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DNA N4-methylcytosine (4mC) is a crucial epigenetic modifi-
cation involved in various biological processes. Accurate
genome-wide identification of these sites is critical for
improving our understanding of their biological functions
and mechanisms. As experimental methods for 4mC identifi-
cation are tedious, expensive, and labor-intensive, several
machine learning-based approaches have been developed for
genome-wide detection of such sites in multiple species.
However, the predictions projected by these tools are difficult
to quantify and compare. To date, no systematic performance
comparison of 4mC tools has been reported. The aim of this
study was to compare and critically evaluate 12 publicly avail-
able 4mC site prediction tools according to species specificity,
based on a huge independent validation dataset. The tools
4mCCNN (Escherichia coli), DNA4mC-LIP (Arabidopsis
thaliana), iDNA-MS (Fragaria vesca), DNA4mC-LIP and
4mCCNN (Drosophila melanogaster), and four tools for
Caenorhabditis elegans achieved excellent overall performance
compared with their counterparts. However, none of the exist-
ing methods was suitable for Geoalkalibacter subterraneus,
Geobacter pickeringii, and Mus musculus, thereby limiting
their practical applicability. Model transferability to five spe-
cies and non-transferability to three species are also discussed.
The presented evaluation will assist researchers in selecting
appropriate prediction tools that best suit their purpose and
provide useful guidelines for the development of improved
4mC predictors in the future.

INTRODUCTION
DNA methylation is one of the most common epigenetic tools used
by the cell to control gene expression. It alters chromatin structure,
DNA conformation, DNA-protein interactions, and DNA stability.1

This modification plays important roles in the regulation of several
developmental and pathological processes, such as aging, carcinogen-
esis, genomic imprinting, repression of transposable elements, and X
chromosome inactivation.2–5 Analysis of the differentiating capacity
of foreign DNA and host DNA indicates that certain modifications,
such as cytosine methylation, may protect the host DNA from
enzyme-mediated degradation.6
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Cytosine methylation is catalyzed by DNA methyl transferases
and is considered a major post-replicative DNAmodification in pro-
karyotes and eukaryotes.7 The most common types of enzymatic
cytosine methylation are 5-methylcytosine and N4-methylcytosine
(4mC).8–10 Unlike the former, which has been extensively
studied,8,11,12 4mC has not been thoroughly investigated. 4mC
formation, predominantly found in prokaryotes, is catalyzed by
N4-cytosine-specific DNA methyl transferases, which methylate
the amino group at the fourth position of cytosine.13 Similar to
5-methylcytosine, 4mC is an element of a restriction-modification
system that protects self-DNA from enzyme-mediated degrada-
tion.14 It is also involved in the cell cycle, correction of DNA repli-
cation errors, and regulation of DNA replication.15,16

Information regarding genome-wide distribution of 4mC is crucial
for deciphering the function of this modification in detail. To date,
only a few experimental approaches, such as single-molecule real-
time (SMRT) sequencing,17 4mC-Tet-assisted bisulfite sequencing
(4mC-TAB-seq),18 and engineered transcription-activator-like ef-
fectors,9 have been developed for detecting 4mC sites in the genome.
SMRT sequencing is a popular experimental approach that has been
successfully implemented in the identification of 4mC modifica-
tions. Regardless of the presence or absence of an assembled genome,
SMRT sequencing was designed to directly identify 4mC modifica-
tion sites. However, this approach is expensive and lacks applica-
bility to various species and large-scale genomes. Owing to this
limitation, the next-generation sequencing technique 4mC-TAB-
seq was designed to identify the genome-wide locations of 4mC
motifs. Another group detected specific 4mC sites utilizing engi-
neered transcription-activator-like effectors. Although these experi-
mental methods effectively facilitate the identification of 4mC sites,
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Figure 1. Overview of the Current Computational Approaches for 4mC Site Prediction

Establishing a useful predictor for 4mC sites often involves the following steps: (1) data processing; (2) feature extraction and optimization; (3) exploration of different ML

classifiers and selection of the appropriate classifier; and (4) model construction based on different approaches and web server development.
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they are still too laborious and expensive for genome-wide
applicability.

Computational approaches, particularly machine learning (ML)
methods, have emerged as effective 4mC site prediction tools in mul-
tiple species. iDNA4mC,19 a pioneer ML-based method that relies on
the chemical properties of nucleotides and accumulated nucleotide
frequency as features to build a support vector machine (SVM)-based
model, was developed in 2017. Two additional methods (4mCPred20

and 4mcPred-SVM21) were developed in 2018; five methods
(Meta-4mCpred,8 4mcPred-IFL,22 4mCCNN,23 4mCpred-EL,24 and
i4mCROSE25) were reported in 2019. By April 2020, five more
methods (iEC4mC-SVM,26 DNA4mC-LIP,27 4mcDeep-CBI,1

iDNA-MS,2 and i4mC-Mouse28) were reported. An overview of the
existing 4mC prediction methods is provided in Figure 1. Notably,
most of these methods were trained on the benchmark datasets con-
structed by Chen et al.,19 and few were validated based on indepen-
dent datasets constructed by Manavalan et al.8 Because of the recent
surge in the development of 4mC prediction tools, an unbiased eval-
uation of these methods using a well-constructed validation dataset is
necessary.

Accordingly, in this study, we considered eight species (Arabidopsis
thaliana, Caenorhabditis elegans, Drosophila melanogaster, Escheri-
chia coli, Fragaria vesca, Geoalkalibacter [Geoa.] subterraneus,
Geobacter [Geob.] pickeringii, and Mus musculus) having at least
two or more prediction models and summarized these methods in
terms of their underlying algorithms, performance evaluation
strategy, feature selection, and web server utility. In total, 12 4mC
prediction tools (iDNA4mC, 4mCPred_I, 4mCPred_II, 4mCpred-
IFL, 4mcPred-SVM, Meta-4mCpred, 4mCCNN, DNA4mC-LIP,
i4mC-ROSE, i4mc-Mouse, 4mCpred-EL, and iDNA-MS) are avail-
able as web servers. We carried out an unbiased evaluation of these
existing web-based 4mC prediction tools using our own constructed
validation set, which captures the overall 4mC and non-4mC pattern
in the whole-genome of each individual species. While some models
achieved excellent overall performance for some species, none was
suitable for Geoa. subterraneus, Geob. pickeringii, and M. musculus,
limiting their practical applicability. The model transferability and
non-transferability were explored, and suggestions for the design
and development of new prediction tools were also presented. The
presented analysis will facilitate efforts to develop improved tools
for the prediction of 4mC sites.

RESULTS
In the study, an unbiased performance evaluation of existing web-
based 4mC site prediction tools was performed based on validation
dataset analysis. The utilized validation dataset was different from a
previously reported and widely used dataset.8,24 Specifically, (1) un-
like negative samples (non-4mC) analyzed before, in the new dataset,
the negative samples were representative of the whole genome of each
species, and (2) the new dataset was several-fold larger than the pre-
viously reported dataset. Eight species for which at least two predic-
tion models reported are analyzed herein. Seven web servers (i.e., iD-
NA4mC, 4mCPred_I, 4mCPred_II, 4mcPred-SVM, Meta-4mCpred,
4mCCNN, and DNA4mC-LIP) were used to evaluate six species
(A. thaliana, D. melanogaster, C. elegans, E. coli, Geoa. subterraneus,
and Geob. pickeringii), two web servers (i4mC-ROSE and iDNA-MS)
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Figure 2. Comparison of the Prediction Performance of Six Species-Specific Web-Based 4mC Site Prediction Tools

The following validation datasets were used: (A)Geob. pickeringii; (B) E. coli; (C)C. elegans; (D) A. thaliana; (E)D.melanogaster; and (F)Geoa. subterraneus. AUC, area under

the curve; BACC, balanced accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, specificity.
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for F. vesca, and two web servers (4mCpred-EL and i4mC-Mouse) for
M. musculus. All parameters were set to default values, as specified on
their server. As an exception, the values reported for 4mCCNN were
based on personal communication (J. Khanal, Chongbuk National
University) because the web server was not active at the time of anal-
ysis. Computing the K-nearest neighbor (KNN) feature implemented
in 4mcPred-IFL took several hours, leading to time-out errors during
sequence submission. Therefore, 4mcPred-IFL was excluded from
our evaluation.

