
Emergence of anomalous dynamics in soft matter probed at the European

XFEL – Supporting Information

Felix Lehmkühler,1, 2, 3, ∗ Francesco Dallari,1, † Avni Jain,1, † Marcin Sikorski,4 Johannes
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I. PULSE INTENSITY

The intensity of each single pulse is measured by a gas monitor upstream the sample position.

The values are given in Supporting Figure S1 for one run consisting of 500 trains. During the

experimental run on those samples, the pulse intensity showed on average a maximum around

pulse number 40 and decreased values at larger pulse numbers. Note that this may slightly differ

for different trains and machine operation conditions. We used silicon crystals of different thickness

to attenuate the intensity [1] and limit the radiation exposure of the samples, which are located

between the gas monitor and the sample. The X-ray fluence on the sample was calculated by the

pulse intensity shown in Supporting Figure S1, corrected for the beamline transmission and the

transmission through the attenuator crystals. Throughout the paper average pulse fluences are

used to label the runs (i.e. between 1.5 and 56.8 mJ/mm2). The exact intensity value within the

pulse train was used for modelling the temperature increase (see below).
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Supporting Figure S1. (a) Pulse intensity measured by the gas monitor upstream the sample position for

one run on the dynamic sample. Colorscale is in mJ. (b) Pulse intensity for trains 1, 101, 201, 301, and 401

from (a) and average (black line) over 500 trains.
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II. DATA ANALYSIS

The data were collected using the data acquisition system of the European XFEL [2] and the

AGIPD available at the SPB/SFX beamline [3]. The AGIPD consists of 16 modules composed of

512 × 128 pixels with a size of 200 × 200 µm2. It is capable of acquiring images with MHz frame

rates, and each pixel electronics can automatically switch among three different gain settings –

low, medium and high- depending on the incident value of the photon signal on the pixel. In

the experiment performed here, all the data were collected in the high gain mode. Uncalibrated

data files in the European XFEL format were used and detector calibration was done using in-

house developed codes. Data from each AGIPD module was saved into separate files consisting

of chunk sizes of 256 trains. A full image was constructed from the 16 modules by matching the

data from the same train and pulse number. The following calibration steps were performed to

obtain a speckle pattern for XPCS analysis. Firstly, a high-gain pedestal correction calculated as

an average of 500 trains from the high-gain dark data set - was applied to each pixel for each pulse

ID. Secondly, bad pixels were identified from the dark data set as those having ADU (analog-to-

digital unit) values and standard deviation outside the statistically valid range. We also omitted

specific pulse IDs within a train which displayed faulty electronic behavior (pulse numbers 18, 31,

50, 82, 114 correspond to bad memory cells of the detector), limiting ourselves to 114 pulses from

a total of 120 pulses within a single train. The set of bad pixels from each of the 114 pulses were

merged to form a mask that was applied to a single shot for the SAXS and XPCS calculations.

For the calculations performed here, the percentage of masked pixels ranged between 7% and 28%

for the studied regions of interest (same q). Lastly, we performed a baseline correction to refine

the position of the zero-photon peak by subtracting the intensity values of each pixel in a module

by the corresponding median value of a dark region (defined by 128× 128 pixels) at the outer edge

of that module.

To gain a precise mapping of pixel to wave vector transfer q value, the detector geometry was

fine-tuned by calculating the azimuthally averaged intensity I(q) from each of the four quadrants

of the AGIPD for the static sample. The direct beam position was optimized such that the

intensity profiles obtained from each quadrant are indistinguishable from each other. This criterion

is valid as intensity scattered by uniformly distributed spherical nanoparticles have to be invariant

under rotation symmetries. With the calibrated full-image data and refined detector geometry, we

evaluated the I(q), the single shot contrast and the intensity correlation functions C(np, np + n)

as well as the intensity autocorrelation functions g2(q, τ). The latter two quantities are calculated
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for a single train and then averaged over all trains to produce the curves in Fig. 3 and Fig. 4. For

the definition of np see Supporting Figure S5. The g2(q, τ) is carefully tracked for each individual

train to follow the sample’s response to the total accumulated radiation dose in the sample (i.e.,

we consider each train of pulses as an independent measurement).
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III. SPECKLE CONTRAST

