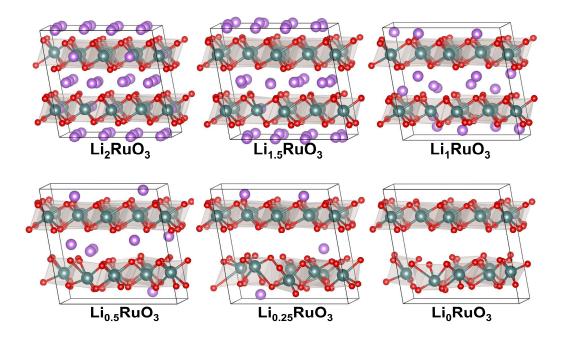
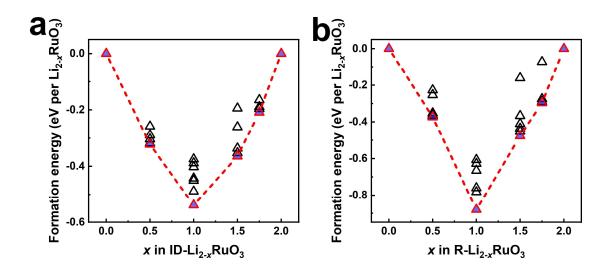
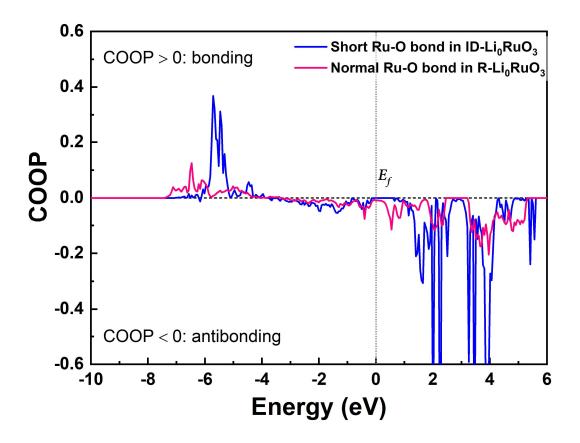

Supplementary Information

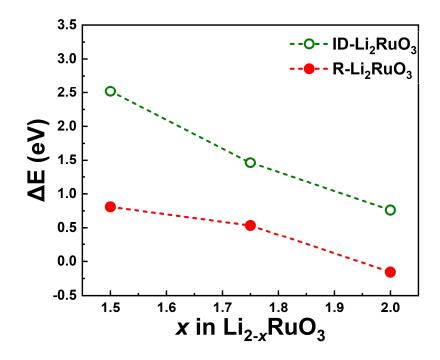
Inhibition of oxygen dimerization by local symmetry tuning

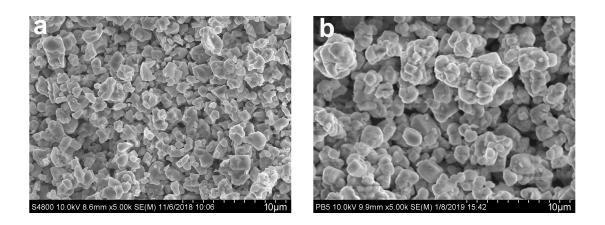

in Li-rich layered oxides for improved stability

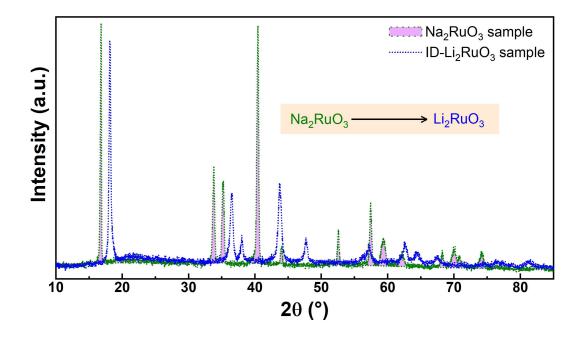
Ning et al.