Evaluation of Species-Specific Performance of the Existing 4mC

Prediction Tools

Geob. pickeringii

The constructed validation set was 56-fold larger than the training set
used to evaluate seven different methods (see Materials and Methods
for details of the datasets and methods used). The performances of
different models are shown in Figure 2A and Table S1. iDNA4mC
achieved the best performance for four out of five metrics tested,
i.e., Matthews correlation coefficient (MCC), balanced accuracy
(BACC), specificity (Sp), and area under the curve (AUC) (0.118,
0.610, 0.687, and 0.653, respectively). These values were higher than
those of the second-best method (4mCPred_I) by 0.046, 3.48%,
16.4%, and 5.5%, respectively. 4mCPred_II performance was similar
to that of 4mCPred_I. The remaining four predictors (4mCCNN,
4mcPred-SVM, Meta-4mCpred, and DNA4mC-LIP) had much
lower BACC values (below 50.0%), and even the random classifier
408 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
performed better than these four predictors. To obtain statistically
meaningful differences between the top model and other methods,
AUC values for any two methods were compared, and the p value
was computed based on the two-tailed t test.29 At p < 0.01, iDNA4mC
significantly outperformed the other methods (Table S1).

Most of the existing method web servers implemented a species-spe-
cific prediction model. However, the iDNA4mC web server imple-
mented a single model based on a combined training dataset from
six different species. Therefore, the improved performance of
iDNA4mC may be associated with the larger training dataset.
Although iDNA4mC showed superior performance, it was still far
from satisfactory because, with a BACC of 61.0%, it was only slightly
better than the random classifier. Recently, Tang et al.27 evaluated
seven methods using a smaller validation dataset (200 4mCs
and 200 non-4mCs) and demonstrated a reasonable performance
for most tested methods (accuracy [ACC] range, 75.0%–85.0%).
However, in our study, such performance was not replicated when us-
ing a larger validation set.

E. coli

The validation dataset used was 153-fold larger than the training da-
taset. As shown in Figure 2B and Table S1, 4mCCNN achieved the
best performance for four out of five metrics, i.e., MCC, BACC, Sp,
and AUC (0.110, 0.793, 0.805, and 0.873, respectively). The values
were slightly higher than those of the second to fourth best predictors
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(DNA4mC-LIP, 4mCPred_II, and 4mcPred-SVM, accordingly), by
0.013–0.005, 0.5%–1.1%, 0.6%–8.3%, and 0.7%–1.5%, respectively.
Of the remaining three methods, Meta-4mCpred and 4mCPred_I
showed reasonable performance, with a BACC value of 77.0%, and
iDNA4mC showed the worst performance. At p < 0.01, the perfor-
mance of the best method (4mCCNN) was similar to that of the other
methods (DNA4mC-LIP, 4mCPred_I, 4mCPred_I, Meta-4mCpred,
and 4mcPred-SVM). This method significantly outperformed
iDNA4mC. Although all these methods were developed using a
smaller training dataset than that used in iDNA4mC (388 4mCs
and 388 non-4mCs) and with different approaches, most of them per-
formed reasonably well with respect to the genome-wide detection of
4mC sites.

C. elegans

The validation set used was 53-fold larger than the training dataset.
As shown in Figure 2C and Table S1, the methods were classified
based on performance into two groups, i.e., (1) four methods
(4mCCNN, 4mCPred_I, 4mCPred_II, and DNA4mC-LIP), which
showed similar performance in terms of MCC, BACC, and AUC
values (0.453–0.486, 81.9%–82.5%, and 89.2%–90.4%, respectively),
with no single best-performing method; and (3) the remaining three
methods (Meta-4mCpred, 4mcPred-SVM, and iDNA4mC), which
also achieved reasonable performance, with MCC and BACC values
in the ranges of 0.376–0.405 and 76.3%–78.1%, respectively. Howev-
er, the performance of group 2 methods was lower than that of
group 1 methods. A reasonably sized training dataset was used in
the model development for all methods (1,554 4mCs and 1,554
non-4mCs), and all methods were relatively robust for genome-
wide analyses.

A. thaliana

The validation set used was 64-fold larger than the training dataset.
As shown in Figure 2D and Table S1, DNA4mC-LIP showed the
best performance for all five metrics tested, i.e., MCC, BACC, sensi-
tivity (Sn), Sp, and AUC (0.561, 0.796, 0.778, 0.813, and 0.863, respec-
tively). These values were higher than those of the second-best
method (4mCPred_I) by 0.33, 1.6%, 1.01%, 1.5%, and 1.6%, respec-
tively. The other four methods performed similarly well, with
MCC, BACC, and AUC values in the ranges of 0.509–0.520,
77.0%–77.6%, and 84.3%–84.9%, respectively. iDNA4mC ranked at
the bottom, with a BACC of 0.609, which was slightly better than
that of the random predictor. At p < 0.01, the best method
(DNA4mC-LIP) significantly outperformed the other six methods
tested. Notably, DNA4mC-LIP considered the output of six different
methods (evaluated in the current study) for the final prediction.
Interestingly, this was the first time in the evaluation that a combined
approach significantly outperformed the individual predictor.

D. melanogaster

The validation set was 72-fold larger than the training dataset. As
shown in Figure 2E and Table S1, DNA4mC-LIP and 4mCCNN
had similar performances, withMCC, BACC, Sn, Sp, and AUC values
in the ranges of 0.498–0.515, 81.7%–82.2%, 88.5%–91.3%, 72.1–75.8,
and 89.5%–89.6%, respectively. Accordingly, it was difficult to select
the best method. Four methods (4mCPred_I, Meta-4mCpred,
4mcPred-SVM, and 4mCPred_II), ranked from third to sixth
(accordingly) showed similar performance with MCC, BACC, and
AUC values in the ranges of 0.449–0.490, 79.0%–80.9%, and
86.2%–88.5%, respectively. iDNA4mC ranked last, with a BACC
value of 64.3%, was only slightly better than that of the random pre-
dictor. All methods (except for iDNA4mC) used a reasonably sized
training dataset (1,769 4mCs and 1,769 non-4mCs), and these
methods performed exceptionally well in the evaluation, especially
when a larger validation set was used.

Geoa. subterraneus

The validation set used was 16-fold larger than the training dataset.
The performances of the different models are shown in Figure 2F
and Table S1. iDNA4mC showed the best performance for four out
of five metrics, i.e., MCC, BACC, Sp, and AUC (0.150, 0.575, 0.701,
and 0.611, respectively). These values were higher than those of the
second-best method (4mCPred_II) by 0.053, 2.6%, 21.9%, and
3.7%, respectively. Notably, the performance of 4mCCNNwas similar
to that of the second-best predictor, 4mCPred_II. The remaining four
predictors (4mCPred_I, 4mcPred-SVM, Meta-4mCpred, and
DNAs4mC-LIP) showed similar performances, with MCC and
BACC values in the ranges of 0.043–0.076 and 52.2%–53.9%, respec-
tively. At p < 0.01, iDNA4mC significantly outperformed the other six
methods. As mentioned above, the improved iDNA4mC perfor-
mance may be related to the larger training dataset size.

Although iDNA4mC was superior to other methods, it is not an
adequate method because the BACC value (57.5%) was only slightly
higher than that of the random classifier. Recently, Tang et al.27 eval-
uated seven different methods (excluding 4mCCNN) using a smaller
validation dataset (350 4mCs and 350 non-4mCs); most of the
methods showed reasonable performance (ACC range, 80.0%–
88.0%). However, such performance was not replicated when evalu-
ating larger validation sets in the current study.

M. musculus

The constructed validation set was 155-fold larger than the training
dataset, and it was used to evaluate 4mCpred-EL and i4mC-Mouse.
As shown in Figure 3A and Table S1, both methods showed a similar
performance, with MCC, BACC, and AUC values in the ranges of
0.018–0.020, 57.1%–57.8%, and 0.612–0.633, respectively. Further-
more, based on the Sn metric, both methods performed exceptionally
well, with values exceeding 77.0%. However, the Sp value was quite
low, indicating a potential drawback of the training dataset. Hence,
the practical applicability of the two methods was limited because
of higher false positives.

F. vesca

The constructed validation set was 32-fold larger than the training da-
taset, and it was used to evaluate i4mC-Rose and iDNA-MS. Detailed
performance information is shown in Figure 3B and Table S1.
Notably, iDNA-MS showed the best performance for four out of
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 409
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five metrics, i.e., MCC, BACC, Sn, and AUC (0.417, 0.847, 0.876, and
0.930, respectively). These values were higher than those of i4mC-
ROSE by 0.031, 4.5%, 11.8%, and 4.0%, respectively. At p < 0.01,
iDNA-MS significantly outperformed i4mC-ROSE. Interestingly,
iDNA-MS used a slightly smaller training dataset and a simpler
approach (single-feature model) than i4mC-Rose, yet it showed a
relatively better generalization capability.