A. Stability over pulse trains

The single-shot speckle contrast is given by the normalized variance of intensity I(q) [4, 5]

βs(q) =
〈I(q)2〉 − 〈I(q)〉2

〈I(q)〉2
− 1

〈k(q)〉
, (1)

where 〈k(q)〉 denotes the average photon counts at wave vector transfer q. In order to determine

the stability of the speckle contrast over the pulse trains, we calculated the average speckle contrast

obtained from the static sample. The result is shown in Supporting Figure S2 (a) for 100 subsequent

pulses. Here, the average contrast is 0.228, with an average relative variation v = std(βs)/〈βs〉 =

0.07 over the pulse train, see Supporting Figure S2 (b).
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Supporting Figure S2. (a) Average speckle contrast from 100 trains at q = 0.22 nm−1. The values were

averaged over 114 pulses from each train, the errorbars are the standard deviation of the contrast over the

train. (b) Relative variation v of the speckle contrast for the data shown in (a).

B. Calculation of speckle contrast and degree of transverse coherence

In SAXS experiments, the speckle contrast is typically given by the transverse coherence of the

X-ray beam. However, due to a better signal-to-noise ratio, the speckle size is typically chosen to

be similar to the size of a detector pixel [6] which leads to a reduced speckle contrast that can be

modeled by geometry corrections [7]. This can be overcome when the speckles are oversampled, i.e.,

pixel sizes are much smaller compared to the speckle size [8, 9]. For pink beam SAXS experiments

as in this work, the influence of the longitudinal coherence on the speckle contrast cannot be

neglected. Compared to monochromatized X-ray beams, typically used at storage ring sources,

the longitudinal coherence length is reduced leading to a q-dependence of the experimental speckle
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contrast. In such cases the speckle contrast and the coherence factor can be approximated using

different corrections [10–12]. Here, we used the approximation introduced by Hruszkewycz et al. [11]

which has been successfully applied for FEL data from LCLS. In this context, the measured speckle

contrast is given by βexp = βtβ`, where βt is the effective speckle contrast due to the transverse

coherence given by the coherence factor c =
√
βt. β` denotes the correction for energy bandwidth,

experiment geometry, and speckle shape. This correction is given by β` = (MradMdet)
−1. The

factor Mrad is given by

Mrad =

√
1 +

q2(∆E/E)2[b2s cos2(θ) + t2 sin2(θ)]

4π2
(2)

accounting for the energy bandwidth ∆E/E ≈ 5×10−3, sample thickness t, and beam size bs. The

correction due to the pixel size of the detector and speckle size is

Mdet =

√
1 +

p4b2s[b
2
s cos2(θ/2) + t2 sin2(θ/2)]

λ4L4M2
rad

, (3)

with the pixel size p = 200 µm and sample-detector distance L = 5.5 m. In this way we obtained

βt = βexp/β` = 0.504 used for the solid line in Fig. 2 (b) in the article modelling βexp. This relates

to an average degree of transverse coherence of c =
√
βt = 0.71 ± 0.03, which is similar to results

from other hard X-ray FEL facilities [9, 13].
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IV. ADDITIONAL XPCS RESULTS

In Supporting Fig. S3 XPCS results from low fluence data at H = 3.9 mJ/mm2 are shown.

Despite the reduced statistics, g2-functions can be obtained from single trains (Supporting Fig. S3

(a)). Furthermore, the instantaneous correlation function C does not show neither broadening or

narrowing over the pulses. This indicates that the sample was stable, in particular it implies a

stable effective temperature without successive heating.
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Supporting Figure S3. (a) Single-train g2 functions at different q-values for H = 3.9 mJ/mm2. (b) Instan-

taneous correlation function C(n1, n2) = C(np, np + n) for q = 0.125 nm−1 and H = 3.9 mJ/mm2. Due to

limited statistics, C is average over 500 pulse trains.

