SUPPLEMENTARY MATERIAL

Fig. S1. NR4A3 restrains MPEC generation across several models.

Fig. S2. Normal differentiation of OT-I T cells in absence of NR4A3.

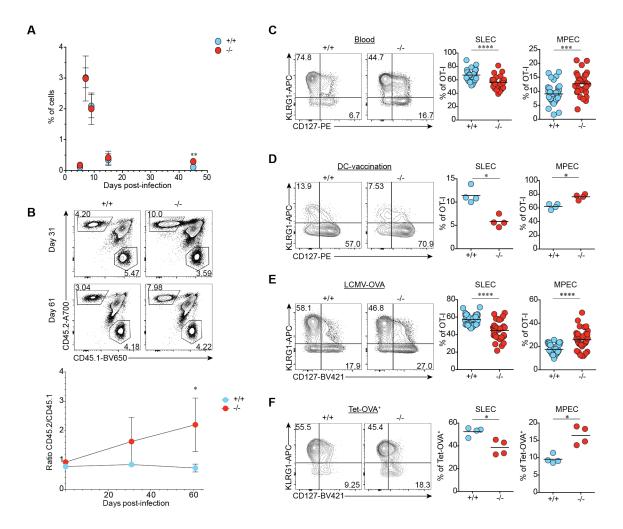
Fig. S3. NR4A3 decreases cytokine production by CD8⁺ effector cells.

Fig. S4. NR4A3 deficiency favors polyfunctional central memory formation and restrains terminal differentiation of secondary effectors.

Fig. S5. In vivo transcription kinetics of Nr4a3, characterization of early response of NR4A3-deficient

OT-I T cells and validation of RNA-seq results.

Fig. S6. Characterization of *in vitro* generated NR4A3-deficient OT-I effector cells and overlap.


between ATAC-seq and RNA-seq datasets.

Dataset S1. RNA-seq dataset.

Dataset S2. ATAC-seq dataset.

Dataset S3. ATAC-seq dataset with NBRE motifs annotation.

Table S1. Antibodies and reagents.

Figure S1. NR4A3 restrains MPEC generation across several models. A. Kinetic response in the spleen of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I T cells after adoptive transfer and Lm-OVA infection. **B**. Generation of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I memory T cells (CD45.2⁺) when in competition with WT B6.SJL OT-I T cells (CD45.1⁺) following LCMV-OVA infection. Representative CD45.1 vs CD45.2 dot plots gated on CD8⁺ T cells and ratios of CD45.2⁺ OT-I T cells on CD45.1⁺ OT-I T cells are shown over time. **C.** Proportion of SLECs and MPECs within OT-I T cells in the blood at day 7 post Lm-OVA infection. **D**-E. SLEC and MPEC differentiation of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I cells following DC-OVA vaccination (**D** – day 6 of the response in the spleen) or LCMV-OVA infection (**E** – day 8 of the response in the blood in the OT-I competitive model; as in **B**). **F.** Polyclonal CD8⁺ T cell responses of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ mice were measured at day 7 post-infection with Lm-OVA. MPEC/SLEC differentiation was evaluated *ex vivo* on K^b-OVA tetramer⁺ cells. Data are from 1 (**A**, **B**, **D**, **F**) or at

least 3 independent experiments (C, E). A Mann-Whitney unpaired t-test (A, B, D, F) was used with a low number of samples and the unpaired Student's t-test (C, E), with a Welch's correction when applied, was used for the other comparisons: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