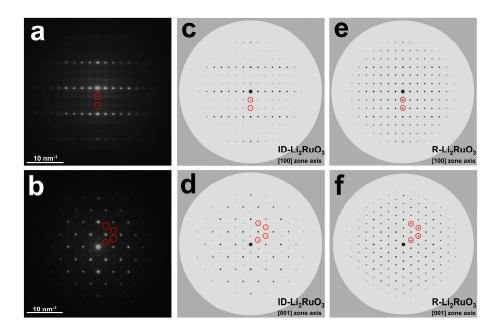

Supplementary Figures

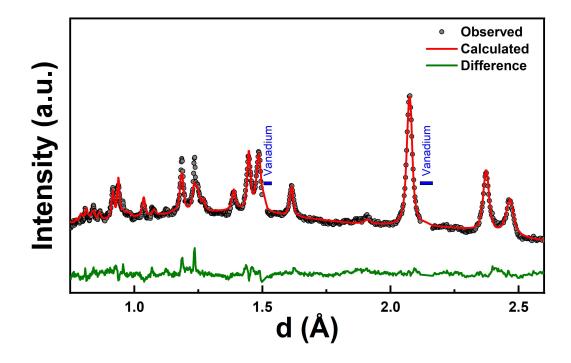

Supplementary Figure 1. The optimized structures upon delithiation. The lowest energy structures of R-Li_{2-x}RuO₃ for x = 0, 0.5, 1.0, 1.5, 1.75, 2.0. The purple, dark cyan, and red spheres are Li, Ru, and O, respectively.

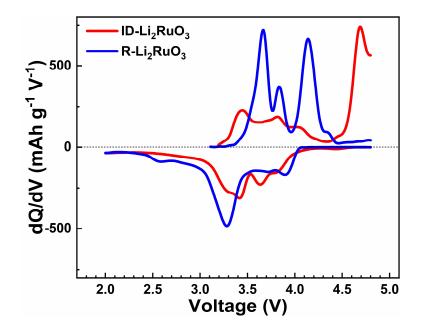

Supplementary Figure 2. The optimized structures upon delithiation. The lowest energy structures of ID-Li_{2-x}RuO₃ for x = 0, 0.5, 1.0, 1.5, 1.75, 2.0. The purple, dark cyan, and red spheres are Li, Ru, and O, respectively.

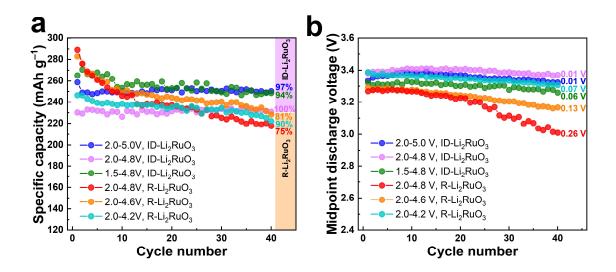

Supplementary Figure 3. The delithiation formation energy. a,b The delithiation formation energy of ID-Li_{2-x}RuO₃ (a) and R-Li_{2-x}RuO₃ (b). The formation energy is defined as $E_f(\text{Li}_{2-x}\text{RuO}_3) = E(\text{Li}_{2-x}\text{RuO}_3) - 0.5(2-x) E(\text{Li}_{2-x}\text{RuO}_3) - 0.5 x E(\text{RuO}_3)$.

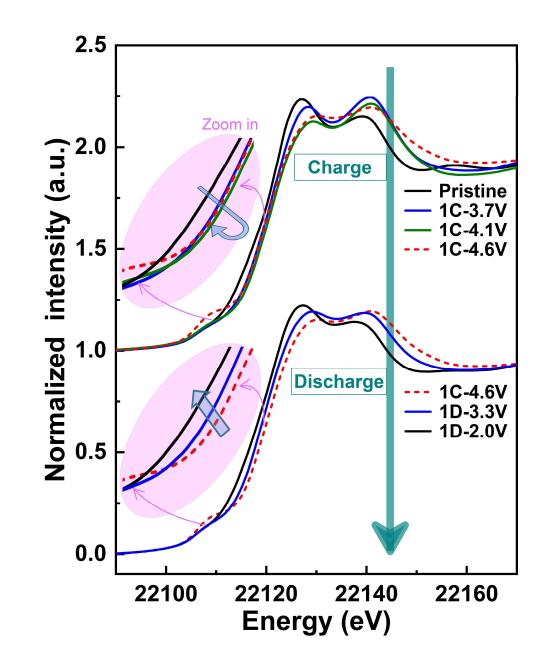

Supplementary Figure 4. The crystal orbital overlap population. The crystal orbital overlap population (COOP) results of the short Ru–O bond in ID-Li₀RuO₃ and normal Ru–O bond in R-Li₀RuO₃.