Rationale for Model Transferability

To understand the generalization of the above methods, two-sample
logos30 were used, the statistically significant position-specific
composition of 4mCs and non-4mCs was determined, and compara-
tive analysis between training and validation sets was performed.
Interestingly, few nucleotide stretches or single nucleotides at specific
positions shared the same location in the training and validation data-
sets for E. coli, C. elegans, A. thaliana, D. melanogaster, and F. vesca.
For E. coli, nucleotides at positions 15–18 and 22–24 in positive sam-
ples, and those at positions 15, 16, and 22–24 in negative samples,
were in the same position in the two sets (Figures 4A and 4B). In
C. elegans, nucleotides at positions 15–18 and 22–33 in positive sam-
ples, and those at positions 17, 19, 20, and 22–32 in negative samples,
were in the same position in the two sets (Figures 4C and 4D). In
A. thaliana, nucleotides at positions 15–17, 22–25, and 27–31 in pos-
itive samples, and those at positions 17–20, 22–31, and 36–41 in nega-
tive samples, were in the same position in the two sets (Figures 4E and
4F). For D. melanogaster, nucleotides at positions 9–12, 19, 20, and
22–25 in positive samples, and those at positions 16, 17, and 22–25
in negative samples, were in the same position in the two sets (Figures
4G and 4H). For F. vesca, nucleotides at positions 22–30 and 33–41 in
positive samples, and those at positions 22–29 in negative samples,
were in the same position in the two sets (Figures 4I and 4J). The anal-
ysis revealed that the training dataset utilized for five species (E. coli,
C. elegans, A. thaliana, D. melanogaster, and F. vesca) covered posi-
tion-specific informative sequence patterns (4mCs and non-4mCs)
from their respective genomes or representative samples from the
entire genome. Hence, prediction models developed using these
smaller training datasets showed robustness or transferability during
the evaluation. It is therefore evident that the variations in method
ranking depend on the features used, the choice of classifier, and
the specific approach used.
410 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
Rationale for Model Non-transferability

To understand the failures of the existing
methods on three species (Geoa. subterraneus,
Geob. Pickeringii, and M. musculus), the same
approach, with two-sample logos,30 was used
as that for analyzing the rationale for model
transferability above. Most of the nucleotides
surrounding the cytosine at position 21 in both positive and nega-
tive samples differed completely in the training and validation sets
for Geoa. subterraneus (Figures 4K and 4L) and Geob. pickeringii
(Figures 4M and 4N). This indicated that the training dataset posi-
tion-specific sequence patterns (4mCs and non-4mCs) did not cover
informative sequence patterns from the entire genome or were not
representative of the entire genome. Consequently, the two species-
specific models suffered from generalization or had low robustness.
For M. musculus, a similar pattern was observed for upstream
positive samples, and a dissimilar pattern was found for negative
samples (Figures 4O and 4P). Notably, both 4mCpred-EL and
i4mC-Mouse were developed using a relatively small training data-
set; however, covering the informative sequence patterns around
non-4mCs in the entire genome was challenging. Hence, the
different analytical approaches had low Sp. Overall, the three
species-specific (for Geoa. subterraneus, Geob. pickeringii, and
M. musculus) models performed marginally better than the random
predictor, with a limited applicability.

Comparison of 4mC Site Prediction Web Servers

Because the user experience of web servers is important for experi-
mentalists, user-friendliness of the web servers was then evaluated.
Several limitations were noted. First, most of the existing web servers
(except for iDNA4mC and 4mCpred-EL) could only handle 41-bp
sequences with a cytosine in a central location; this limited the
application, particularly for genome-wide analyses. Second, the
number of FASTA sequences handled during a single request
varied. In particular, Meta-4mCpred, 4mCpred-EL, iDNA-MS,
i4mC-Mouse, i4mC-ROSE, and iDNA4mC handle up to 10,000 se-
quences; 4mCPred_I and 4mCPred_II handle up to 25,000 sequences;
DNA4mC-LIP handles up to 400 sequences; and 4mcPred-SVM han-
dles up to 5,000 sequences. Third, for batch processing, half of the
servers did not support the upload of the FASTA sequence files.
Only Meta-4mCpred, 4mcPred-SVM, DNA4mC-LIP, i4mC-Mouse,
iDNA-MS, and i4mC-Rose offered the option of uploading FASTA
sequence files. Fourth, the run times varied, ranging from 3 to
20 min. 4mCPred_I and 4mCPred_II were the only two servers
that could handle large numbers of sequences in a single run and
return the prediction results quickly (within 3 min). Finally, a user
lacking programming knowledge would not be able to use most of
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Figure 4. Statistically Significant Position-Specific Composition of 4mC and Non-4mC Sites

The compositional preferences of 4mCs and non-4mCs are denoted above and below the axis, respectively. Training and validation datasets for each species are compared.

(A and B) E. coli; (C and D)C. elegans; (E and F) A. thaliana; (G and H)D.melanogaster; (I and J) F. vesca; (K and L)Geoa. subterraneus; (M and N)Geob. pickeringii; (O and P)

M. musculus. (A, C, E, G, I, K, M, and O) Training datasets. (B, D, F, H, J, L, N, and P) Validation datasets.
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the existing methods because the whole genome has to be processed
into 41-bp fragments prior to analysis.

DISCUSSION
In the current study, eight species-specific computational tools for
predicting 4mC sites were surveyed and assessed herein. Some
methods for E. coli, A. thaliana, F. vesca, D. melanogaster, and
C. elegans showed an excellent overall performance. However, none
of the existing methods was suitable for Geoa. subterraneus, Geob.
pickeringii, and M. musculus, limiting their applicability. Model
robustness for five species and non-transferability to three species
could be explained by the position-specific compositional informa-
tion between training and validation sets. During our evaluation,
we observed that current methods have limitations. Seven predictors
used the same training dataset to develop six species-specific predic-
tion models, and 4mCpred-EL and i4mC-Mouse used a similar
training dataset. However, the training dataset between iDNA-MS
and i4mC-Rose was entirely different. Generally, construction of a
high-quality dataset is the first and most important step of ML-based
prediction model development.31 Surprisingly, none of the ensuing
methods tested the training dataset quality of the preceding methods,
and there was no attempt to enhance the training dataset quality.
Based on the evaluation, the proposed training dataset for Geoa.
subterraneus, Geob. pickeringii, and M. musculus did not cover the
informative sequence patterns around 4mC and non-4mC sites in
the whole genomes. Hence, no existing methods for these three spe-
cies replicated the training performance during our evaluation, indi-
cating that a high-quality dataset construction is important for the
development of future predictors. Interestingly, some methods for
the remaining five species replicated the training results during eval-
uation. Although the training dataset covered the informative
sequence patterns around 4mC and non-4mC sites for the entire
genome, it was quite small compared with the validation dataset
generated in the current study. Therefore, apart from dataset quality,
dataset size is another important factor that should be considered
when developing future predictors.

Based on single-feature encoding and SVM, Chen et al.19 reported the
optimal fragment length to 41 bp. Subsequent studies used this length
regardless of the species analyzed. In the future, different feature-en-
coding schemes and classifiers should be explored to identify the
optimal fragment length. Based on the non-transferability perfor-
mance of species-specific models tested with other species, Chen
et al.19 concluded the essentials of species-specific models for 4mC
site prediction. Subsequent studies followed species-specific model
concepts rather than attempting to develop a common 4mC site
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 411
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predictor using a multiple-species training dataset. Future studies in
this direction are needed to understand the necessity of species-spe-
cific models rather than a common predictor. Furthermore, in terms
of web server utility, most of the existing methods are not user-
friendly because they can handle only a small number of sequences
in a single run, require a long processing run time, lack the options
for result file download and genome-wide 4mC site screening, and
sometimes show time-out errors.

To improve the prediction performance, several points should be
considered. First, highly homologous sequences should be excluded
to reduce bias in the training dataset. Second, feature-encoding algo-
rithms focusing on position-specific information may be useful for
differentiating 4mCs from non-4mCs. Third, several feature-repre-
sentation schemes have been recently proposed, such as iterative
feature representation,22 adaptive feature learning,32 effective feature
representation,8 and fused multi-view information.33 Application of
two or more schemes to the same dataset and selection of the most
appropriate one may improve model robustness. Fourth, the reliable
and robust performance of deep-learning algorithm is often depen-
dent on a huge training dataset.34–37 Considering the large size of
the dataset constructed in the current study, it would be interesting
to apply the deep-learning algorithm to 4mC site prediction by
exploring different feature representation schemes, and to ultimately
compare the performance of deep-learning and conventional ML-
based models. Overall, this study will assist scientists with an interest
in the field of developing improved tools for the prediction of 4mC
sites.