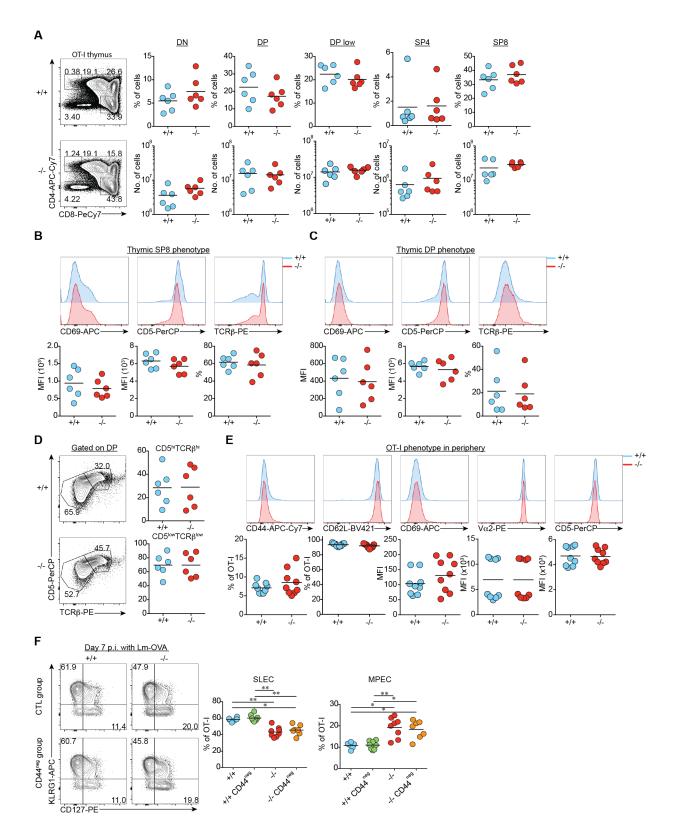


Figure S2. Normal differentiation of OT-I T cells in absence of NR4A3. A. Analysis of the different thymic subsets in OT-I $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ mice. Representative CD4 vs CD8 profiles and

compilation of the percentage and number of the different thymic subsets; DN (CD4⁺CD8⁺), DP^{10w} (CD4⁺CD8¹⁰), SP4 (CD4⁺CD8⁺) and SP8 (CD4⁻CD8⁺). **B-C**. Expression of CD69, CD5 and TCRβ by SP8 (**B**) and DP (**C**) thymocytes. **D**. NR4A3 deficiency does not affect positive selection. FACS profiles of the expression of the TCRβ versus CD5 gated on DP thymocytes and compilation of the percentage of pre-selection (TCRβ⁻CD5¹⁰) and positively selected thymocytes (TCRβ⁺CD5^{hi}). **E**. Phenotype of OT-I CD8⁺ T cells from the lymph nodes of *Nr4a3^{+/+}* and *Nr4a3^{-/-}* mice. Representative FACS profiles and data compilation are shown. **F**. Proportion of MPECs (CD127⁺KLRG1⁻) and SLECs (CD127⁻KLRG1⁺) within *Nr4a3^{+/+}* and *Nr4a3^{-/-}* OT-I effectors at day 7 post-infection with Lm-OVA when the adoptive transfer prior infection was done with sorted CD44^{neg} OT-I CD8⁺ T cells. Data are from 2 (**F**), 3 (**E**) or 4 (**A-D**) independent experiments. A Mann-Whitney unpaired t-test (**A-D**) was used with a low number of samples and the unpaired Student's t-test (**E**), with a Welch's correction when applied, was used for 2 group comparison and Kruskal-Wallis ANOVA with Dunn's multiple comparison for multiple groups comparison (**F**): **P*<0.05, ***P*<0.01.

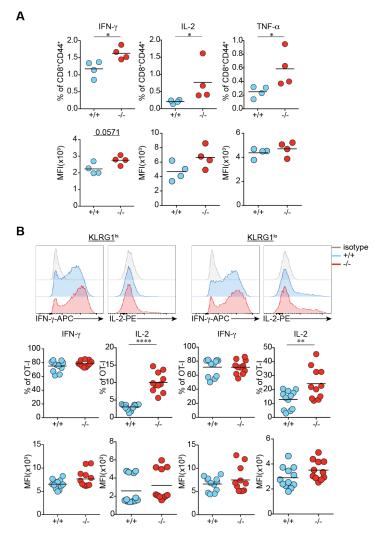


Figure S3. NR4A3 decreases cytokine production by effector CD8⁺ T cells. A. Polyclonal CD8⁺ T cell responses of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ mice were measured at day 7 post-infection with Lm-OVA. Cytokine production was measured following a brief OVA peptide restimulation. Mean Fluorescence Intensity (MFI) on cells positive for the measured cytokines are shown. B. At the peak of the Lm-OVA response, splenocytes were restimulated with OVA peptide to measure cytokine production by $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ KLRG1^{hi} or KLRG1^{lo} OT-I cells. The percentage of positive OT-I cells for each cytokine and the MFI of cells positive for the measured cytokines are shown. Data are from 1 (A) or 2 (B) independent experiments. A Mann-Whitney unpaired t-test (A) was used with a low number of samples and the unpaired Student's t-test (B), with a Welch's correction when applied, was used for the other comparisons: *P<0.05, **P<0.01, ****P<0.001.