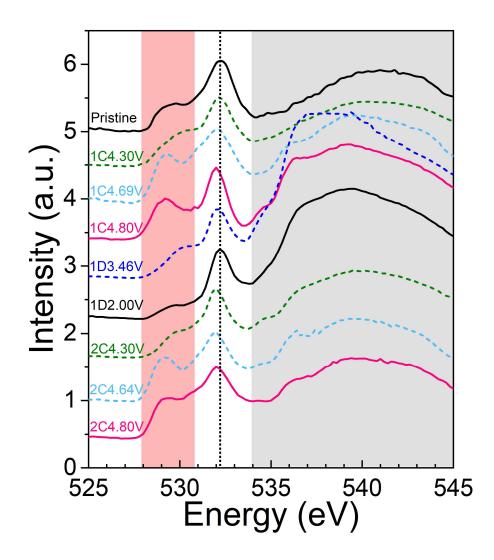

Supplementary Figure 5. The formation energy of Ru anti-site defects. The formation energy (ΔE) of Ru anti-site defects (Ru migrate to octahedral sites of Li layer) in deep delithiated ID-Li_{2-x}RuO₃ and R-Li_{2-x}RuO₃ (x = 1.5, 1.75, 2). The same Ru anti-site defects concentration of 1/16 (6% of the total Ru content) is considered for both ID-Li_{2-x}RuO₃ and R-Li_{2-x}RuO₃.

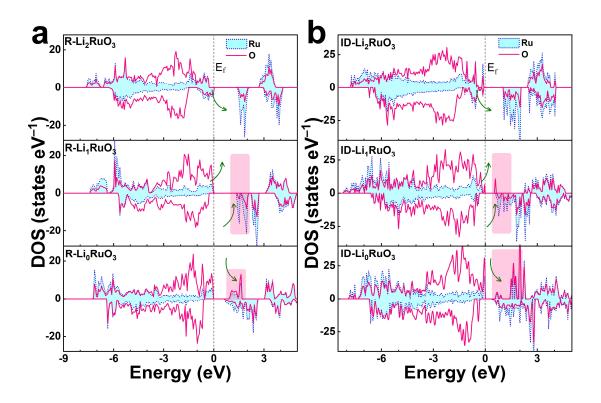

Supplementary Figure 6. SEM images. a,b SEM images of ID-Li₂RuO₃ (**a**) and R-Li₂RuO₃ (**b**).

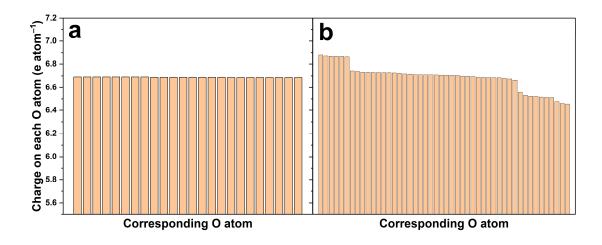

Supplementary Figure 7. XRD patterns of Na₂RuO₃ and ID-Li₂RuO₃. The ID-Li₂RuO₃ sample was obtained by Li/Na-ion exchange of the Na₂RuO₃ sample.

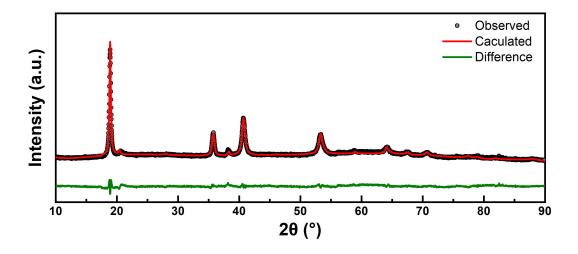

Supplementary Figure 8. The observed and simulated SAED patterns. a,b The observed SAED patterns (**a-b**). The weaker diffraction spots are marked with red cycles. **c-f** The simulated SAED patterns of ID-Li₂RuO₃ and R-Li₂RuO₃ structure models along [100] (**c-d**) and [001] (**e-f**) zone axes, respectively. The ID-Li₂RuO₃ and R-Li₂RuO₃ structure models with C2/m space group used for SAED simulation are taken from the XRD refinements.

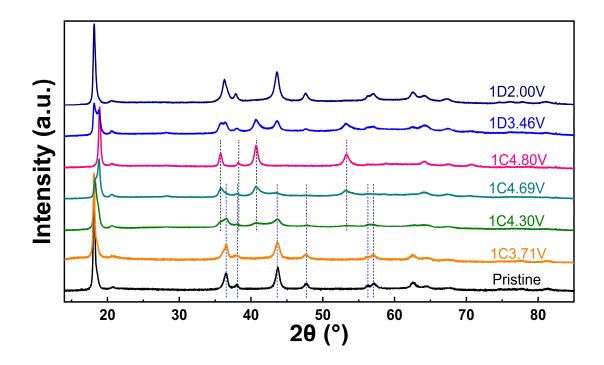

Supplementary Figure 9. NPD patterns of ID-Li₂RuO₃. The impurity peaks of the vanadium pot are omitted within the marked ranges.