MATERIALS AND METHODS
A General Framework of the Existing Computational

Approaches for 4mC Site Prediction

The general framework for the existing computational approaches is
shown in Figure 1 and comprises four steps. As the first step, a high-
quality 4mC dataset based on validated databases38,39 and literature
search is constructed. Because not many experimentally characterized
non-4mC sites are available, 41-bp fragments are generated from
chromosomal DNA, containing cytosine at the central position.
These fragments should not overlap with 4mC sites detected experi-
mentally and are considered negative (non-4mC) samples. To avoid
overestimation of the predictions, CD-HIT is generally applied to
discard redundant sequences.40 From the final dataset, 80% or 75%
of samples are randomly selected and treated as the training dataset
for prediction model development, and the remaining samples are
treated as an independent dataset to check model robustness. The
second step involves feature representation and optimization. For
the former, a variety of feature descriptors are generally used to
capture meaningful information that distinguishes between positive
and negative samples, including composition-based features41–44

(Kmer nucleotide frequency [Kmer], reverse complementary Kmer,
enhanced nucleic acid composition, composition of k-spaced nucleic
acid pairs, pseudo-dinucleotide composition [PseDNC], pseudo-
trinucleotide composition [PseTNC], pseudo k-tuple composition,
parallel correlation PseDNC, parallel correlation PseTNC, series cor-
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relation PseDNC, and series correlation PseTNC), position-specific-
based features45 (mononucleotide binary encoding [MBE], dinucleo-
tide binary encoding [DBE], numerical representation of nucleotides,
position-specific trinucleotide propensity, electron-ion interaction
pseudopotential [EIIP]), physicochemical property-based features46

(ring-function hydrogen chemical properties and accumulated nucle-
otide frequency [RFHCP], dinucleotide physicochemical properties
[DPCP], trinucleotide physicochemical properties [TPCP], dinucleo-
tide-based autocovariance [DAC], and dinucleotide-based cross-
correlation [DCC]), and evolutionary-based features (KNN features).
To discard irrelevant and redundant features from the original feature
descriptor, feature optimization using sequential forward search
(SFS) or other approaches is generally performed.47–49 In the third
step, the prediction model is constructed based on the exploration
of different classifiers and different approaches. Specifically, the
optimal features from each descriptor (from the second step) are
input to several ML classifiers (SVM, extreme gradient boosting,
deep learning, and random forest) to develop a prediction model.
In the fourth step, while developing the prediction model, different
types of approaches are explored, including meta-predictor,33,50

feature representation learning,51,52 iterative feature representa-
tion,22,53 single descriptor-based model,54,55 ensemble model,56–58

and stacking approach.59,60 Finally, the web server is constructed
based on the final prediction model, to predict whether a specific
sequence represents a 4mC or non-4mC sample.

Validation Dataset Construction

To evaluate the performance of the existing 4mC prediction tools and
to enable a fair comparison between them, positive and negative
samples were constructed in the current study. First, positive samples
were extracted for seven species (C. elegans, D. melanogaster,
A. thaliana, Geoa. subterraneus, Geob. pickeringii, E. coli, and
M. musculus) from the MethSMRT database,38 which includes data
for 156 species (149 prokaryotes and seven eukaryotes). Epigenetic
modification (4mC or N6-methyladenine [6mA]) data denoted in
MethSMRT were compiled either from the Sequence Read Archive
or NCBI Gene Expression Omnibus. Second, the downloaded raw
data fromMethSMRT were processed. Sequences lacking relevant in-
formation (i.e., with 6mA and 4mC sites lacking any modification
[modQV] score) were excluded, yielding 41-bp sequences containing
central cytosine (i.e., 4mC sites) with varying modQV scores. For F.
vesca, sorted data (41-bp fragments with different modQV scores)
were downloaded from the MDR database.39 Selecting the optimal
modQV threshold was challenging, as thresholds of 2061 and 30,62

corresponding to p values of 0.01 and 0.001, respectively, are recom-
mended in different studies. The existing methods utilized positive
samples with a modQV greater than 30. However, average cutoffs
greater than or equal to 25 were used for six species (C. elegans,
D. melanogaster, A. thaliana, Geoa. subterraneus, Geob. pickeringii,
and F. vesca), and thresholds greater than or equal to 20 were used
for the remaining two species (E. coli andM. musculus). As the anal-
ysis of the latter two species at the original cutoff (R25) resulted in a
very small positive sample size, a slightly smaller modQV cutoff value
was used. Finally, positive samples for each species that shared greater



Table 1. Summary of the Newly Constructed Validation Dataset

Species Positive Negative

E. colia 670 118,266

C. elegans 19,289 144,553

D. melanogaster 45,809 209,690

A. thaliana 73,785 178,711

Geoa. subterraneus 17,573 11,404

Geob. pickeringii 4,445 60,005

M. musculusa 942 247,823

F. vesca 21,350 290,857

The first column represents species name. The second and third columns respectively
represent positive and negative samples constructed in this study.
amodQV cutoff slightly reduced for the positive samples.
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than 75% sequence identity with the training dataset used by the ex-
isting methods were removed using CD-HIT.40

To construct the negative samples, the same protocol as that used in
previous studies was followed.8,25 Briefly, the entire single circular
chromosome was considered for three species (E. coli, Geoa. subterra-
neus, and Geob. pickeringii), and 41-bp fragments with a central
cytosine were generated. For species with multiple chromosomes,
similar fragments were generated and 50% of sequences from
each chromosome were randomly selected. In this manner, all
chromosomes for the remaining species (C. elegans, D. melanogaster,
A. thaliana, M. musculus, and F. vesca) were covered. Subsequently,
sequences that shared more than 75% sequence identity with the
training dataset used by the existing methods, the above generated
positive samples, and positive samples with low modQV values
were excluded. The validation dataset can be downloaded at http://
thegleelab.org/Meta-4mCpred/EvaluationData.html.

A statistical summary of positive and negative samples for each spe-
cies is shown in Table 1. On average, the numbers of positive and
negative samples generated in the current study were 14-fold and
137-fold higher than the numbers of respective samples used in the
training dataset.

Existing 4mC Prediction Methods

ML algorithms have been widely applied in various fields,63–67 such as
post-replication DNA modification site predictions, particularly
4mC, 6mA, and 5-hydroxymethylcytosine sites.2,56,68 Table 2 sum-
marizes the existing 4mC prediction methods that utilize a wide range
of ML algorithms, feature encodings, and different approaches. The
methods are described in detail below, according to the year of
publication.

4mC Prediction Methods Developed in 2017

iDNA4mC. Chen et al.19 proposed iDNA4mC, the first method for
4mC site prediction. First, the authors constructed a nonredundant
training dataset for six species, where each species was represented
by an equal number of positive (4mCs) and negative (non-4mCs)
samples. The positive samples were obtained from the MethSMRT
database; the fragment length was 41 bp, with a cytosine base at po-
sition 21 and a modQV score greater than 30. Negative samples were
constructed from the respective genomes; the fragment length and
cytosine positioning were the same as in the positive samples. Most
importantly, the fragments were not detected by the SMRT
sequencing technology. To reduce the bias and over-fitting, the au-
thors applied CD-HIT40 and excluded sequences that shared more
than 80% sequence identity with sequences in each species. They
then experimented with the different sequence lengths and evaluated
the model performance. Eventually, they identified 41 bp as the
optimal length for consistently obtaining the best performance,
regardless of species. Surprisingly, the same optimal sequence length
has been used in later studies69,70 of other species.24,25 Ultimately, a
set of 3,108, 3,538, 3,956, 776, 1,812, and 1138 samples for C. elegans,
D. melanogaster, A. thaliana, E. coli, Geoa. subterraneus, and Geob.
pickeringii species, respectively, was generated. Herein, this dataset
is referred to as the “Chen dataset.”

