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eAppendix. Supplementary Methods 

Assessment of random plasma glucose and HBsAg 

At the baseline survey, a 10-ml nonfasting (with the time since the participant last ate recorded) 

blood sample was collected from participants into an ethylene diamine tetraacetic acid 

vacutainer (EDTA) vacutainer (BD Hemogard, NJ, US). A small sample of this was used for on-

site rapid dipstick testing of random plasma glucose and hepatitis B antigen (HBsAg). HBsAg 

was measured using the ACON dipstick (ACON Biotech, CA, US). RPG level was measured 

using the SureStep Plus System (Johnson & Johnson, CA, US), regularly calibrated with 

manufacturer quality control solution.1,2 

Quality control 

In the baseline survey, standardised procedures were used at all 10 study sites and thorough 

quality control measures were undertaken. A regional coordinating centre and survey team 

were established in each of the 10 study sites involving 15 full-time staff with medical 

qualifications and fieldwork experience. To standardise procedures for the study management, 

field survey, and collection and validation of long-term follow-up data, a range of Standard 

Operating Procedures (SOPs) were developed and were used across 10 sites.  

Within several weeks of the initial baseline survey in a particular community, a quality control 

(QC) survey was done. The QC survey involved approximately 3% of the participants randomly 

selected from that community and repeat questionnaire and measures on selected items were 

collected. 15,728 individuals had available QC survey data, with the mean length of time 

between baseline and QC survey being 17 days. For most of the variables examined, there was 

good agreement between the baseline and QC data, particularly for physical measurements. 
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The QC survey data showed good agreement between baseline and repeat measures of 

adiposity measures, with extremely high correlations for height, weight and BMI (Spearman 

correlation coefficient: 0.99, 0.96 and 0.93, respectively).1  

Assessment of liver biomarkers  

17 biomarkers were measured by standard clinical biochemistry assays in 18,181 participants 

from a nested case-control study of stroke and CHD (5486 cases of IS, 5067 of ICH, 1008 of 

MI, 277 of fatal ischaemic heart disease, 6343 controls; all free of prior vascular disease and 

cancer, and not on statin therapy), at the Wolfson Laboratory, CTSU, University of Oxford, UK. 

The biochemistry measurements included the liver enzymes alanine aminotransferase (ALT), 

aspartate transaminase (AST), and gamma-glutamyl transferase (GGT), and triglycerides (TGs) 

used to assess liver steatosis. Liver function was measured by ALT, AST, and GGT. Steatosis 

was measured by the fatty liver index (FLI) using the following formula:3   

                           𝑒𝑒0.953×𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑇𝑇𝑇𝑇+0.139×𝐵𝐵𝐵𝐵𝐵𝐵+0.718×𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺+0.052×𝑊𝑊𝑊𝑊−15.745/ 

                            (1+𝑒𝑒0.953×𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑇𝑇𝑇𝑇+0.139×𝐵𝐵𝐵𝐵𝐵𝐵+0.718×𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺+0.052×𝑊𝑊𝑊𝑊−15.745) x 100.  

Fibrosis was measured by the BARD score, calculated as the weighted sum of BMI >28 (1 

point), AST/ALT ratio >0.8 (2 points), and diabetes (1 point).4 The FLI is a non-invasive 

diagnostic biomarker for NAFLD and provides a quantitative assessment of steatosis.3 The 

BARD score is a non-invasive model to detect liver fibrosis caused by various aetiologies and 

has been shown to predict advanced fibrosis with good sensitivity and specificity.4  

Genotyping  

Genotyping was conducted using a custom-designed 800K-SNP array (Axiom; Affymetrix) with 

imputation to 1000 Genomes Phase 3. For this study, Genotype data were available for 

samples from 100,408 participants passing QC (overall call rate >99.97% across all variants). 
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This included a population-based sample of 75,736 participants randomly selected from the 

total CKB cohort. The remaining 24,672 participants were genotyped as part of nested case-

control studies of incident stroke, coronary heart disease (CHD), or chronic obstructive 

pulmonary disease. To avoid potential ascertainment bias, only the 75,736 population-

representative subset of participants were used for genetic analyses of hepatobiliary outcomes. 