The g2-functions averaged over 500 pulse trains are shown in Supporting Fig. S4 for H = 27.7

mJ/mm2 and H = 3.9 mJ/mm2. The data in Supporting Fig. S4 (a) complements the single-train

data shown in Fig. 3 (b) in the main text, the results in Supporting Fig. S4 (b) corresponds to the

single-train data in Supporting Fig. S3 (a).
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Supporting Figure S4. Averaged g2-functions for (a) H = 27.7 mJ/mm2 and (b) H = 3.9 mJ/mm2.
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V. HEATING MODEL
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Supporting Figure S5. Schematic heat increase and definition of np. The instantaneous temperature Tinst

and the temperature averaged between two pulses Tavg are shown schematically. T0 is the start temperature,

∆T denotes the maximum temperature just after the X-ray pulse. The green bars mark the pulses.

After the X-ray pulses hit the sample, the sample temperature increases on short time scales

due to absorption of X-ray photons. Afterwards, the temperature relaxes on time scales defined

by the thermodynamic properties of the sample. These time scales are typically in the range

of microseconds using micrometer-sized X-ray beam and have to be considered for microsecond-

XPCS. A general scheme is shown in Supporting Figure S5, where after each pulse the system’s

temperature increases sharply and tries to relax back to equilibrium. However, since the time

separation is not enough for a complete relaxation, the average temperature will steadily increase

with the number of pulses. We can define then np as the first pulse from where the correlation

function has been calculated. For instance, for np = 6 the first 5 pulses of the pulse train represent

pump pulses only, that heat up the sample. The first correlation is calculated between speckle

patterns measured with the 6th and 7th pulse. Consequently, we assume for np = 6 in total 6

pump pulses, followed by 120− np probe pulses, which naturally continue to heat up the sample.

This situation is similar to the one described by the HBM model but with a crucial difference:

the heat source (i.e. the X-ray pulses) is not stationary in time, therefore we lose one of the

fundamental hypothesis over which the HBM is built [14]. We can then describe our data with a

slightly less approximate picture considering the total temperature increase and relaxation of the

sample is considered as a combination of (1) the heating of the solvent (water) due to absorption

of X-rays and (2) the heating of and successive heat transfer from the silica nanoparticles to the
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surrounding water volume.

A. Water heating

For an idealized Gaussian intensity distribution, the temperature distribution in the material

after a single X-ray pulse hitting the sample at normal incidence is given by

∆T (r, z) = ∆Tmax exp

(
− r2

2σ2
− z

λabs

)
, (4)

where r is the radial distance from the beam axis and z is the distance from the sample’s surface

along the beam direction. ∆Tmax is the maximum of the temperature distribution function on the

surface and can be calculated as:

∆Tmax =
Epulse

2πcpρσ2λabs/(4 ln(2))

where Epulse = denotes the pulse energy on the sample, cp = 4.186 J/gK the heat capacity of

water, ρ = 1 g/cm3 water’s mass density, λabs = 1570 µm the absorption length of X-rays at 9.3

keV, and σ the beam size.

For low-Z materials that have long X-ray absorption length for hard X-rays compared to the

beam size, the dominant heat flow will point radially away from the beam axis and the dependence

on z can be neglected. For a δ-like initial heat distribution, the time evolution of the temperature

is described by the Gaussian widening with the square root of time:

∆T (r, t′) ∝ t0
2πσ2t′

e
− r2

2σ(t′)2 =
cpρ

4πkW t′
e
− cpρr

2

4kW t′ ,

with the heat conductivity of water kW . We define a time t0, where the δ-like initial distribution

has relaxed to the width of the impinging Gaussian beam:

t0 =
cpρσ

2

2kW
. (5)

The time t that describes the time evolution after the initial beam profile is defined by t′ = t+ t0.

This leads to

∆T (r, t) ∝ 1

2σ2(1 + t/t0)
exp

(
− r2

2πσ2(1 + t/t0)

)
.

The proportionality constant is chosen such that initial temperature is correct:

∆T (r, t) =
∆Tmax

(1 + t/t0)
exp

(
− r2

2σ2(1 + t/t0)

)
.
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After n pulses with a separation δt the heat profiles for different time evolutions are added up,

leading to a peak temperature of:

Tn = ∆Tmax

N∑
n=0

1

1 + (nδt/t0)
+ T0.

