25th percentile for either task or 

categorization-choice decoding. For these cells, we plot the angle created by the vector 

[𝜔𝑖
𝑡𝑎𝑠𝑘 , 𝜔𝑖

𝑐𝑎𝑡] with respect to the x-axis (i.e. the task axis). We test for bimodality with a 

Hartigan dip test (dip  = 0.053, p<1e-5), the result of which suggests that these are largely 

different populations of cells. (D) Same as (c) but in this case we measure the overlap 

between memory choice cells and task cells. The histogram shows two modes, suggesting 

non-overlapping populations of cells (dip = 0.047, p = 3.3e-5). (E) Decoding of image 

category from the HA population is a good example of a case where the same cells are 

recruited for decoding in the memory and categorization task. Shown in light gray is the 

weight index for all HA cells, computed separately for the categorization and memory 

task. The dark dots indicate the union of the sets of cells that have a weight index top 25th 

percentile for either task. (F) Hartigan dip test for the weight index pair assigned to each 

cell in black from (e). The distribution is centered at π/4, which suggests that the same 

cells are recruited to decode image category during the memory and categorization tasks 

(dip = 0.016, p = 0.99).  
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Fig. S9 

Controls for inter-area spike filed coherence between MFC cells and HA local field 

potential. (A) Proportion of MFC cells that are coherent with hippocampal oscillations 

using spikes from the inter-trial period of all trials. Coherence was determined using the 

Rayleigh test for non-uniformity of a circular distribution. Since the comparison was 

done across many electrodes (Nchannels can be anywhere from 0 to 16, depending on the 

number of LFP recordings accepted after screening for artifacts, see Methods), the 

significance threshold was corrected appropriately for multiple comparisons using FDR 

(false discovery rate). (B) Same as Fig. 5C, with task cells removed (n=165/767). A cell 

was labeled as a task cell (see Fig. S2 and Methods for selection) if it should significant 

modulation of firing rate as a function of task type. (C) Same as Fig. 5C, but only using 

HA electrodes that had spiking activity. (D) AUC of comparing the average magnitude of 

the LFP during baseline ([-1 0] seconds relative to stimulus onset) for each electrode in 

the amygdala (left) and hippocampus (right) between memory and categorization trials. 

There was no significant difference (p-values in figure). (E)  AUC of comparing the 

average magnitude of the LFP following stimulus onset (0.2-1.2s following stimulus 

onset) for all HA electrodes used in the analysis shown in Figure 5H (FN vs. TP).  This 

result shows that the ERPs do not differ between these two trial types. Note that we 

limited this analysis (and that in Fig. 5H) to locally referenced (bipolar) recording 

sessions, which is why the ERPs are not different. We found not significant difference 

between these two conditions (p-value in figure).  
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Fig. S10 

Controls for memory signal in the HA. (A) The 20 images (5 images/category) that 

make up the set of “old” stimuli, are shown 8 times throughout the experiment. The 

average time between expositions of an “old” stimulus is greater than 130 seconds 

(approximately 40 trials). (B) Repetition suppression of VS cells. With each repetition, 

the response of the visually selective (VS) cells for their preferred stimulus is diminished. 

Shown is the average response for each cell’s preferred category (solid lines) and non-

preferred categories (dashed lines), separately for the categorization (left) and memory 

blocks (right). In both trial types, VS cells show strong modulation by repetition number 

(p = 1.7e-6 and p = 9e-5 in categorization and memory blocks respectively, p-value is 

estimated from a linear model with block number and reaction time as the predictor and 
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normalized firing rate for preferred category as the response variable). (C) Despite the 

prevalence of repetition suppression in VS cells, there was no significant relationship 

between the degree of suppression exhibited by a ell (as measured by the β of the linear 

model regressing the block number on the firing rate of the cell) and the weight index (ω) 

assigned to the same cell by a population decoder trained on new/old labels. Result is 

shown separately for the categorization trials (left panel; pms = 0.11, pms∩vs = 0.62) and 

memory trials (right panel; pms = 0.6, pms∩vs = 0.64). (D) Decoding accuracy for stimulus 

familiarity (new/old) was not significantly different from chance for VS cells despite the 

presence of repetition suppression. (E) Decoding accuracy for all memory selective (MS) 

cells for new/old was significantly different from chance (compare to panel D). (F) The 

response of MS cells (both familiarity selective (FS) and novelty selective (NS)) differed 

between false negatives (FN, stimulus was “familiar” but the subject perceived it as 

“novel”) and true negatives (TN, stimulus was “novel” and the subject perceived it as 

“novel”). The extent of this difference increased as the stimuli become more familiar as 

expected from a memory signal. Note that the response in both cases was the same, but 

the underlying memory signal was different. The statistics shown are 2-sample ks tests. 