RFHCP encoding was then applied to convert DNA samples into 164-
dimensional feature vectors. Then, SVMwas utilized to develop a pre-
diction model independently for each species using the leave-one-out
cross-validation (LOOCV) procedure. iDNA4mC showed an average
ACC, MCC, Sn, and Sp of 0.601, 0.800, 0.808, and 0.792, respectively.
Detailed information on the performance of iDNA4mC and other
methods (listed below) for each species is provided in Table 3. This
prediction model is freely accessible at http://lin-group.cn/server/
iDNA4mC. Furthermore, the authors performed cross-species valida-
tion (via species-specific prediction and testing other species). The
analysis revealed that the individual species model was not transfer-
rable to other species, thus indicating the need for species-specific
4mC prediction models. Notably, iDNA4mC served as a base for
the development of later prediction models.

4mC Prediction Methods Reported in 2018

Twomethods were proposed in 2018, relying on different approaches
to predict 4mC sites in different species. Both methods utilize the
Chen dataset and SVM for model construction.

4mCPred. He et al.20 proposed 4mCPred that consists of two pre-
diction models (4mCPred_I and 4mCPred_II) built using different
input features. 4mCPred_I was developed using single-feature de-
scriptors, namely, position-specific trinucleotide propensity (PSTNP)
features that achieved accuracies of 87.0%, 86.94%, 82.25%, 94.46%,
89.95%, and 90.69% for C. elegans, D. melanogaster, A. thaliana,
E. coli, Geoa. subterraneus, and Geob. pickeringii, respectively.
4mCPred_II was developed using hybrid features (a combination of
PSTNP and EIIP), where the optimal feature set was identified by a
two-step feature selection protocol, with the features ranked based
on F-scores, followed by SFS using SVM. 4mCPred_II achieved accu-
racies of 87.71%, 87.79%, 83.37%, 94.97%, 91.04%, and 90.89% for
C. elegans, D. melanogaster, A. thaliana, E. coli, Geoa. subterraneus,
and Geob. pickeringii, respectively. The performance of both
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 413
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Table 2. List of Currently Available Tools for 4mC Sites Prediction Assessed in This Study

Year Toola Classifier Training/Independent Dataset Size Features Web Server Evaluation Strategy File Upload

2017 iDNA4mCb SVM Chen dataset/– RFHCP yes LOOCV no

2018
4mCPredb SVM Chen dataset/– PSTNP, EIIP yes LOOCV no

4mcPred-SVMb SVM Chen dataset/– Kmer, MBE, DBE, LPDF yes 10-fold CV yes

2019

Meta-4mCpredb RF, ERT, GB, SVM Chen dataset/Manavalan dataset
Kmer, MBE, DPE, LPDF,
RFHCP, DPCP, TPCP

yes 10-fold CV yes

4mcPred-IFLb SVM Chen dataset/–
Kmer+MBE, DBE+LPDF, PCPs,
PseDNC, KNN, EIIP, MMI, RFHCP

yes 10-fold CV yes

4mCCNNb CNN Chen dataset/– MBE yesc 10-fold CV –

4mCpred-ELd RF, GB, ERT, SVM
(800 4mCs and 800 non-4mCs)/
(180 4mCs and 180 non-4mCs)

Kmer, DPE+LPDF, RFHC, EIIP,
MBE, DPCP, TPCP

yes 10-fold CV yes

i4mC-ROSEe RF
(4854 4mCs and 4854 non-4mCs)/
(1617 4mCs and 1617 non-4mCs)

KSNC, MBE, EIIP yes 10-fold CV yes

2020

iEC4mC-SVMd SVM
(388 4mCs and 388 non-4mCs)/
(134 4mCs and 134 non-4mCs)

MBE, RFHC, DAE, X-k-YCF, Kmer – 10-fold CV –

DNA4mC-LIPd – –/Manavalan dataset integration of six existing predictors yes
independent
evaluation

yes

4mcDeep-CBId CNN, BLSTM (1,173 4mCs and 6,635 non-4mCs)/ – same as used in 4mcPred-IFL – 3-fold CV –

iDNA-MSf RF 7,899 samples/7,898 samples Kmer, RFHCP, MBE yes 5-fold CV yes

i4mC-Moused RF
(746 4mCs and 746 non-4mCs)/
(160 4mCs and 160 non-4mCs)

Kmer, KSNC, MBE, EIIP yes 10-fold CV yes

Chen dataset contains C. elegans (4mCs, 1,554; non-4mCs, 1,554), D. melanogaster (4mCs, 1,769; non-4mCs, 1,769), A. thaliana (4mCs, 1,978; non-4mCs, 1,978), E. coli (4mCs, 388;
non-4mCs, 388), Geoa. subterraneus (4mCs, 906; non-4mCs, 906), and Geob. pickeringii (4mCs, 569; non-4mCs, 569). Manavalan dataset contains C. elegans (4mCs, 750; non-4mCs,
750), D. melanogaster (4mCs, 1,000; non-4mCs, 1,000), A. thaliana (4mCs, 1,250; non-4mCs, 1,250), E. coli (4mCs, 134; non-4mCs, 134), Geoa. subterraneus (4mCs, 350; non-4mCs,
350), and Geob. pickeringii (4mCs, 200; non-4mCs, 200). SVM, support vector machine; RF, random forest; GB, gradient boosting; CNN, convolutional neural network; BLSTM,
bidirectional long short-term memory network; ERT, extremely randomized tree; RFHCP, ring-function-hydrogen-chemical properties, PSTNP, position-specific trinucleotide pro-
pensity; EIIP, electron-ion interaction pseudopotential; Kmer, Kmer nucleotide frequency; MBE, mononucleotide binary encoding, DBE, dinucleotide binary encoding, LPDF, local
position-specific dinucleotide frequency; DPE, dinucleotide binary profile encoding; DPCP, dinucleotide physicochemical properties; TPCP, trinucleotide physicochemical properties;
PCP, physicochemical property; PseDNC, pseudo-dinucleotide composition; KNN, K-nearest neighbor; KSNC, k-space nucleotide composition; DAC, dinucleotide physicochemical
properties autocorrelation; X-k-YCF, Xmer-kGap-Ymer composition frequency; ANF, accumulated nucleotide frequency; LOOCV, leave-one-out cross-validation; CV,
cross-validation.
aThe listed tool URL addresses are as follows: iDNA4mC, http://lin-group.cn/server/iDNA4mC/; 4mCPred, http://server.malab.cn/4mCPred/; 4mcPred-SVM, http://server.malab.cn/
4mcPred-SVM/; Meta-4mCpred, http://thegleelab.org/Meta-4mCpred/; 4mcPred-IFL, http://server.malab.cn/4mcPred-IFL/; 4mCCNN, https://home.jbnu.ac.kr/NSCL/4mCCNN.
htm; 4mCpred-EL, http://thegleelab.org/4mCpred-EL/; i4mC-ROSE, http://kurata14.bio.kyutech.ac.jp/i4mC-ROSE/; DNA4mC-LIP, http://i.uestc.edu.cn/DNA4mC-LIP/; iDNA-
MS, http://lin-group.cn/server/iDNA-MS/; i4mC-Mouse, http://kurata14.bio.kyutech.ac.jp/i4mC-Mouse/.
bTools contain six species-specific prediction models, namely A. thaliana, C. elegans, D. melanogaster, E. coli, Geoa. subterraneus, and Geob. pickeringii.
cWeb server is not functional.
dTool contains one prediction model to compute 4mC site from specific species.
eTool contains two prediction models for F. vesca and Rosa chinensis.
fTool contains four different species-specific models, namely F. vesca, Casuarina equisetifolia, Saccharomyces cerevisiae, and Ts. SUP5-1.
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4mCPred models is superior to that of iDNA4mC. They are freely
accessible at http://server.malab.cn/4mCPred/index.jsp.

4mcPred-SVM. Wei et al.21 proposed another predictor, 4mcPred-
SVM. The authors generated a 700D feature vector by integrating
four different sequence-based features, namely Kmer (336D), MBE
(164D), DBE (160D), and local position-specific dinucleotide fre-
quency (LPDF) (40D). A two-step feature selection protocol was
applied to the 700D vector, and optimal feature subsets were identi-
fied individually for six species, yielding the average ACC, MCC,
Sn, and Sp values of 0.654, 0.827, 0.834, and 0.821, respectively.
Furthermore, the authors showed that the performance of 4mCPred
was overestimated because of over-fitting. Hence, they rebuilt the
4mCPred model. The reported that metrics for the six species, i.e.,
414 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
the average ACC, MCC, Sn, and Sp, were 0.637, 0.817, 0.815, and
0.818, respectively. Overall, the performance of 4mcPred-SVM was
superior to that of the above two methods. 4mcPred-SVM is publicly
accessible at http://server.malab.cn/4mcPred-SVM.