All participants with clinical biochemistry measures were genotyped. 

Statistical analysis for liver biomarkers 

In the analysis of BMI and liver biomarkers, participants with prior cancer or liver disease were 

excluded from the analysis, leaving 18,053 participants for the observational analysis. In both 

the observational and genetic analyses, inverse probability of sampling weights (i.e. inclusion in 

the nested case-control study) were developed to ensure that our analysis accounted for the 

inclusion/exclusion criteria and sampling scheme for the nested case-control study.5 Cases and 

controls were assigned different weights to reflect the different proportions of cases and controls 

from eligible participants in the entire CKB cohort. The weights were calculated separately for 

controls and cases as the number of eligible participants divided by the number selected in the 

nested case-control study. The weights were 307.35 for controls, 4.47 for CHD cases, 27.82 for 

IS cases, and 6.78 for ICH cases. All liver biomarkers were standardised to have a standard 

deviation (SD) of 1 (except for the BARD score). In observational analysis, linear regression 

was used to assess the associations of BMI with liver markers. In Mendelian randomisation 

analysis, the genetic associations of BMI with liver biomarkers were estimated by the two-stage 

least squares estimator method using individual participant-level data (IPD). In the first stage, 

the associations between BMI genetic score and BMI were examined in 75,736 participants in 
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the GWAS population subset using linear regression adjusting for age, age squared, sex, 10 

regions, the first 12 principal components, education, smoking, alcohol, and HBsAg. In the 

second stage, the associations of the resulting predicted values with liver biomarkers were 

examined using linear regression adjusting for the same covariates. There were 17,567 

participants in the second stage had available genotype and liver biomarkers data. 

Meta-analysis of CKB with UKB 

The genetic associations of BMI on hepatobiliary diseases in UKB were calculated using two-

sample Mendelian randomisation. Summary statistics of 97 BMI-associated SNPs were 

retrieved from GIANT.6 For hepatobiliary diseases in UKB, SNP-outcome effects were obtained 

from a set of publicly available summary statistics reported by Zhou et al.7 We used a 

conventional IVW Mendelian randomisation analysis in which the SNP to disease estimate was 

regressed on the SNP to BMI using logistic regression, with the y-axis intercept forced through 

the origin. For each disease, a combined causal estimate was calculated from the causal 

estimate from each BMI SNP using a random effects meta-analysis. Meta-analyses of the 

genetic estimates per 1-SD genetically elevated BMI in CKB and UKB yielded pooled estimates 

for CLD and GBD.  

Subgroup and sensitivity analyses 

We conducted several subgroup and sensitivity analyses. First, the genetic associations of liver 

diseases and biomarkers were conducted by HBV infections. Participants were classified as 

HBV positive if they had a positive HBsAg test at the baseline survey. Second, sex-specific 

analyses of the observational and genetic associations were conducted as previous studies 
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have suggested that the associations of BMI with hepatobiliary diseases differ by sex.8,9 Third, 

the genetic associations of BMI with hepatobiliary diseases were conducted using 73 SNPs that 

did not show different associations with BMI between European and East Asians populations (p-

value for heterogeneity<0.05).5 Fourth, we used the MR-Egger and weighted median methods 

to explore whether findings in CKB depend on the assumption that all the variants have no 

horizontal pleiotropic effects (i.e. the effects of BMI variants on multiple biological pathways)10. 