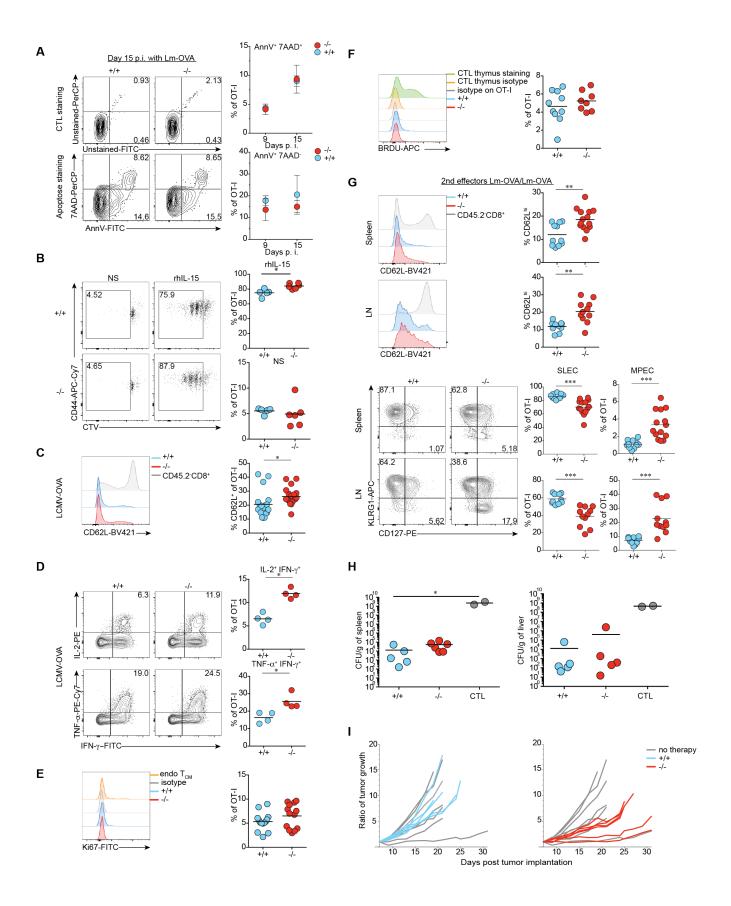
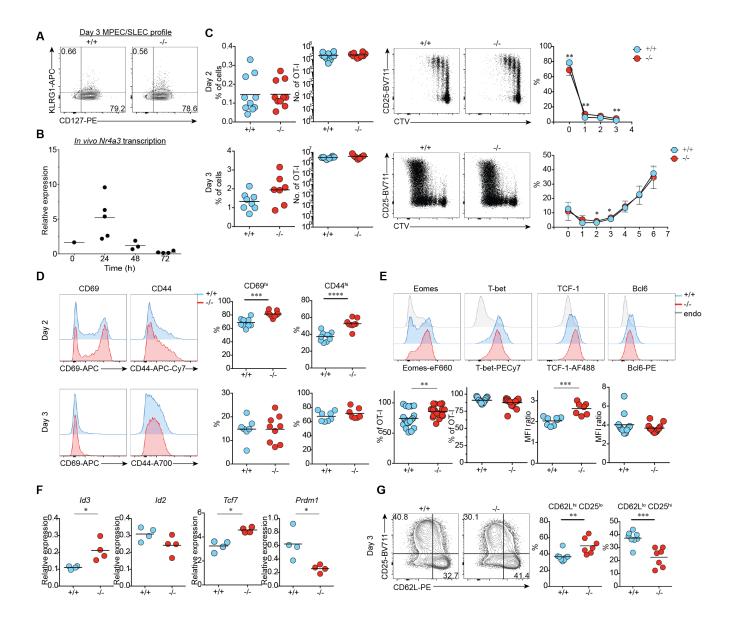
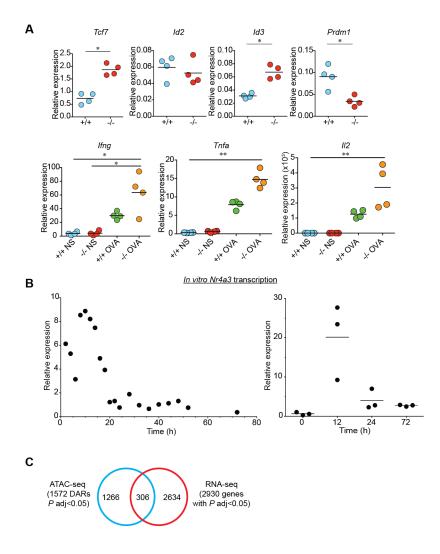