4mC Prediction Methods Reported in 2019

Five methods were proposed in 2019. Of these, three methods were
proposed simultaneously using different approaches that predict
4mC sites in six different species. Notably, all of these methods essen-
tially relied on the same Chen dataset for prediction model
development.

Meta-4mCpred. Manavalan et al.8 reported the first meta-predictor,
called Meta-4mCpred. First, 14 feature descriptors were generated by
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Table 3. The Existing Method Performances Reported in the Literature Based on the Training and Independent Test

Species Methods

Training Independent test

MCC ACC Sn Sp MCC ACC Sn Sp

C. elegans

iDNA4mC 0.572 0.786 0.797 0.775 – – – –

4mCPred_I 0.740 0.870 0.871 0.869 – – – –

4mCPred_II 0.750 0.877 0.875 0.879 – – – –

4mcPred-SVM 0.631 0.815 0.824 0.807 – – – –

Meta-4mCpred 0.652 0.826 0.840 0.812 0.741 0.870 0.843 0.897

4mcPred-IFL 0.761 0.880 0.890 0.871 – – – –

4mCCNN 0.694 0.842 0.895 0.825 – – – –

DNA4mC-LIP – – – – 0.786 0.893 0.885 0.901

4mcDeep-CBI 0.850 0.929 0.949 0.894 – – – –

D. melanogaster

iDNA4mC 0.625 0.812 0.833 0.791 – – – –

4mCPred_I 0.740 0.869 0.869 0.869 – – – –

4mCPred_II 0.760 0.878 0.876 0.880 – – – –

4mcPred-SVM 0.661 0.830 0.838 0.822 – – – –

Meta-4mCpred 0.685 0.842 0.831 0.854 0.812 0.906 0.913 0.899

4mcPred-IFL 0.745 0.873 0.865 0.88 – – – –

4mCCNN 0.687 0.854 0.864 0.854 – – – –

DNA4mC-LIP – – – – 0.849 0.924 0.943 0.905

A. thaliana iDNA4mC 0.519 0.760 0.757 0.762 – – – –

4mCPred_I 0.650 0.823 0.813 0.832 – – – –

4mCPred_II 0.670 0.834 0.830 0.838 – – – –

4mcPred-SVM 0.573 0.787 0.778 0.796 – – – –

Meta-4mCpred 0.584 0.792 0.761 0.822 0.711 0.855 0.876 0.834

4mcPred-IFL 0.644 0.822 0.803 0.840 – – – –

4mCCNN 0.622 0.797 0.804 0.792 – – – –

DNA4mC-LIP – – – – 0.720 0.859 0.883 0.836

E. coli

iDNA4mC 0.598 0.799 0.820 0.778 – – – –

4mCPred_I 0.890 0.945 0.956 0.933 – – – –

4mCPred_II 0.900 0.950 0.951 0.949 – – – –

4mcPred-SVM 0.666 0.833 0.858 0.807 – – – –

Meta-4mCpred 0.697 0.848 0.869 0.827 0.650 0.825 0.806 0.843

4mcPred-IFL 0.789 0.894 0.907 0.881 – – – –

4mCCNN 0.688 0.859 0.881 0.789 – – – –

DNA4mC-LIP – – – – 0.676 0.837 0.803 0.871

iEC4mC-SVM 0.711 0.854 0.820 0.889 0.665 0.832 0.851 0.813

Geoa. subterraneus

iDNA4mC 0.630 0.815 0.822 0.808 – – – –

4mCPred_I 0.800 0.900 0.899 0.900 – – – –

4mCPred_II 0.820 0.910 0.912 0.909 – – – –

4mcPred-SVM 0.674 0.837 0.840 0.834 – – – –

Meta-4mCpred 0.711 0.855 0.856 0.854 0.701 0.850 0.817 0.883

4mcPred-IFL 0.773 0.887 0.886 0.887 – – – –

4mCCNN 0.704 0.860 0.852 0.843 – – – –

DNA4mC-LIP – – – – 0.674 0.837 0.814 0.860

(Continued on next page)
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Table 3. Continued

Species Methods

Training Independent test

MCC ACC Sn Sp MCC ACC Sn Sp

Geob. pickeringii

IDNA4mC 0.663 0.831 0.824 0.838 – – – –

4mCPred_I 0.810 0.907 0.900 0.914 – – – –

4mCPred_II 0.820 0.909 0.903 0.915 – – – –

4mcPred-SVM 0.721 0.860 0.863 0.858 – – – –

Meta-4mCpred 0.782 0.891 0.884 0.898 0.700 0.850 0.835 0.865

4mcPred-IFL 0.812 0.906 0.902 0.910 – – – –

4mCCNN 0.750 0.872 0.858 0.893 – – – –

DNA4mC-LIP – – – – 0.624 0.811 0.773 0.849

M. musculus
4mCpred-EL 0.591 0.795 0.804 0.787 0.596 0.798 0.804 0.792

i4mC-Mouse 0.651 0.793 0.683 0.902 0.633 0.816 0.807 0.825

F. vesca
iDNA-MS 0.868 0.934 0.943 0.925 0.648 0.824 0.830 0.818

i4mC-ROSE 0.545 0.767 0.635 0.899 0.601 0.797 0.721 0.873

The first and second columns respectively represent the species and method names. The third and fourth columns respectively represent cross-validation performance reported in the
literature based on the training dataset and independent test performance reported in the literature. MCC, Matthews correlation coefficient; ACC, accuracy; Sn, sensitivity; Sp, spec-
ificity.
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exploring seven feature descriptors (Kmer, MBE, DBE, LPDF, RHCP,
DPCP, and TPCP) and seven hybrid features (different combinations
of the seven feature descriptors). Consequently, 14 feature descriptors
were input into four different ML classifiers (RF, SVM, gradient
boosting [GB], and extremely randomized tree [ERT]) and the corre-
sponding optimal models were developed. From these models, the
predicted probabilities of 4mCs were again input to SVM, and the
final predictor was developed. Unlike other existing methods, an in-
dependent dataset was constructed using the same protocol as that
described for iDNA4mC, comprising 1,500, 2,000, 2,500, 268, 700,
and 400 samples for C. elegans, D. melanogaster, A. thaliana,
E. coli, Geoa. subterraneous, and Geob. pickeringii, respectively.
Among the individual species samples, 4mCs and non-4mCs were
equally distributed, and these data were used to check model transfer-
ability. For the six species, Meta-4mCpred achieved the averageMCC,
ACC, Sn, and Sp values of 0.685, 0.842, 0.884, and 0.898, respectively,
during cross-validation. The corresponding values for independent
evaluations were 0.719, 0.859, 0.848, and 0.879, respectively. Both
training and independent evaluations revealed that Meta-4mCpred
outperformed the other three predictors. Notably, this was the first
instance where different methods were evaluated using an indepen-
dent dataset for six different species. Meta-4mCpred is freely acces-
sible at http://thegleelab.org/Meta-4mCpred.

4mcPred-IFL. Wei et al.22 used an iterative feature representation
(IFR) algorithm and developed a novel predictor, 4mcPred-IFL.
The authors considered eight different feature descriptors, including
a combination of Kmer and MBE, a combination of DPE and LPDF,
PCP, PseDNC, KNN, EIIP, multivariate mutual information, and
RFHCP. Essentially, IFR involved three steps, i.e., (1) a two-step
feature selection protocol and optimization of each feature descriptor,
for which a corresponding optimal feature set-based SVMmodel was
416 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
developed; (2) concatenation of the predicted probabilities of 4mCs
from eight models (step 1), which was considered a new feature
vector; and (3) training of the 8D vector (step ) using SVM, which
generated a new model for which the predicted probabilities of
4mCs were combined with the original 8D to establish a new 9D vec-
tor. This process was repeated until the performance reached conver-
gence. For the six species, 4mCpred-IFL achieved the average MCC,
ACC, Sn, and Sp values of 0.754, 0.877, 0.876, and 0.878, respectively.
The performance of 4mCpred-IFL was better than that of iDNA4mC,
4mCPred, and 4mcPred-SVM. This indicated that the features
learned through the iterative process had a reasonable capacity to
discriminate between positive and negative samples. 4mcPred-IFL
is publicly accessible at http://server.malab.cn/4mcPred-IFL.

4mCCNN. Khanal et al.23 proposed 4mCCNN, the first deep-
learning-based method, based on MBE encoding and a convolutional
neural network (CNN) classifier. The authors applied 10-fold cross-
validation and optimized CNN regularization parameters. For the
six species, 4mCCNN achieved the average MCC, ACC, Sn, and Sp
values of 0.691, 0.847, 0.858, and 0.893, respectively. The cross-valida-
tion performance of 4mCCNN was superior to that of iDNA4mC,
4mCPred, and 4mcPred-SVM. The authors also constructed a web
server, accessible at https://home.jbnu.ac.kr/NSCL/4mCCNN.htm.
However, the 4mCCNN server was out of service during the prepara-
tion of the current manuscript.