MR-Egger method is a statistical approach that allows one or more genetic variants to have 

pleiotropic effects, while weighted median estimator can give valid estimates even in the 

presence of horizontal pleiotropy as long as at least half the genetic variants have no pleiotropic 

effects. Weighted median estimator leads to greater precision in the estimates than MR-Egger 

(owing to a power penalty)10.   
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eTable 1. ICD-10 code for hepatobiliary diseases in CKB 
 
Description ICD-10 No. cases 

whole cohort 
No. cases 
with genetic data 

Chronic liver disease    
Alcoholic liver disease K70 303 65 
Cirrhosis K74 1334 492 
Nonalcoholic fatty liver disease K76.0 2500 275 
Viral hepatitis B18-B19 1776 335 
Primary liver cancer C22 2970 607 
Total  7400 1307 
    
Gallbladder disease    
Cholelithiasis K80 11,101 2193 
Cholecystitis K81 10,291 2068 
Total  19,490 3883 
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eTable 2. Genetic variants associated with BMI in the GIANT consortium 
 

SNP BMI-increasing 
allele Other allele 

  EAF Beta 
coefficient   GIANT CKB 

rs1000940 G A  0.32 0.38 -0.003 
rs10132280 C A  0.68 0.91 0.026 
rs1016287a T C  0.29 0.21 -0.005 
rs10182181 G A  0.46 0.44 0.035 
rs10733682 A G  0.48 0.52 0.019 
rs10938397 G A  0.43 0.30 0.038 
rs10968576 G A  0.32 0.21 0.015 
rs11030104 A G  0.79 0.52 0.038 
rs11057405 G A  0.90 0.999 0.065 
rs11126666 A G  0.28 0.29 0.013 
rs11165643a T C  0.58 0.77 0.008 
rs11191560 C T  0.09 0.28 0.034 
rs11583200 C T  0.40 0.60 0.003 
rs1167827 G A  0.55 0.93 0.016 
rs11688816 G A  0.52 0.69 0.001 
rs11727676 T C  0.91 0.99 0.053 
rs11847697 T C  0.04 0.001 0.152 
rs12016871a T C  0.20 Not available – 
rs12286929 G A  0.52 0.27 0.010 
rs12401738 A G  0.35 0.01 0.026 
rs12429545 A G  0.13 0.25 0.035 
rs12446632 G A  0.87 0.9997 0.124 
rs12566985 G A  0.45 0.16 0.041 
rs12885454a C A  0.64 0.56 0.014 
rs12940622 G A  0.57 0.70 0.020 
rs13021737 G A  0.83 0.91 0.085 
rs13078960 G T  0.20 0.005 0.012 
rs13107325 T C  0.07 Rare (<0.01%) – 
rs13191362 A G  0.88 0.99 0.014 
rs13201877 G A  0.14 0.06 0.006 
rs1441264* A G  0.61 0.59 0.007 
rs1460676 C T  0.17 0.38 0.005 
rs1516725 C T  0.87 0.95 0.052 
rs1528435 T C  0.63 0.68 0.012 
rs1558902 A T  0.42 0.12 0.099 
rs16851483a T G  0.07 0.24 0.026 
rs16907751 C T  0.92 0.81 0.018 
rs16951275 T C  0.78 0.60 0.034 
rs17001654 G C  0.15 0.02 0.0004 
rs17024393 C T  0.04 Rare (<0.01%) – 
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SNP BMI-increasing 
allele Other allele 