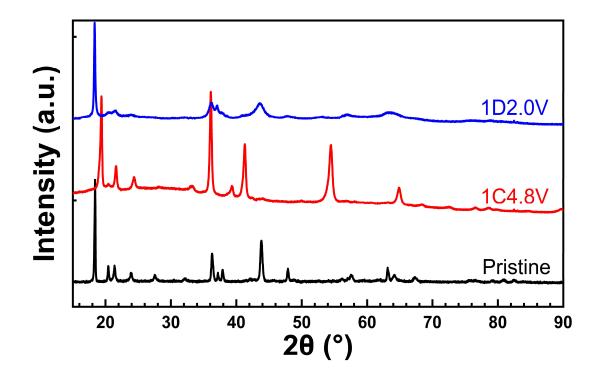

Supplementary Figure 10. The dQ/dV plots. The dQ/dV plots of ID-Li₂RuO₃ and R-Li₂RuO₃ cathodes tested in the voltage range of 2.0–4.8 V at a current density of 30 mA g^{-1} .

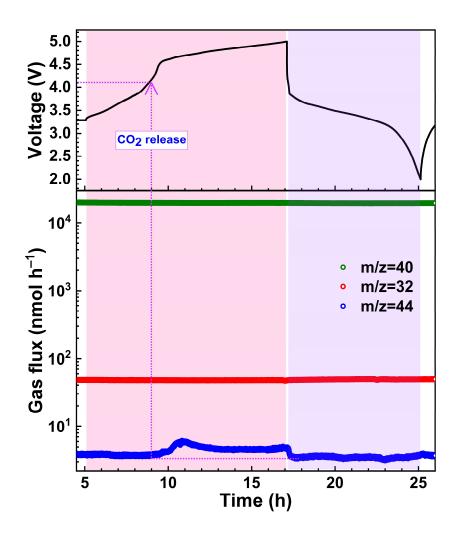

Supplementary Figure 11. Cycling stability. a,b Cycling performance (a) and midpoint discharge voltage (b) of ID-Li₂RuO₃ in the voltage ranges of 2.0–5.0 V, 2.0–4.8 V, and 1.5–4.8 V compared with those of R-Li₂RuO₃ in the voltage ranges of 2.0–4.6 V, 2.0–4.8 V, and 2.0–4.2 V at a current density of 30 mA g^{-1} .

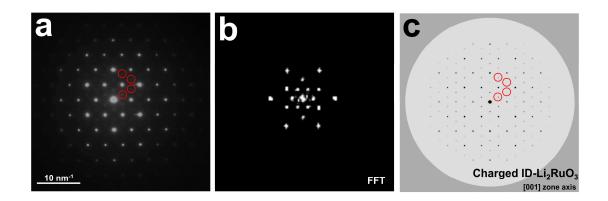

Supplementary Figure 12. Ru K-edge XANES spectra. Ru K-edge XANES spectra of R-Li₂RuO₃ during charge and discharge processes. 1C, 1D represent the first charge and discharge, respectively.

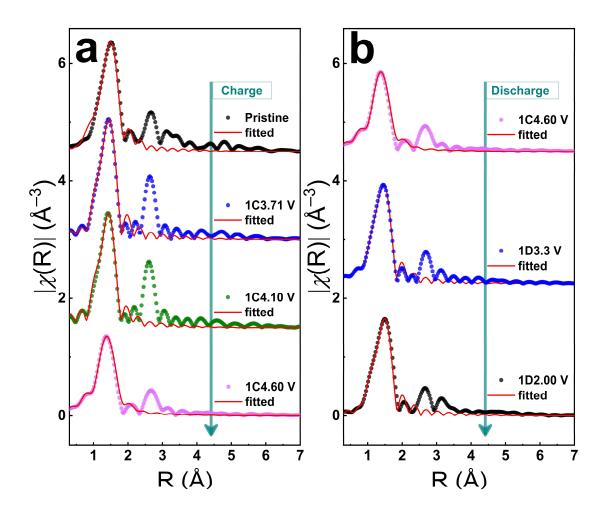

Supplementary Figure 13. O K-edge XANES spectra. *Ex situ* O K-edge XANES spectra of ID-Li₂RuO₃ at various states of charge. 1C, 1D and 2C represent the first charge, first discharge and second charge, respectively.

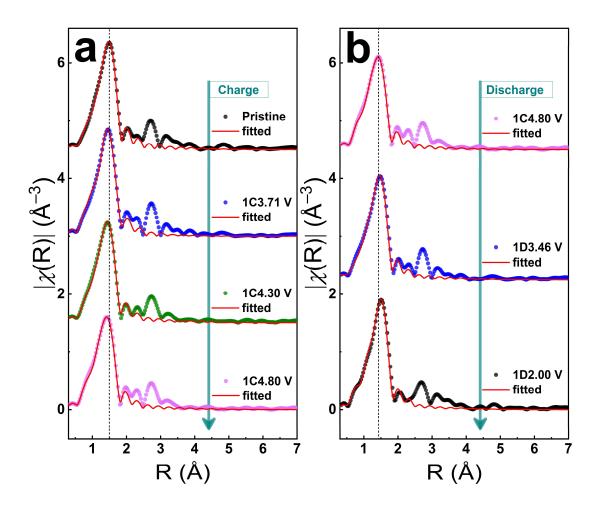

Supplementary Figure 14. Density of states (DOS). a,b DOS of R-Li_{2-x}RuO₃ (**a**) and ID-Li_{2-x}RuO₃ (**b**) systems with respected to the Li content.

