Supporting Information

Synthesis and preliminary studies of ¹¹C-labeled tetrahydro-1,7naphthyridine-2-carboxamides for PET imaging of metabotropic glutamate receptor 2

Xiaofei Zhang,^{1,2,†} Yiding Zhang,^{3,†} Zhen Chen,¹ Tuo Shao,¹ Richard Van,⁴ Katsushi Kumata,³ Xiaoyun Deng,¹ Hualong Fu,¹ Tomoteru Yamasaki,³ Jian Rong,¹ Kuan Hu,³ Akiko Hatori,³ Lin Xie,³ Qingzhen Yu,¹ Weijian Ye,⁵ Hao Xu,⁵ Douglas J. Sheffler,⁶ Nicholas D. P. Cosford,⁶ Yihan Shao,⁴ Pingping Tang,² Lu Wang,^{1,5,*} Ming-Rong Zhang,^{3,*} Steven H. Liang^{1,*}

¹Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA

²State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

³Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

⁴Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States

⁵Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China

⁶Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States

*Corresponding authors.

<u>liang.steven@mgh.harvard.edu</u> (S. H. Liang); <u>zhang.ming-rong@qst.go.jp</u> (M.-R. Zhang); <u>1_wang1009@foxmail.com</u> (L. Wang)

[†]These two authors contributed equally to this work.

Contents

Figure S1. Concentration-response curves of mGlu ₂ NAMs compounds 14 in mGlu ₂ GIRK or mGlu ₃ GIRK functional assays
Figure S2. Time-activity curves of [¹¹ C]14a in rat brains2
Figure S3. Radiometabolite analysis of [¹¹ C] 14a in rat brain and plasma
Table S1. Radiometabolite and parent (unchanged) fraction of [¹¹ C]14a in rat brain and plasma3
Figure S4 . RadioHPLC chromatogram in the brain and plasma 5 min post injection of [¹¹ C] 14a 4
Figure S5. RadioHPLC chromatogram in the brain and plasma 20 min post injection of [¹¹ C]14a4
Figure S6. Radiometabolite analysis of [¹¹ C] 14b in rat brain and plasma
Table S2. Radiometabolite and parent (unchanged) fraction of [¹¹ C]14b in rat brain and plasma5
Figure S7 . RadioHPLC chromatogram in the brain and plasma 5 min post injection of [¹¹ C] 14b 5
Figure S8 . RadioHPLC chromatogram in the brain and plasma 20 min post injection of [¹¹ C] 14b 6
Figure S9. Image of the ROIs used for quantification of in vitro autoradiography7
Figure S10. Functional (agonist and antagonist) assays of compound 14b towards mGlu receptors
Figure S11. Off-target pharmacological evaluation of compound 14b at a concentration of 10 μM against major CNS targets
Figure S12. Representative PET/MRI fused images
NMR spectra of synthesized compounds

Figure S1. Concentration–response curves of mGlu₂ NAMs compounds **14a-14g** in mGlu₂ GIRK or mGlu₃ GIRK functional assays.

Figure S2. Time-activity curves of [¹¹C]**14a** in rat brains. ^{*a*}Blocking conditions: **14a** (1 mg/kg), 30 min *i.v.* before radioligand injection.

Figure S3. Radiometabolite analysis of [¹¹C]14a in rat brain (average two runs)

	Metabolite (%)	Unchanged (%)
Plasma 5 mins-1	11.96	88.04
Plasma 5 mins–2	17.06	82.94
Plasma 20 mins–1	44.51	55.49
Plasma 20 mins-2	38.26	61.74
Brain 5 mins-1	0.06	99.94
Brain 5 mins-2	0.49	99.51
Brain 20 mins-1	7.3	92.7
Brain 20 mins-2	5.76	94.24

Table S1. Radiometabolite and parent (unchanged) fraction of [¹¹C]14a in rat brain and plasma

Figure S4. RadioHPLC chromatogram in the brain and plasma 5 min post injection of [11C]14a