  
EAF Beta 

coefficient CKB UKB 
rs17094222 C T  0.21 0.33 0.017 
rs17203016 G A  0.20 0.16 0.018 
rs17405819 T C  0.70 0.55 0.024 
rs17724992 A G  0.75 0.52 0.021 
rs1808579a C T  0.53 0.47 -0.005 
rs1928295 T C  0.55 0.53 0.012 
rs2033529a G A  0.29 0.19 0.006 
rs2033732a C T  0.75 0.62 0.008 
rs205262 G A  0.27 0.14 0.009 
rs2075650 A G  0.85 0.90 0.002 
rs2080454 C A  0.41 0.51 -0.007 
rs2112347 T G  0.63 0.43 0.020 
rs2121279 T C  0.15 Rare (<0.01%) – 
rs2176040 A G  0.37 0.07 0.009 
rs2176598a T C  0.25 0.12 0.007 
rs2207139a G A  0.18 0.15 0.036 
rs2245368 C T  0.18 Not available – 
rs2287019 C T  0.80 0.82 0.024 
rs2365389 C T  0.58 0.13 0.005 
rs2650492 A G  0.30 0.05 0.008 
rs2820292a C A  0.56 0.22 -0.002 
rs2836754 C T  0.61 0.63 0.014 
rs29941a G A  0.67 0.75 0.028 
rs3101336 C T  0.61 0.92 0.024 
rs3736485 A G  0.45 0.16 0.010 
rs3810291 A G  0.67 0.70 0.030 
rs3817334 T C  0.41 0.31 0.020 
rs3849570a A C  0.36 0.49 -0.007 
rs3888190 A C  0.40 0.13 0.015 
rs4256980 G C  0.65 0.62 0.022 
rs4740619a T C  0.54 0.76 0.017 
rs4787491 G A  0.51 0.40 0.015 
rs492400a C T  0.42 0.23 0.001 
rs543874a G A  0.19 0.18 0.058 
rs6091540 C T  0.72 0.70 0.014 
rs6465468 T G  0.30 0.02 0.007 
rs6477694 C T  0.37 0.43 0.014 
rs6567160 C T  0.24 0.20 0.061 
rs657452 A G  0.39 0.25 0.009 
rs6804842 G A  0.57 0.63 0.008 
rs7138803 A G  0.38 0.28 0.023 
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rs7141420a T C  0.53 0.56 0.008 

SNP BMI-increasing 
allele Other allele 

  
EAF Beta 

coefficient CKB UKB 
rs7164727a T C  0.69 0.73 0.013 
rs7239883 G A  0.39 0.30 0.012 
rs7243357 T G  0.81 0.80 0.031 
rs758747 T C  0.27 0.34 0.019 
rs7599312 G A  0.72 0.97 0.019 
rs7715256 G T  0.42 0.03 0.009 
rs7899106 G A  0.05 0.01 0.066 
rs7903146 C T  0.71 0.96 0.012 
rs9374842a T C  0.75 0.90 0.016 
rs9400239 C T  0.69 0.73 0.018 
rs9540493 A G  0.46 0.26 0.010 
rs9641123 C G  0.43 0.30 -0.004 
rs977747 T G  0.39 0.05 -0.002 
rs9914578 G C  0.21 0.22 0.019 
rs9925964 A G   0.62 0.09 -0.012 

 
a SNPs that showed different associations with BMI between European and East Asian populations in GIANT.
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eTable 3. Observational and genetic associations of BMI with risk of hepatobiliary 
diseases by sex 
 

  Observational   Genetic 

  
RR per 1-SD 

(95% CI) 
p for 

heterogeneity   
RR per 1-SD 

(95% CI) 
p for 

heterogeneity 
Non-cancer CLD      
  Male 1.11 (1.06, 1.16) <0.001  1.60 (1.05, 2.43) 0.34 
  Female 1.34 (1.28, 1.40)   1.20 (0.79, 1.83)  
Liver cancer      
  Male 0.95 (0.90, 1.01) 0.93  2.02 (1.05, 3.89) 0.79 
  Female 0.95 (0.89, 1.02)   1.80 (1.00, 3.23)  
Gallstone disease      
  Male 1.45 (1.39, 1.52) 0.42  1.86 (1.35, 2.57) 0.46 
  Female 1.42 (1.39, 1.46)   1.57 (1.15, 2.14)  
Cholecystitis      
  Male 1.17 (1.12, 1.22) 0.84  1.03 (0.60, 1.74) 0.24 
  Female 1.17 (1.14, 1.20)     1.49 (1.07, 2.08)   

 

The model was adjusted for age at baseline, age squared, 10 regions, 10 PCs (for GRS), HBsAg (for CLD), education, smoking, 
alcohol, and total physical activity.  
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eTable 4. Causal associations of BMI with risk of hepatobiliary diseases in UKB 
 

Disease PheCode Disease description No. cases RR (95% CI) P for heterogeneity 
Liver cancer 155 Cancer of liver and intrahepatic bile duct 344 1.52 (0.74, 3.11)   