From the expression of ∆T (r, t) we can obtain the average temperature of the Gaussian distri-

bution in a given volume V = πLσ2:

∆T (t) =
1

πLσ2

∫
2π
dφ

∫
L
dz

∫ σ2

0

∆Tmax

(1 + t/t0)
exp

(
− r2

2σ2(1 + t/t0)

)
rdr

∆T (t) = ∆Tmax

[
1− exp

(
− 1

2(1 + t/t0)

)]
.

Thus, the temperature increment after N pulses is:

∆TN = ∆Tmax

N∑
n=0

[
1− exp

(
− 1

2(1 + (nδt)/t0)

)]
,

generalizing to a fluctuating pulse intensity one gets:

∆TN (t) =
N∑
n=0

∆T (n)
max

[
1− exp

(
− 1

2(1 + (t+ (N − n)δt)/t0)

)]
(6)

Both for the peak and average temperature the timescale of the thermal relaxation is described

by t0 (see Eq. 5), which in our system is t0 ∼ 56µs. Since water is nearly transparent for the hard

X-rays, its temperature increase per pulse is small but cannot be dissipated in 886 ns, before the

next pulse hits the sample. Thus, the time evolution of the water temperature will be a series of

small steps as shown in Supporting Figures S5 and S6.

B. Silica nanoparticles

The density and the relative number of absorbed photons are higher for the silica particles

compared to water (leading to a higher temperature increase per pulse). However, their small size

makes their thermal relaxation much faster. The temperature increase of a single nanoparticle of

radius R = 70 nm is:

∆T SiO2
max =

Epulse
σ2 σ2

NP

cSiO2
p ρSiO2vSiO2

,

where cSiO2
p = 0.737 J/gK is the heat capacity, ρ = 2.1 g/cm3 the density of colloidal silica

(Note: colloidal silica is slightly less dense than bulk), vSiO2 = (4/3)πR3), σ2
NP = (µ/ρ) × m =
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Supporting Figure S6. Temperature evolution of water following Eq. 6 and silica particles for an X-ray pulse

fluence of 10.5 mJ/mm2. For clarity, data is shown as a function of np. For water, the peak temperature

after each pulse as well as the average temperature over the scattering volume are shown. Data points from

Fig. 4 in the main text are shown for comparison.

(λSiO2
abs ρ)−1ρ×vSiO2 = vSiO2/λ

SiO2
abs denotes the cross-section, and λSiO2

abs = 223.721µm the absorption

length.

The temperature within nanoparticle can be described as

∆T (r, t)SiO2 =
∑
i

4(sin(λi)− λi cos(λi))

2λi − sin(λi)

sin(λir/R)

λir/R
e−λ

2
i
α
R2 t, r ∈ [0, R] (7)

where λi are the roots of the equation

1− λi cot(λi) = Bi

and

α =
k

ρcp
Bi = hR/k,

Here, k ∼ 1.39 W/mK [15] and h is the convective heat transfer coefficient from water with values

in the range of 102 − 104 J/sm2K (table 2.2 from https://personalpages.manchester.ac.uk/

staff/tom.rodgers/documents/HT_Notes.pdf).

The heat transfer between the silica nanoparticle and the surrounding water is governed by the

Biot number Bi, which is proportional to R ∼ 7∗10−8m and much smaller than 1 for every allowed

value of h (in the range 102 to 104 J/sm2K). Values of Bi � 1 imply a negligible temperature
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Supporting Figure S7. Average temperature jump for H = 27.7 mJ/mm2 between two pulses as a function

of the distance from the center of the nanoparticle. The red area markes the typical length scale probed

related to the experimental q-resolution.

gradient inside the nanoparticle. Thus, we can approximate a single sphere as a lump of matter at

a given temperature and describe the temperature of the surrounding water with the profile

T SW(R, t) =
∆T SiO2(R, t)

r/R
+ T SW(r →∞, t = 0), r > R.