Figure S4. NR4A3 deficiency favors polyfunctional central memory formation and restrains terminal differentiation of secondary effectors. A. Apoptosis of $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I T cells during the contraction phase of the T cell response to Lm-OVA. At day 9 and 15 post-infection, apoptosis was measured using Annexin V (AnnV) and 7-AAD staining. Representative dot plots of AnnV versus 7-AAD staining for day 15 effectors and quantification of apoptotic (AnnV⁺7-AAD⁻) and dead (AnnV⁺7-AAD⁺) cells at day 9 and day15 post-infection are shown. **B.** Proliferation of $Nr4a3^{+/+}$ and Nr4a3^{-/-} OT-I memory T cells from Lm-OVA infected mice following in vitro stimulation with rhIL-15. Representative FACS profile of CTV dilution and compilation of the percentage of cells that have divided once or more. C-D. CD62L expression (C) and cytokine production (D) measured on memory $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I cells (>30 days post LCMV-OVA-infection in a competitive setting) E-F. Homeostatic proliferation of Lm-OVA generated $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I memory cells measured using Ki67 (E) and anti-BrdU (F) staining. For BrdU staining mice were treated with BrdU for 14 days before sacrifice. G. Phenotype of secondary effectors at day 7 post-infection. 10^4 $Nr4a3^{+/+}$ or $Nr4a3^{-/-}$ memory OT-I T cells produced in response to Lm-OVA infection were adoptively transferred into naive B6.SJL mice. These recipients were then subsequently infected with Lm-OVA. **H**. Lm-OVA challenge. Mice previously adoptively transferred with $Nr4a3^{+/+}$ or $Nr4a3^{-/-}$ OT-I T cells and infected with LCMV-OVA were challenged with Lm-OVA at the memory stage (CTL: non immunized mice). Bacterial burdens in the spleen and liver are shown. I. $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ memory OT-I cells were generated in response to Lm-OVA infection. At least 40 days post-infection, approximately 2 x $10^5 Nr4a3^{+/+}$ or $Nr4a3^{-/-}$ OT-I memory cells were adoptively transferred into B16-OVA bearing mice (7 days post-implantation) and the ratio of tumor growth (tumor area at each time point of observation reported to tumor area at day 7 - the time of ACT administration) was followed over time (same experiments as Fig. 3H). Each line represents one mouse. Data are from 1 (A, D, H), 2 (F) or 3 and more independent experiments (C, E, G); B and I shows one of 2 representative experiments. Mann-Whitney unpaired t-test (A, B, D), when a low number of experimental samples were available, was used. Unpaired Student's t-test (C, E, F, G), with a Welch's correction when applied, was used for 2 group comparison and Kruskal-Wallis ANOVA with Dunn's multiple comparison for multiple groups comparison (H): *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S5. *In vivo* transcription kinetics of *Nr4a3*, characterization of early response of NR4A3deficient OT-I T cells and validation of RNA-seq results. A. SLEC/MPEC profile at day 3 post Lm-OVA infection. **B**. At indicated time-points post-Lm-OVA infection, OT-I T cells were sorted and *Nr4a3* transcription was measured by qRT-PCR. **C-D.** Proliferation (**C**) and activation (**D**) of *Nr4a3*^{+/+} or *Nr4a3*^{-/-} OT-I T cells *in vivo*. CTV-labeled OT-I T cells were adoptively transferred into B6.SJL recipients followed by Lm-OVA infection. The percentage of OT-I T cells recovered, FACS profiles of CTV versus CD25 gated on OT-I T cells and quantification of the number of divisions at day 2 (top) and 3 (bottom) are shown in **C**. The expression of the activation markers CD69 and CD44 are shown in