 155.1 Malignant neoplasm of liver, primary 141 2.22 (0.69, 7.15)  
Non-cancer liver disease 571 Chronic liver disease and cirrhosis 2895 1.48 (1.14, 1.92)  
 571.5 Other chronic nonalcoholic liver disease 1664 1.67 (1.16, 2.42)  

 571.51 Cirrhosis of liver without mention of alcohol 114 1.31 (0.38, 4.48)  
Chronic liver disease   5158 1.55 (1.27, 1.89) 0.95 
Gallstones 574 Cholelithiasis and cholecystitis 16,225 1.61 (1.43, 1.80)  

 574.1 Cholelithiasis 13,777 1.57 (1.39, 1.77)  
 574.11 Cholelithiasis with acute cholecystitis 1513 1.42 (1.01, 2.00)  
 574.12 Cholelithiasis with other cholecystitis 5472 1.43 (1.19, 1.71)  
 574.2 Calculus of bile duct 2634 2.08 (1.60, 2.69)  

Cholecystitis 574.3 Cholecystitis without cholelithiasis 2761 1.92 (1.49, 2.47)  
Gallbladder disease     42,382 1.61 (1.50, 1.72) 0.16 

 
In UKB, 5158 CLD and 42,383 GBD had developed over a median of 5 years of follow-up. The main subtype was cirrhosis (2895, 56%) for CLD and cholelithiasis (36,987, 87%) for GBD.
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eFigure 1. Flow diagram 

 

 
Abbreviations: CVD, cardiovascular disease; CLD, chronic liver disease.
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eFigure 2. Associations of potential confounders with BMI genetic score 
 

 
 
The model was adjusted for age at baseline, age squared, 10 regions, 10 PCs (for GRS), HBsAg (for CLD), education, smoking, 
alcohol, and total physical activity, where appropriate. 
Potential confounders were dichotomised: current smoking (yes vs no), weekly drinking (yes vs no), total PA (≥30 vs <30 MET-
h/day), HBsAg (positive vs negative), education (≥9 vs <9 years), household income (≥35,000 vs <35,000 RMB/year), and parity 
(any number of live births vs nulliparity).  
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eFigure 3. Observational associations of BMI with risk of hepatobiliary diseases 
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eFigure 4. Observational and genetic associations of BMI with risk of hepatobiliary 
diseases by sex 
 

 

The model was adjusted for age at baseline, age squared, sex, 10 regions, 12 PCs (for GRS), HBsAg (for CLD), 

education, smoking, alcohol, and total physical activity, where appropriate.
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eFigure 5. Sensitivity analysis 
 

 
 
Two-sample MR estimates: chronic liver disease 1.58 (1.12-2.23), gallbladder disease 1.44 (1.16-1.79).  

The associations of genetically-predicted BMI with hepatobiliary diseases were also assessed by two-sample Mendelian 

randomisation using summary statistics from the GIANT (i.e. SNP-BMI) together with summary-specific estimates in CKB (i.e. 

SNP-disease). The derivation of the summary estimates in CKB used the same adjustment as the individual participant data 

(IPD) analysis. Inverse-variance weighted (IVW) analysis was performed by linear regression of the SNP-disease associations 

on the SNP-BMI associations. 
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eFigure 6. Observational associations of BMI with risk of hepatobiliary diseases with 
different exclusions 
 

 


	eAppendix. Supplementary Methods
	eTable 1. ICD-10 code for hepatobiliary diseases in CKB
	eTable 2. Genetic variants associated with BMI in the GIANT consortium
	eTable 3. Observational and genetic associations of BMI with risk of hepatobiliary diseases by sex
	eTable 4. Causal associations of BMI with risk of hepatobiliary diseases in UKB
	eFigure 1. Flow diagram
	eFigure 2. Associations of potential confounders with BMI genetic score
	eFigure 3. Observational associations of BMI with risk of hepatobiliary diseases
	eFigure 4. Observational and genetic associations of BMI with risk of hepatobiliary diseases by sex
	eFigure 5. Sensitivity analysis
	eFigure 6. Observational associations of BMI with risk of hepatobiliary diseases with different exclusions