Figure S5. RadioHPLC chromatogram in the brain and plasma 20 min post injection of [11C]14a

Figure S6. Radiometabolite analysis of [¹¹C]14b in rat brain (average two runs)

	Metabolite(%)	Unchanged (%)
Plasma 5 mins-1	21.32	76.68
Plasma 5 mins-2	41.31	58.69
Plasma 20 mins-1	69.22	30.78
Plasma 20 mins-2	67.60	32.40
Brain 5 mins-1	0.28	99.72
Brain 5 mins-2	0.04	99.96
Brain 20 mins-1	0.97	99.03
Brain 20 mins-2	1.22	98.78

Table S2. Radiometabolite and parent (unchanged) fraction of [¹¹C]14b in rat brain and plasma

Figure S7. RadioHPLC chromatogram in the brain and plasma 5 min post injection of [¹¹C]14b

Figure S8. RadioHPLC chromatogram in the brain and plasma 20 min post injection of [¹¹C]14b

Figure S9. Image of the ROIs used for quantification of in vitro autoradiography. (A) Brain sections were treated with [¹¹C]**14a**; (B) Brain sections were pre-treated with **14a** (10 μ M), followed by [¹¹C]**14a**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14a**; (A) Brain sections were treated with [¹¹C]**14b**; (B) Brain sections were pre-treated with **14b** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**; (C) Brain sections were pre-treated with **QCA** (10 μ M), followed by [¹¹C]**14b**.

Figure S10. Functional (agonist and antagonist) assays of compound 14b towards mGlu receptors, including mGlu₁, mGlu₄, mGlu₅, mGlu₆ and mGlu₈.

Figure S11. Off-target pharmacological evaluation of compound **14b** at a concentration of 10 μ M against major CNS targets, including common GPCRs, enzymes, ion channels and transporters: Initial screening at a concentration of 10 μ M. All data are mean \pm SD (n = 4). No significant off-target binding (>50%) was observed at 10 μ M compound testing concentration.

Figure S12. Representative PET/MRI fused images (summed at 0-10 min, 10-30 min and 30-60 min) and time-activity curves of [¹¹C]**14b** under baseline and blocking conditions in SD rat brain. [#]Blocking conditions: **14b** (1 mg/kg), 30 min *i.v.* before radioligand injection; [†]Blocking conditions: **14a** (3 mg/kg), 30 min *i.v.* before radioligand injection are presented as mean \pm SEM (n = 3).

NMR spectra of synthesized compounds

¹H spectrum of 11a

¹³C spectrum of 11a

¹H spectrum of 11b

¹³C spectrum of 11b

¹H spectrum of 11c

¹³C spectrum of 11c

¹H spectrum of 11d

¹³C spectrum of 11d

¹H spectrum of 11g

¹³C spectrum of 11g

¹H spectrum of 13a

¹³C spectrum of 13a

¹H spectrum of 13b

¹³C spectrum of 13b

¹H spectrum of 13c

¹³C spectrum of 13c

25

¹H spectrum of 13d

¹³C spectrum of 13d

¹H spectrum of 13e

¹³C spectrum of 13e

¹H spectrum of 13f

¹³C spectrum of 13f

31

¹H spectrum of 13g

¹³C spectrum of 13g

ş.

¹H spectrum of 14a

¹³C spectrum of 14a

¹H spectrum of 14b

¹³C spectrum of 14b

¹H spectrum of 14c

¹³C spectrum of 14c

¹H spectrum of 14d

¹³C spectrum of 14d

¹H spectrum of 14e

¹³C spectrum of 14e

¹H spectrum of 14f

¹³C spectrum of 14f

¹H spectrum of 14g

¹³C spectrum of 14g

¹H spectrum of 16

¹³C spectrum of 16

¹H spectrum of 17

50

¹³C spectrum of 17

¹H spectrum of 18

¹³C spectrum of 18