4mCpred-EL. Manavalan et al.24 proposed 4mCpred-EL, the first
4mC site prediction method for M. musculus. First, the training
and independent datasets were constructed, comprising 1,600 and
320 samples, respectively; each dataset contained an equal number
of positive and negative samples. Notably, none of the samples shared
greater than 80% sequence identity with other samples in the dataset.

http://thegleelab.org/Meta-4mCpred
http://server.malab.cn/4mcPred-IFL
https://home.jbnu.ac.kr/NSCL/4mCCNN.htm
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Subsequently, seven different feature descriptors (MBE, DPCP, EIIP,
Kmer, a combination of DPE and LPDF, RFHCP, and TPCP) and
four different ML classifiers (RF, GB, ERT, and SVM) were used to
develop a prediction model. The model was developed with the
following steps: (1) development of 28 prediction models based on
seven descriptors and four classifiers, combining the predicted prob-
abilities of 4mCs, and considering them a new feature vector; and (ii)
inputting the 28D vector into four classifiers again, with the majority
voting from the ensemble classifiers considered as the final output.
4mCpred-EL yielded MCC, ACC, Sn, and Sp values of 0.591, 0.795,
0.804, and 0.787, respectively, during cross-validation. The corre-
sponding metrics for independent evaluation were 0.596, 0.798,
0.804, and 0.792, respectively. This method is publicly accessible at
http://thegleelab.org/Meta-4mCpred/.

i4mC-ROSE. Hasan et al.25 proposed i4mC-ROSE, the first 4mC site
prediction method for F. vesca and Rosa chinensis. Because the cur-
rent study focuses on F. vesca, only information for this species model
is provided. The authors constructed nonredundant training and in-
dependent datasets comprising 9,708 and 3,234 samples, respectively;
positive samples were obtained from the MDR database,39 and nega-
tive samples were derived as described for iDNA4mC.19 Notably,
none of the samples shared greater than 65% sequence identity
with other samples. Subsequently, six different feature descriptors
(K-space nucleotide composition [KSNC], MBE, EIIP, Kmer,
DPCP, and TPCP) and RF classifier were used for model construc-
tion, which was achieved as follows: (1) development of RF-based
six descriptor models; (2) integration of the predicted probabilities
of 4mCs using a linear regression approach; and (3) choosing three
models, KSNC, MBE, and EIIP, which contributed 25%, 45%, and
30%, respectively, for the final prediction. i4mC-ROSE achieved
MCC, ACC, Sn, and Sp values of 0.545, 0.767, 0.635, and 0.899,
respectively, during cross-validation. The corresponding metrics for
independent evaluations were 0.601, 0.797, 0.721, and 0.873, respec-
tively (Table 3). i4mC-ROSE is freely accessible at http://kurata14.bio.
kyutech.ac.jp/i4mC-ROSE/.

4mC Prediction Methods Developed in 2020

As of April 2020, five additional methods were published for different
species and approaches. A brief description of each method is given
below.

iEC4mC-SVM. Lv et al.26 developed a predictor for E. coli, termed
iEC4mC-SVM. The authors used the E. coli dataset of Chen et al.19

for model building and that of Manavalan et al.8 for checking model
transferability. Using the training dataset, the authors considered six
different descriptors, namely, MBE, DBE, DAC, DCC, RFHCP, and
Xmer-kGap-Ymer composition frequency. All of these descriptors
were concatenated to generate a 10060D feature vector. Subse-
quently, a light gradient-boosting machine was applied to rank the
features; the top 250 features were selected from the sorted features,
ranked from highest to lowest. SFS was applied to these 250D fea-
tures. An optimal feature set (187D) was thus obtained, with the
MCC, ACC, Sn, and Sp values of 0.711, 0.854, 0.820, and 0.889,
respectively, during cross-validation. The corresponding metrics
for independent evaluations were 0.665, 0.832, 0.851, and 0.813,
respectively. The performance of iEC4mC-SVM was similar to
that of Meta-4mCpred, but the metrics were significantly worse
than those of the other three methods (4mCPred, 4mcPred-IFL,
and 4mcPred-SVM) during cross-validation. However, iEC4mC-
SVM was slightly better than 4mCPred and Meta-4mCpred, and
significantly better than 4mcPred-IFL and 4mcPred-SVM during in-
dependent assessment. Unfortunately, iEC4mC-SVM is not publicly
available.

DNA4mC-LIP. Tang et al.27 proposed a novel meta-predictor, called
DNA4mC-LIP. Instead of developing a prediction model based on a
training dataset, the authors utilized an independent dataset (for six
species) of Manavalan et al.8 and generated predicted probabilities
of 4mC scores from the six existing models, namely, iDNA4mC,
4mCPred_I, 4mCPred_II, 4mcPred-SVM, 4mcPred-IFL, and Meta-
4mCpred. Subsequently, the predicted probabilities of 4mCs were in-
tegrated using an optimal weight to make a final prediction. For each
species, the number of existing predictor contributions varied signif-
icantly. In DNA4mC-LIP, the authors did not use any ML classifiers.
Instead, they used existing ML-based prediction methods; hence, the
DNA4mC-LIP method is classified as an ML-based method in the
current study. For the six species, DNA4mC-LIP achieved the average
MCC, ACC, Sn, and Sp values of 0.721, 0.860 0.850, and 0.870,
respectively. The predictor performs slightly better than the individ-
ual predictors. DNA4mC-LIP is accessible at http://i.uestc.edu.cn/
DNA4mC-LIP/.

4mcDeep-CBI. Zeng et al.1 developed 4mCDeep-CBI, a predictor
for E. coli. The authors constructed a new imbalanced dataset con-
taining 11,173 4mCs and 6635 non-4mCs. Subsequently, the authors
used eight feature descriptors (as for 4mCpred-IFL) input into CNN
and a bidirectional long short-termmemory network for the develop-
ment of the final prediction model. 4mcDeep-CBI achieved MCC,
ACC, Sn, and Sp values of 0.850, 0.929, 0.949, and 0.894 during
cross-validation, with a significantly better performance than
4mCpred-IFL. Although the authors provided a standalone version
of 4mcDeep-CBI (https://github.com/mat310/4mcDeep), they did
not provide detailed information for executing this program in the
READERME.md file. Therefore, this method was excluded from the
current evaluation.

iDNA-MS. Lv et al.2 proposed iDNA-MS, a method that predicts not
only 4mC sites but also 5-hydroxymethylcytosine and 6mA sites. In
total, the authors reported 17 prediction models for different species.
Considering the F. vesca-based model, the authors generated 7,899
and 7,898 samples, and used them for training and independent eval-
uations, respectively. Positive samples were extracted from MDR
database, and negative samples were generated as in the iDNA4mC
study.19 None of the sequences in the dataset shared greater than
80% sequence identity with other sequences. The RF-based MBE
descriptor achieved MCC, ACC, Sn, and Sp values of 0.868, 0.934,
0.943, and 0.925, respectively. The corresponding metrics for
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independent evaluations were 0.648, 0.824, 0.830, and 0.818, respec-
tively. iDNA-MS is publicly available at http://lin-group.cn/server/
iDNA-MS.

i4mC-Mouse. Hasan et al.28 proposed a second tool for 4mC site
prediction for M. musculus, termed i4mC-Mouse. The authors
generated a stringent dataset (1,812 samples) by applying a CD-
HIT of 0.7 using a previously reported 4mCpred-EL nonredundant
dataset. Of these samples, 1,492 were treated as a training dataset for
model building, and the remaining 320 were considered as an inde-
pendent dataset for model evaluation. Subsequently, six different
feature descriptors (MBE, KSNC, EIIP, DBE, Kmer, and DPCPs)
and RF classifier were used for model construction by following
the subsequent steps (1) development of RF-based six-descriptor-
based models; (2) integration of the predicted probabilities of
4mCs via a linear regression approach; and (3) final estimation, us-
ing only four models, where Kmer, KSNC, MBE, and EIIP contrib-
uted 10%, 45%, 25%, and 20%, respectively. i4mC-Mouse achieved
MCC, ACC, Sn, and Sp values of 0.651, 0.793, 0.683, and 0.902,
respectively, during cross-validation, and the corresponding metrics
for independent evaluation were 0.633, 0.816, 0.807, and 0.825,
respectively. This method performed marginally better than
4mCpred-EL on both cross-validation and independent evaluation.
i4mC-Mouse is freely available at http://kurata14.bio.kyutech.ac.jp/
i4mC-Mouse/.