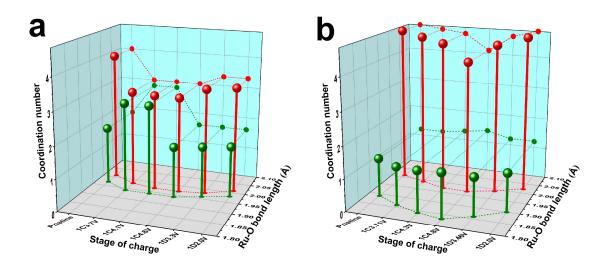

Supplementary Figure 15. Bader charge analysis. a,b Charge on each O ion in fully delithiated R-Li₂RuO₃ (**a**) and ID-Li₂RuO₃ (**b**) systems, as obtained from Bader charge analysis.

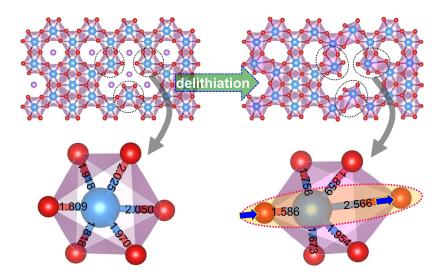

Supplementary Figure 16. The refinement of XRD patterns. The refinement of XRD patterns of ID-Li₂RuO₃ that charged to 4.8 V.


Supplementary Figure 17. XRD patterns of ID-Li2RuO3. The *ex situ* XRD patterns of ID-Li2RuO3. 1C, 1D represent the first charge and discharge, respectively.


Supplementary Figure 18. XRD patterns of R-Li₂RuO₃. The *ex situ* XRD patterns of R-Li₂RuO₃ during charging and discharging. 1C, 1D represent the first charge and discharge, respectively.


Supplementary Figure 19. Differential electrochemistry mass spectrometry (DEMS). Gas evolution detected by *in situ* DEMS in the ID-Li₂RuO₃ vs. Li cell in the voltage range of 2.0–5.0 V at a current density of 30 mA g^{-1} .


Supplementary Figure 20. Observed and simulated SEAD Patterns. a The observed SEAD patterns of 4.8V charged ID-Li₂RuO₃, **b** the FFT patterns from ABF-STEM image of 4.8V charged ID-Li₂RuO₃, and **c** simulated SEAD of the O1-type structure with Li/Ru disordering arrangement obtained from XRD refinement of 4.8V charged sample.


Supplementary Figure 21. The Fourier transform of EXAFS of Ru K-edge. a,b Fitting results for the magnitude of the Fourier transforms performed on k^2 -weighted EXAFS oscillations of R-Li₂RuO₃ during the first charge (a) and discharge (b) processes in the R-range of 1–2 Å (first peak only). E₀ was set to –0.7 eV, and the amplitude reduction factor (S₀²) was fixed at 0.95. 1C, 1D represent the first charge and discharge, respectively. Two group of Ru–O bonds were considered during fitting based on the presence of two crests in the Ru K-edge XANES spectra shown in Supplementary Figure 12.

Supplementary Figure 22. The Fourier transform of EXAFS of Ru K-edge. a,b Fitting results for the magnitude of the Fourier transforms performed on k^2 -weighted EXAFS oscillations of ID-Li₂RuO₃ during the first charge (a) and discharge (b) processes in the R-range of 1–2 Å (first peak only). E₀ was set to –0.7 eV, and the amplitude reduction factor (S₀²) was fixed at 0.95. 1C, 1D represent the first charge and discharge, respectively. Two group of Ru–O bonds were considered during fitting based on the presence of two crests in the Ru K-edge XANES spectra shown in Figure 5a.

Supplementary Figure 23. The results of Ru–O shell from EXAFS fitting. a,b Fitted Ru–O shell of the Fourier-transformed k²-weighted EXAFS oscillations of ID-Li₂RuO₃ (**a**), and R-Li₂RuO₃ (**b**). 1C, 1D represent the first charge and discharge, respectively.