D at day 2 (top) and day 3 (bottom) post-infection. **E-F**. At day 3 post Lm-OVA infection, the expression of transcription factors important for memory CD8⁺ T cells differentiation was assessed by cytometry after gating on CD44^{hi} OT-I (CD45.2⁺) cells (**E**) or by qRT-PCR on sorted *Nr4a3^{+/+}* and *Nr4a3^{-/-}* OT-I cells (**F**). **G**. CD62L and CD25 FACS profiles and quantification of the CD25^{lo}CD62L^{hi} and CD25^{hi}CD62L^{lo} subsets of OT-I effector T cells at day 3 post-infection with Lm-OVA. Each dot represents one mouse. Data are from 1 (**B**, **F**), 2 (**E** for TCF-1, day 3 of **C**, **D** and **G**) or 3 and more (**E**, day 2 of **C** and **D**) independent experiments. Data in (**A**) is representative of at least 3 experiments. A Mann-Whitney unpaired t-test (**F**), when a low number of experimental samples were available was used. Unpaired Student's t-test (**C-E**, **G**), with a Welch's correction when applied, was used for comparison of two groups: **P*<0.05, ***P*<0.01, *****P*<0.001, *****P*<0.001.

Figure S6. Characterization of *in vitro* **generated NR4A3-deficient OT-I effector cells and overlap between ATAC-seq and RNA-seq datasets. A.** $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I cells were stimulated for 3 days with anti-CD3/CD28. For transcription of cytokines, cells were not restimulated (NS) or seeded on antigen-loaded splenocytes (+OVA) for 5h prior being cell-sorted into TRIzol for RNA extraction. The expression of transcription factors was assessed on NS sorted $Nr4a3^{+/+}$ and $Nr4a3^{-/-}$ OT-I cells. **B.** Nr4a3 expression kinetics measured by qRT-PCR following *in vitro* stimulation with anti-CD3/CD28. The left panel represents several time points from the same experiment. The right panel is from 1 experiment with independent samples (each point represents an individual mouse). **C**. Overlap between

RNA-seq and ATAC-seq datasets showing the number of genes that have a modulated expression and are associated to a DAR as a result of NR4A3-deficiency. Each dot represents one mouse. Data are from 1 (**A**, **B**, **C**: ATAC-seq) or 2 independent experiments (**C**: RNA-seq). A Mann-Whitney unpaired t-test (**A**) was used with a low number of experimental samples for 2 group comparison and Kruskal-Wallis ANOVA with Dunn's multiple comparison was used for multiple groups comparison: *P<0.05, **P<0.01.

Table S1. Antibodies and reagents.

Reagent	Company	Product information
G418 sulfate powder	CORNING	CAS#108321-42-2; Potency 716µg/mg
RPMI 1640	CORNING	REF: 10-040-CV
HEPES	CORNING	REF: 25-060-Cl
L-glutamine	CORNING	REF: 25-005-Cl
Penicillin-Streptomycin	CORNING	REF: 30-002-Cl
MEM Non-essencial amino acids	Gibco Life Technologies	REF: 11140-050
Sodium pyruvate	CORNING	REF: 25-000-Cl
2-mercaptoethanol 1000x (55mM)	Gibco Life Technologies	REF: 21985-023
PBS	Sigma Life Science	REF: P3813-10PAK
Sodium azide	Sigma Aldrich	REF: S2002-100G
formaldehyde solution (PFA)	Sigma Aldrich	CAS #50-00-0
BHI-Agar	BD	REF: 211065
Streptomycine sulfate	Bio Basic	REF: SB0494; CAS#3810-74-0
rhIL-2	Novartis	PROLEUKIN® (aldesleukine); DIN 02130181
NH4Cl eBioscience FOXP3/Transcription	Bio Basic	CAS #12125-02-9
Factor Staining Buffer Set	Invitrogen by Thermo Fisher Scientific	REF: 00-5523-00
Cytofix cytoperm BD Kit	BD	554714
TRIzol	ambion by Life Technologies	REF: 15596026
DMEM powder	Sigma Life Science	REF: D2902-101
Saponine	Sigma Life Science	REF: S-7900-100g; CAS #8047-15-2
PowerSYBR Green SuperScript II Reverse	appliedbiosystems by Thermo Fisher Scientific	REF: 4367659
Transcriptase	invitrogen by Thermo Fisher Scientific	REF: 18064014
DMEM Mouse naive CD8 T cells EasySep	CORNING	REF: 10-017-CV
KIT	STEMCELL Technologies	REF: 19858
Nu Serum	Corning	REF: 355104