(G) Comparison of new/old decoding performance between correct and incorrect trials 

(left) and trials with different memory strength (right). We fitted the new/old decoders to 

categorization trials (during which no new/old decisions are made, leaving only the 

memory strength signal) and tested them on subsets of memory trials. (Left) Decoding 

performance on correct and incorrect trials. As expected for a memory signal, decoding 

was weaker for incorrect vs. correct trials (Δtrue = 12%, p <0.001, bootstrap equality of 

means test). Note that this plot shows that it is significantly easier to differentiate 

between TP vs TP trials than it is to differentiate between FN vs. FP trials (that is, [TP vs 

TP] > [FN vs. FP]). Note also that while weaker, decoding accuracy on incorrect trials 

was significantly different from chance (p<0.005, t-test, t(perf-0.5) = 3.19; n = 21 trials 

which is the smallest of incorrect trials across all sessions and the decoding procedure 

requires that we match correct/incorrect across all sessions; note that this is different than 

the typical comparison against the 95th percentile of the null decoding distribution).  
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Fig. S11 

Comparison of choice representation strength between HA and MFC. (A) (Top) 

Comparison of choice sensitivity (d’, yes vs. no) between MFC and HA across all cells in 

the population. Shown is the difference in mean d' values between MFC and HA, 

separately for choices in the memory (red) and categorization (blue) task. The 

comparison is shown for increasingly more selective subsets of cells within each area 

(from left to right). The first point on the left shows the difference between the mean d’ 

for all MFC and HA cells that are greater than the 10th percentile of all d’ values in the 

respective populations. This data shows that regardless of selection threshold and task, 

the strength of choice representations is significantly stronger in MFC compared to HA 

(bottom shows statistics; Two-sample Kolmogorov-Smirnov test of all MFC vs. all  HA 

d’ values of all cells selected at that particular threshold, separately for both tasks). 

(B) (Top) Proportion of choice cells selected in HA and MFC as a function of selection 

threshold. Cells were selected using the GLM-based selection model (see Methods). The 

selection threshold used in the main paper is the rightmost point (threshold for the choice 
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regressors βchoice p <= 0.05). The proportion of cells selected is significantly larger in 

MFC compared to HA for all thresholds tested (bottom; χ2 – test of proportions). (C) 

Average single-neuron effect size across the entire population of recorded cells without 

selection. This analysis based on an ANOVA model with factors choice, familiarity, 

image category and response time. (Top) Average F - statistic for the choice dependent 

variable in the ANOVA model across all cells recorded from the MFC (light green) and 

HA (dark green) as a function of time (binsize = 500ms, stepsize =16ms; datapoints are 

plotted at the center of each bin). Stimulus onset is at =0. (Bottom) Significance of 

difference in average F values between HA and MFC.  
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Table S1. 

List of recording sessions.  

 
Patient 

ID 

Session 

ID 

# HA 

cells 

# MFC 

cells 

Response modality used (1=button 

press only, 2 eye+hand) 

P41 1 1 5 2 

P41 2 3 9 2 

P41 3 2 1 2 

P42 4 13 32 1 

P42 5 20 42 1 

P43 6 19 0 2 

P43 7 25 1 1 

P43 8 23 0 2 

P44 9 11 59 1 

P44 10 8 40 1 

P47 11 28 8 2 

P47 12 37 8 2 

P47 13 33 5 2 

P48 14 19 39 2 

P49 15 2 3 2 

P49 16 5 2 2 

P51 17 20 38 2 

P51 18 20 18 2 

P51 19 18 21 2 

P51 20 18 21 2 

P51 21 11 14 2 

P53 22 8 12 2 

P53 23 16 21 2 

P56 24 32 14 2 

P56 25 15 11 2 

P56 26 34 6 2 

P57 27 31 23 2 

P57 28 28 34 2 

P57 29 28 34 2 

P58 30 43 75 2 

P58 31 43 75 2 

P58 32 34 53 2 

P61 33 15 43 2 

Total  663 767 28 with, 5 without eye tracking 
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Movie S1 

Dynamics of Neural activity in state space. The video shows trajectories of the average 

population activity for combinations of choice (yes vs. no) and task type (memory vs. 

categorization). The 3-dimensional space shown is a projection of an 8-dimensional latent 

space recovered using Gaussian process factor analysis. The gray dots denote the location 

in state-space of the population activity at the time of the stimulus onset. The 

trajectories evolve over a period of 750ms from the stimulus onset.  
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