Supplementary Figure 24. Structural response modes of ID-Li2MnO3 upon delithiation. Optimized crystal structures and local MnO₆ octahedrons of Li₂MnO₃ and the corresponding delithiated state (Li₀MnO₃) for ID-Li₂MnO₃. The values (in angstrom) on the local structures are the Mn–O bond lengths.

Supplementary Tables

Supplementary Table 1. The total energies (in eV) of the systems with and without oxygen loss at the three kinds of oxygen sites for ID-Li_{2-x}RuO₃.

Vacancy sites	Ocenter[Ru1Li5]	Ocenter[Ru2Li4]	Ocenter[Ru3Li3]
E(Li ₂ RuO ₃ –O)	-532.050	-531.661	-531.660
E(Li ₂ RuO ₃)		-539.671	
E(Li _{1.5} RuO ₃ –O)	-492.821	-491.853	-491.639
$E(Li_{1.5}RuO_3)$		-499.557	
E(Li ₁ RuO ₃ –O)	-453.183	-451.212	-450.621
E(Li ₁ RuO ₃)		-458.800	
E(Li _{0.5} RuO ₃ –O)	-405.751	-403.612	-403.285
E(Li _{0.5} RuO ₃)		-411.281	
E(Li _{0.25} RuO ₃ –O)	-380.719	-379.946	-378.729
E(Li _{0.25} RuO ₃)		-386.417	
E(Li ₀ RuO ₃ –O)	-355.806	-355.471	-355.043
E(Li ₀ RuO ₃)		-360.711	

Vacancy sites	Ocenter[Ru2Li4]
E(Li ₂ RuO ₃ –O)	-533.365
E(Li ₂ RuO ₃)	-541.172
E(Li _{1.5} RuO ₃ –O)	-493.482
E(Li _{1.5} RuO ₃)	-501.158
E(Li ₁ RuO ₃ –O)	-455.764
E(Li ₁ RuO ₃)	-463.509
E(Li _{0.5} RuO ₃ –O)	-406.474
$E(Li_{0.5}RuO_3)$	-411.305
E(Li _{0.25} RuO ₃ –O)	-380.565
E(Li _{0.25} RuO ₃)	-385.533
E(Li ₀ RuO ₃ –O)	-355.622
E(Li ₀ RuO ₃)	-358.250

Supplementary Table 2. The total energies (in eV) of the systems with and without oxygen loss for R-Li_{2-x}RuO₃.

Supplementary Table 3. Values used in the calculation of the total energy of the O_2 molecule. The energies of the H_2O and H_2 molecules were obtained from our first-principles study, while TS and ZPE were taken from the literature.¹

Molecule type	H ₂ O	H ₂	O ₂
E (eV)	-14.273	-6.800	-9.426 ^a
TS (eV)	0.67	0.41	0.64
ZPE (eV)	0.56	0.27	0.10

^a The E(O₂) is obtained from Equation S4.

	ID-Liz	R-Li ₂ RuO ₃	
	XRD refinement	NPD refinement	XRD refinement
Space group	C2/m (No. 12)	C2/m (No. 12)	C2/m (No. 12)
a (Å)	4.9938	5.0065	5.0399
b (Å)	8.6844	8.7082	8.7497
c (Å)	5.1798	5.1848	5.1420
$\alpha = \gamma$ (°)	90.000	90.000	90.000
β (°)	108.587	108.640	109.049
Volume (Å ³)	212.922	214.190	214.330
R _{wp} (%)	5.11	3.58	11.04
R _p (%)	3.88	2.74	8.61
χ^2	4.137	3.897	1.836

Supplementary Table 4. Crystallographic parameters and structure determination details for ID-Li₂RuO₃ and R-Li₂RuO₃ from XRD and NPD refinement.

	~ .		Coordinates			
Atom	Site	х	у	Z	Occupation	Uiso (Å ²)
Ru(1)	4h	0.000000	0.166728	0.500000	0.701515	0.056554
Li(1)	4h	0.000000	0.166728	0.500000	0.298485	0.029000
Li(2)	2d	-0.500000	0.000000	0.500000	0.403732	0.029000
Ru(2)	2d	-0.500000	0.000000	0.500000	0.596268	0.052420
Li(3)	4g	-0.500000	-0.166720	0.000000	0.999757	0.020071
Ru(3)	4g	-0.500000	-0.166720	0.000000	0.000243	0.055812
Li(4)	2a	0.000000	0.000000	0.000000	0.999784	0.028834
Ru(4)	2a	0.000000	0.000000	0.000000	0.000216	0.056950
O(1)	8j	0.254592	0.168280	0.270732	1.000000	0.023340
O(2)	4i	-0.241671	0.000000	0.272298	1.000000	0.031790

Supplementary Table 5. Atomic coordinates of ID-Li₂RuO₃ from XRD refinement.