EDTA	CORNING	46-034-Cl
Lymphocyte Separation Medium Fc-block (Anti mCD16/32 Fc	CORNING	25-072-CV
Receptor clone 2.4G2)	Leinco Technologies	C381-1.0mg
Zombie Aqua	Biolegend	423102
Zombie NIR	Biolegend	423106
CTV (CellTraceViolet)	ThermoFisher	C34557
AnnexinV-FITC	Biolegend	640906
7-AAD	Biolegend	420404
pMIG	kind Gift from Guy Sauvageau	pMSCV IRES GFP
frosted glass slides	Fisher	125523
24 well plates	Sarstedt	5000004003 (83.3922.500)
6 well plates	Fisher	08 772 1B
96 well plates	Fisher	07200760
Cell strainer 70µm	Fisher	08 771 2
Cell strainer 100µm	Fisher	08 771 19
Brefeldin A cOmplete [™] , EDTA-free Protease	Fisher	AAJ62340MB
Inhibitor Cocktail	Sigma (Roche)	11873580001
rhIL15	R&D	247-ILB
BRDU	Sigma	B5002-1G
DNAse I	Sigma	D5025-150KU
Brain Heart Infusion (BHI)	Fisher	B11065
NP-40Octyl		
Phenoxypolyethoxylethanol (NP-40)	Bio-Basic	NDB0385-100

Stimulation reagents	Company	Product information
anti mouse CD3ɛ	BioXcell	clone 145-2C11; cat # BE0001-1
anti mouse CD28	BioXcell	clone 37-51; cat # BE0015-1
OVA peptide (SIINFEKL)	Midwest Biotech	

Staining antibody	Company	Product information
CD8-PerCP anti mouse	BioLegend	clone 53-6.7; cat # 100732
CD8-PeCY7 anti mouse	BioLegend	clone 53-6.7; cat # 100722
KLRG1-APC	BioLegend	clone MAFA; cat #138412
CD127-Biotin	Invitrogen by Thermo Fisher Scientific	clone A7R34; cat #13-1271-85
CD127-BV421 anti mouse	BioLegend	clone A7R34; cat #135027
Streptavidin-PE Isotype of IFN-gamma-FITC (Rat	BioLegend	cat # 405204
IgG1 FITC) Isotype of IFN-gamma-APC (Rat	Invitrogen by Thermo Fisher Scientific Invitrogen by Thermo Fisher Scientific	IgG gamma 1 ; cat #R101
IgG1 APC)	eBioscience	clone eBRG1; cat #17-4301-83
Isotype of IL-2-PE (Rat IgG2β-PE) Isotype of TNFa-PeCY7 (Rat IgG1	BioLegend	clone RTK4530; cat #400608
PeCY7) Isotype of GranzymeB- PB (Rat	BioLegend	clone RTK2071; cat #400415
IgG1PB)	BioLegend	clone MOPC-21; cat #400151
IFN-gamma-FITC anti mouse	Invitrogen by Thermo Fisher Scientific Invitrogen by Thermo Fisher Scientific	clone XMG1.2; cat #RM9001
IFN-gamma-APC anti mouse	eBioscience	clone XMG1.2; cat #17-7311-82
IL-2-PE anti mouse	BioLegend	clone JES6-5H4; cat #503808
TNFa-PeCY7 anti mouse	BioLegend	clone MP6-XT22; cat #506324
GranzymeB- PB anti Hu/Mo	BioLegend	clone GB11; cat #515408
CD45.1-BV650	BioLegend	clone A20; cat #110736
CD45.1-PB	BioLegend	clone A20; cat #110722
CD45.2-FITC	BioLegend	clone 104; cat #109806
CD45.2-A700	BioLegend	clone 104; cat #109822
CD45.2-APC	BioLegend	clone 104; cat #109814
CD62L-BV421 anti mouse	BioLegend	clone MEL-14; cat #104436
CD62L-PerCP anti mouse	BioLegend	clone MEL-14; cat #104430
CD62L-PE anti mouse	BioLegend	clone MEL-14; cat #104407
Eomes-eF660 anti mouse	Invitrogen by Thermo Fisher Scientific	clone Dan11mag; cat #50-4875-82