The comparison of ML algorithms and their performances with those
of the existing methods (Tables 2 and 3) revealed the following sim-
ilarities and dissimilarities. (1) Five methods (iDNA4mC, 4mCPred,
4mcPred-SVM, 4mcPred-IFL, and iEC4mC-SVM) used the SVM
classifier; three algorithms (i4mC-ROSE, iDNA-MS, and i4mC-
Mouse) used RF; two methods (4mCCNN and 4mcDeep-CBI)
applied deep learning; and the remaining methods (Meta-4mCpred
and 4mCpred-EL) utilized multiple ML classifiers. (2) Two methods
(iDNA4mC ad 4mCCNN) used single-feature encoding, whereas the
remaining methods (except for DNA4mC-LIP) explored multiple-
feature encodings. While developing a prediction model, most
methods used feature-selection techniques and identified the optimal
feature set during model development. (3) Five existing models
(Meta-4mCpred, 4mCpred-EL, i4mC-Mouse, iDNA-MS, and
i4mC-Rose) evaluated method transferability using an independent
dataset, whereas the remaining methods focused on improving the
training ACC. (4) Based on the training ACC reported in the litera-
ture, 4mcDeep-CBI achieved the best performance for C. elegans;
4mCPred_II had the best performance for five different species
(D. melanogaster, A. thaliana, E. coli, Geoa. subterraneus, and
Geob. pickeringii); 4mCpred-EL and i4mC-Mouse achieved similar
performance for M. musculus; and iDNA-MS achieved the best
performance for F. vesca.

Evaluation Metrics

To quantify and evaluate the performance of the developed models,
five commonly used evaluation metrics were used:71–74 Sn, Sp,
ACC, BAAC, and MCC. Each metric is defined as follows:
418 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ACC =
TP +TN

TP +TN + FP + FN

Sn=
TP

TP + FN

Sp=
TN

TN + FP

BACC =
Sn+ Sp

2

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞ � ðTP + FNÞ � ðTN + FPÞ � ðTN + FNÞp

;

(1)

where TP is the number of 4mCs correctly predicted as 4mCs, TN is
the number of non-4mCs correctly predicted as non-4mCs, FP is the
number of 4mCs incorrectly predicted as non-4mCs, and FN is the
number of non-4mCs incorrectly predicted as 4mCs.
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Table S1. Performance of existing predictors on validation set. 
 
 
Species Methods MCC BACC Sn Sp AUC TP TN FN FP P-value 
Geob. 
pickeringii 
 

iDNA4mC 0.118 0.610 0.532 0.687 0.653 2364 41251 2081 18754 — 
4mCPred_I 0.072 0.571 0.620 0.523 0.598 2756 31363 1689 28642 <0.00001 
4mCPred_II 0.069 0.568 0.620 0.516 0.589 2756 30981 1689 29024 <0.00001 
4mCCNN -0.008 0.492 0.507 0.478 0.492 2254 28671 2191 31334 <0.00001 
4mcPred-SVM -0.014 0.486 0.557 0.415 0.485 2477 24932 1968 35073 <0.00001 
DNA4mC-LIP -0.022 0.479 0.582 0.376 0.505 2585 22544 1860 37461 <0.00001 
Meta-4mCpred -0.064 0.441 0.560 0.321 0.430 2491 19256 1954 40749 <0.00001 

E. coli 4mCCNN 0.110 0.793 0.781 0.805 0.873 523 95232 147 23034 — 
DNA4mC-LIP 0.102 0.788 0.804 0.771 0.866 539 91181 131 27085 0.577254 
4mCPred_II 0.096 0.788 0.854 0.722 0.865 572 85404 98 32862 0.524711 
4mcPred-SVM 0.105 0.782 0.766 0.799 0.858 513 94501 157 23765 0.237642 
Meta-4mCpred 0.094 0.771 0.791 0.751 0.842 530 88854 140 29412 0.016821 
4mCPred_I 0.097 0.768 0.757 0.780 0.842 507 92264 163 26002 0.016821 
iDNA4mC 0.056 0.668 0.622 0.714 0.728 417 84467 253 33799 <0.00001 

C. elegans DNA4mC-LIP 0.478 0.825 0.832 0.817 0.900 16049 118144 3240 26409 — 
4mCCNN 0.486 0.824 0.815 0.832 0.904 15730 120310 3559 24243 0.58093 
4mCPred_II 0.453 0.820 0.859 0.781 0.898 16567 112949 2722 31604 0.349634 
4mCPred_I 0.474 0.819 0.815 0.824 0.892 15721 119041 3568 25512 0.00022 
4mcPred-SVM 0.405 0.781 0.770 0.791 0.858 14851 114355 4438 30198 <0.00001 
iDNA4mC 0.401 0.775 0.751 0.799 0.854 14491 115436 4798 29117 <0.00001 
Meta-4mCpred 0.376 0.763 0.750 0.777 0.822 14459 112343 4830 32210 <0.00001 

A. thaliana DNA4mC-LIP 0.561 0.796 0.778 0.813 0.868 57432 145362 16353 33349 — 
4mCPred_I 0.528 0.780 0.767 0.794 0.852 56574 141902 17211 36809 <0.00001 
4mCPred_II 0.520 0.776 0.758 0.794 0.849 55924 141813 17861 36898 <0.00001 
4mCCNN 0.513 0.772 0.756 0.788 0.844 55815 140847 17970 37864 <0.00001 
Meta-4mCpred 0.515 0.771 0.740 0.803 0.844 54581 143445 19204 35266 <0.00001 
4mcPred-SVM 0.509 0.770 0.754 0.786 0.843 55658 140554 18127 38157 <0.00001 
iDNA4mC 0.220 0.609 0.439 0.779 0.672 32416 139291 41369 39420 <0.00001 

D. melanogaster 4mCCNN 0.515 0.822 0.885 0.758 0.895 40549 159036 5260 50654 — 
DNA4mC-LIP 0.498 0.817 0.913 0.721 0.896 41818 151282 3991 58408 0.481122 
4mCPred_I 0.490 0.809 0.883 0.735 0.885 40450 154175 5359 55515 <0.00001 
Meta-4mCpred 0.477 0.803 0.884 0.722 0.862 40479 151326 5330 58364 <0.00001 
4mCPred_II 0.449 0.790 0.908 0.672 0.864 41585 140817 4224 68873 <0.00001 
4mcPred-SVM 0.463 0.793 0.868 0.719 0.867 39748 150831 6061 58859 <0.00001 
iDNA4mC 0.238 0.643 0.542 0.745 0.712 24819 156122 20990 53568 <0.00001 

Geoa. 
subterraneus 

iDNA4mC 0.150 0.575 0.449 0.701 0.611 7885 7999 9688 3405 — 
4mCPred_II 0.097 0.549 0.604 0.495 0.574 10612 5642 6961 5762 <0.00001 
4mCCNN 0.087 0.545 0.553 0.536 0.555 9724 6109 7849 5295 <0.00001 
DNA4mC-LIP 0.076 0.539 0.568 0.510 0.551 9978 5814 7595 5590 <0.00001 
4mCPred_I 0.070 0.536 0.591 0.481 0.557 10383 5482 7190 5922 <0.00001 
4mcPred-SVM 0.069 0.535 0.571 0.500 0.546 10031 5702 7542 5702 <0.00001 
Meta-4mCpred 0.043 0.522 0.574 0.469 0.524 10094 5352 7479 6052 <0.00001 

M. musculus i4mC-Mouse 0.020 0.578 0.808 0.348 0.633 761 86181 181 161642 — 
4mCpred-EL 0.018 0.571 0.773 0.370 0.612 728 91703 214 156120 0.129443 

F. vesca iDNA-MS 0.417 0.847 0.876 0.818 0.930 18710 238038 2640 52819 — 
i4mC-ROSE 0.386 0.802 0.758 0.847 0.889 16179 246439 5171 44417 <0.00001 

 
 
The first and second column respectively represent the species and method names. Methods 
are ranked according to its BACC for each species. The top method AUC value is compared 
with other methods and computed the P-value using two-tailed test. MCC: Matthews 
correlation coefficient; ACC: accuracy; Sn: sensitivity; Sp: specificity. If the value is not 
provided in the literature, it is mentioned as ‘—’. 
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