Atom	Site		Coordinates		Occupation	Uiso (Å ²)
		Х	У	Z	1	
Ru	4h	0.000000	0.167859	0.500000	1.000000	0.053716
Li(1)	2d	-0.500000	0.000000	0.500000	1.000000	0.019000
Li(2)	4g	-0.500000	-0.158000	0.000000	1.000000	0.021024
Li(3)	2a	0.000000	0.000000	0.000000	1.000000	0.018437
O(1)	8j	0.248934	0.172385	0.267545	1.000000	0.039705
O(2)	4i	-0.233513	0.000000	0.267525	1.000000	0.031569

Supplementary Table 6. Atomic coordinates of R-Li₂RuO₃ sample from XRD refinement.

	a.		Coordinates			TTTTTTTTTTTTT
Atom	Site	X	У	Z	Occupation	Uiso (Å ²)
Ru(1)	4h	0.000000	0.166732	0.500000	0.701204	0.031036
Li(1)	4h	0.000000	0.166732	0.500000	0.298796	0.023590
Li(2)	2d	-0.500000	0.000000	0.500000	0.403153	0.030742
Ru(2)	2d	-0.500000	0.000000	0.500000	0.596847	0.042297
Li(3)	4g	-0.500000	-0.166719	0.000000	0.999751	0.027274
Ru(3)	4g	-0.500000	-0.166719	0.000000	0.000249	0.047763
Li(4)	2a	0.000000	0.000000	0.000000	0.999753	0.027849
Ru(4)	2a	0.000000	0.000000	0.000000	0.000247	0.047832
O(1)	8j	0.254588	0.168285	0.270731	1.000000	0.024047
O(2)	4i	-0.241668	0.000000	0.272302	1.000000	0.028501

Supplementary Table 7. Atomic coordinates of ID-Li₂RuO₃ from NPD refinement.

Supplementary Table 8. Crystallographic parameters and structure determination details for 4.8V charged ID-Li₂RuO₃ from XRD refinement.

Sample	4.8Vcharged ID-Li ₂ RuO ₃
Space group	C2/m (No. 12)
a (Å)	5.037718
b (Å)	8.718863
c (Å)	4.712646
$\alpha = \gamma$ (°)	90.000
β (°)	90.0097
Volume (Å ³)	206.99
R _{wp} (%)	4.22
R _p (%)	3.22
χ^2	4.757

			Coordinates			
Atom	Site	X	У	Z	Occupation	Uiso (Å ²)
Ru(1)	4h	0.000000	0.168110	0.500000	0.701547	0.045805
Li(1)	4h	0.000000	0.168110	0.500000	0.030000	0.039030
Li(2)	2d	-0.500000	0.000000	0.500000	0.030000	0.039030
Ru(2)	2d	-0.500000	0.000000	0.500000	0.596161	0.047284
Li(3)	4g	-0.500000	-0.158000	0.000000	0.100000	0.038628
Ru(3)	4g	-0.500000	-0.158000	0.000000	0.000254	0.045635
Li(4)	2a	0.000000	0.000000	0.000000	0.100000	0.038670
Ru(4)	2a	0.000000	0.000000	0.000000	0.000237	0.048176
O(1)	8j	0.330751	0.170456	0.273423	1.000000	0.039911
O(2)	4i	-0.150312	0.000000	0.276555	1.000000	0.037253

Supplementary Table 9. Atomic coordinates of 4.8 V charged ID-Li₂RuO₃ from XRD refinement.

Supplementary Table 10. Detailed fitting results (coordination number (CN), radial distance (R), and Debye–Waller factor (σ^2) for the first shell) for the EXAFS oscillations of R-Li₂RuO₃ during the first charge and discharge processes. E₀ was set to -0.7 eV, and the amplitude reduction factor (S₀²) was fixed at 0.95. 1C, 1D represent the first charge and discharge, respectively.

State of charge	Pair	CN	R (Å)	$\sigma^2 (\times 10^{-3} \text{ Å}^2)$
Dristing	Ru–O1	1.8	1.97	4.5
Pristine	Ru–O2	4.0	2.01	4.2
1C 2 7 V	Ru–O1	2.8	1.94	3.0
1C 3.7 V	Ru–O2	3.0	1.98	3.4
1C 4.1 V	Ru–O1	2.8	1.94	4.5
	Ru–O2	3.0	1.97	4.5
1C 4.6 V	Ru–O1	1.6	1.94	6.8
IC 4.6 V	Ru–O2	3.0	1.97	7.0
1D 2 2 V	Ru–O1	1.6	1.96	4.0
1D 3.3 V	Ru–O2	3.3	1.98	4.3
10.0.0.1/	Ru–O1	1.6	1.98	4.1
1D 2.0 V	Ru–O2	3.3	2.01	4.3

Supplementary Table 11. Detailed fitting results (coordination number (CN), radial distance (R), and Debye–Waller factor (σ^2) for the first shell) for the EXAFS oscillations of ID-Li₂RuO₃ during the first charge and discharge processes. E₀ was set to -0.7 eV, and the amplitude reduction factor (S₀²) was fixed at 0.95. 1C, 1D represent the first charge and discharge, respectively.