Tbet-PeCy7 anti Hu/Mo	Invitrogen by Thermo Fisher Scientific	clone 4B10; cat #25-5825-82
TCF1-AF488 anti Hu/Mo	Cell Signaling Technologies	clone C63D9 ; cat #6444S
CD69-APC	BioLegend	clone H1.2F3; cat #104513
CD44-APC-Cy7	BioLegend	clone IM7; cat #103028
CD44-AF700	BioLegend	clone IM7; cat #103026
CD25-APC	BioLegend	clone PC61; cat #102012
CD25-BV711 anti mouse	BioLegend	clone PC61; cat #102049
ΤСRβ-ΡΕ	BioLegend	clone H57-597; cat #109207
Va2-PE	BioLegend	clone B20.1; cat #127808
CD5-PerCP	BioLegend	clone 53-7.3; cat #100616
Ki67-FITC	BD Biosciences	clone B56; kit cat # 556026; cat # 51-36524X
isotype of Ki67-FITC (Mouse IgG1κ FITC)	BD Biosciences	MOPC-21; kit cat # 556026; cat # 51-35404X
BRDU-APC (Mouse IgG1ĸ APC)	Fisher/eBiosciences	clone BU20A; cat # 17-5071-41
isotype of BRDU-APC	Fisher/eBiosciences	clone P3.6.2.8.1; cat #17-4714-42

qPCR Primers	Sequences of primers	
Id3	F: GGAGAGAGGGTCCCAGAGTC; R: GAGGAGCTTTTGCCACTGAC	
Tcf7	F: GCGGATATAGACAGCACTTC; R: TACACCAGATCCCAGCAT	
Id2	F: ACCAGAGACCTGGACAGAAC; R: AAGCTCAGAAGGGAATTCAG	
Prdm1	F: ACACACAGGAGAGAAGCCACATGA; R:TCGAAGGTGGGTCTTGAGATTGCT	
Nr4a3	F: GATCACAGAGCGACATGGGTTA; R:GAGCCTGTCCCTTCCTCTGG	
Ifng	F: GAAAGCCTAGAAAGTCTGAATAAC; R: TGCCAGTTCCTCCAGATA	
<i>Il2</i>	F: CAGCAATATCAGAGTAACTGTTG; R: GCTATCCATCTCCTCAGAAAG	
Tnfa	F: TCTTCTCATTCCTGCTTGTG; R:GAGGCCATTTGGGAACTT	
Hprt	F:CTCCTCAGACCGCTTTTTGC; R: TAACCTGGTTCATCATCGCTAATC	

Cell lines	Origin	
	kind gift from A. Lamarre (INRS-Institut	
L929	Armand-Frappier, Laval, Quebec, Canada)	MEM containing with 5% heat inactivated FBS or Nu serum
MC57C	kind gift from A. Lamarre (INRS-Institut	MEM containing with 50/ heating stimula d EDS on Ne comm
MC57G	Armand-Frappier, Laval, Quebec, Canada) kind gift from A. Lamarre (INRS-Institut	MEM containing with 5% heat inactivated FBS or Nu serum DMEM supplemented with 10% FBS (or Nu serum), sodium pyruvate
B16-OVA	Armand-Frappier, Laval, Quebec, Canada)	(1mM) in presence of 5mg/ml G418 (Corning)
BIO-OVA	kind gift from H. Melichar (CRHMR, Montreal,	(Tillivi) in presence of Sing/in 0418 (Corning)
HEK293T	Quebec, Canada)	DMEM containing with 10% heat inactivated FBS or Nu serum
Infection agents	Origin	
Lm-OVA	kind gift from S. P. Schoenberger	
LCMV-OVA	kind gift from J. C. de la Torre	