State of charge	Pair	CN	R (Å)	$\sigma^2 (\times 10^{-3} \text{ Å}^2)$
Duisting	Ru–O1	1.2	1.89	2.7
Pristine	Ru–O2	4.8	2.01	2.8
1C 3.7 V	Ru–O1	1.2	1.86	2.7
IC 3./ V	Ru–O2	4.7	1.99	2.8
1C 4.3 V	Ru–O1	1.3	1.84	2.7
	Ru–O2	4.6	1.97	2.8
1C 4.8 V	Ru–O1	1.4	1.83	2.6
IC 4.8 V	Ru–O2	4.1	1.97	2.6
1D 3.46 V	Ru–O1	1.2	1.86	2.7
1D 3.46 V	Ru–O2	4.6	1.99	2.8
1D 2.0 V	Ru–O1	1.2	1.90	2.8
	Ru–O2	4.8	2.02	2.9

Supplementary Notes

Supplementary Note 1. Definition of ΔG for oxygen release. The total energy of the systems with and without oxygen vacancies used in the calculation of oxygen release energy for ID-Li_{2-x}RuO₃ and R-Li_{2-x}RuO₃ are listed in Supplementary Table 1 and Supplementary Table 2, respectively. The same oxygen vacancy concentration of 1/48 (2% of the total oxygen content) is considered for both ID-Li_{2-x}RuO₃ and R-Li_{2-x}RuO₃. The Gibbs free energy of oxygen release was calculated as Supplementary Equation 1.

$$\Delta G_{(0_2 \ release)} = \Delta E_{(0_2 \ release)} + \left(-TS_{(0_2)}\right) + ZPE_{(0_2)} \tag{1}$$

where $-TS_{(O_2)}$ and $ZPE_{(O_2)}$ of the O₂ gas phase under standard conditions were taken from previous studies.^{1,2} and $\Delta E_{(O_2 \ release)}$ are defined as Supplementary Equation 2

$$\Delta E_{(0_2 \ release)} = 2(E_{(X-0)} + \frac{1}{2}E_{(0_2)} - E_{(X)})$$
⁽²⁾

where, $E_{(X-O)}$ and $E_{(X)}$ indicate the calculated total energy of Li_{2-x}RuO₃ with and without oxygen vacancies, respectively, where $E_{(O_2)}$ was modified by the experimental formation energy of water as the binding energy of O₂ molecules from DFT calculations is overestimated.^{1,3} The energy of the O₂ molecule was calculated based on Supplementary Equation 3 and 4. Values used in the calculation of $E_{(O_2)}$ were shown in Supplementary Table 3.

$$2H^{+} + 2e^{-} + \frac{1}{2}O_{2} \rightarrow H_{2}O \qquad (\Delta G = -2.46 \ eV)$$
(3)
$$\Delta G = \Delta (E - TS + ZPE) = \left[E(H_{2}O) - E(H_{2}) - \frac{1}{2}E(O_{2})\right] + \left[-TS(H_{2}O) + TS(H_{2}) + \frac{1}{2}TS(O_{2})\right] + \left[ZPE(H_{2}O) - ZPE(H_{2}) - \frac{1}{2}ZPE(O_{2})\right]$$
(4)

Supplementary Note 2. Two phase refinement for ID-Li₂RuO₃ sample. In order to evaluate the extent of intralayer disordering, two phase including regular Li₂RuO₃ and ideal intralayer disordered Li₂RuO₃ were used for refinement, which shows that the ratio of regular Li₂RuO₃ and idea intralayer disordered Li₂RuO₃ phases is about 35: 1. The percentage of the idea intralayer disordered Li₂RuO₃ phase is 97.1%, confirming that the ID-Li₂RuO₃ sample is almost the ideal intralayer disordered Li₂RuO₃ phase.

Supplementary References

- 1 Nørskov, J. K. *et al.* Origin of the overpotential for oxygen reduction at a fuelcell cathode. *J. Phys. Chem. B* **108**, 17886–17892 (2004).
- Atkins, P. Atkins' Physical Chemistry, 8th ed. Oxford University Press: Oxford,
 U. K., 999 (2006).
- Xiao, R., Li, H. & Chen, L. Density functional investigation on Li2MnO3.
 Chem. Mater. 24, 4242–4251 (2012).