This reduces in Newton’s approximation to:

∆T (r, t)SW =

(
∆TSiO2

max

)
e−3 k

kw
Bi α

R2 t

r/R
, r > R. (8)

The results are shown in Supporting Figures S7 and S8 using the parameters of the experiment.

C. Time-dependent heating model

In our time-dependent model we assume nanoparticles initially at the same temperature of the

surrounding water. After the absorption of the X-ray pulse, the particles heat up and begin to

relax back towards the solvent temperature. Depending on the value of Bi, the particles will relax

completely to the water temperature or will stay slightly heated.

Since the probed time scales are comparable with the characteristic time of the thermal relax-

ation of a single nanoparticle, and the length scales are limited to few nanometers, the measured

”effective temperature” from the correlation function g2 is determined by the local temperature

of the thin layer of water surroundings the nanoparticles. Thus, after a single pulse the detected
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Supporting Figure S8. left: T (r, t) calculated over distances up to the average particle-particle separation,

and in the time interval between two pulses. Center: T (r) at fixed times; right: T (t) at fixed distances.

temperature in the boundary layer can jump a few tens of degrees even if the temperature of the

water a few molecular distances further is essentially unchanged. A stretching exponent γ < 1

appears only with the stronger pulse intensities and it decrease further as a function of the num-

ber of pulses. A decrease in γ reflects typically increasing heterogeneity, likely originating from

temperature heterogeneities.

Despite the fact that after each pulse the nanoparticles can become extremely hot, the real

temperature of the probed volume is mostly determined by the heat deposited directly in the

water described by Eq. 6. In fact, the ratio between the heat capacities of silica nanoparticles and

water is ∼ ΦcSiO2
p /cH2O

p ∼ 0.0033, with Φ ∼ 2% mass concentration, so that the heat collected by

the nanoparticles is negligible in comparison to the whole scattering volume.

The effective temperature was extracted from the relaxation rates Γ as outlined in the main

text. Using the Stokes-Einstein relation, the relaxation rate is given by

Γ = Dq2 =
kB

6πR
· T

η(T )
. (9)

The temperature dependence lies thus in the term T/η(T ). Relaxation rates extracted from cor-

relation functions C(np, np + n) for different np and at q = 0.125 nm−1 are shown in Supporting

Figure S9 (a) as a function of np. These and Γ at the other q-values measured were used to obtain

the effective temperature shown in Fig. 4 (c).

The heat model is visualized in Supporting Figure S9 (b). Therein, the temperature increase

measured for H = 27.7 mJ/mm2 as a function of np is compared to the average temperature
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increase of the solvent water, the silica nanoparticle, and to the time-dependent model taking heat

transfer from the nanoparticle to the surrounding water volume into account. Since the heat of

the nanoparticles relaxes on a shorter time scale than for water, the pulse lead to an effective

temperature increase that does not vary significantly over the pulse train. Due to the drop of

intensities with pulse number (see Supporting Figure S1), the temperature of the nanoparticles

slightly reduces for large np. In contrast, water experiences a steady increase of temperature

because of the much slower temperature relaxation times. Consequently, the initial temperature

increase reported in Fig. 4 of the main text is dominated by the nanoparticles, while the behavior

at longer times is dominated by the temperature increase of water. Furthermore, the model is

compared to the model of a hot diffusing nanoparticle in a simple liquid [14]. Therein, diffusion is

described by a modified Stokes-Einstein relation, where the temperature and viscosity are replaced

by effective values. For temperature increases smaller than the starting temperature, the effective

temperature for hot diffusion THBM can be approximated by a Taylor expansion [14]

THBM = T0 + ∆TNP/2− [1− ln(η0/η∞)]∆T 2
NP/(24T0). (10)

Here, T0 is the solvent temperature where we use the temperature from the water model (blue line

in Supporting Figure S9 (b)), ∆TNP is the temperature difference between the nanoparticles and

the water (red line), η0 is the viscosity of water at T0 and η∞ = 0.0298 mPa·s [14]. In addition, an

effective viscosity ηHBM is defined following [14], leading to an effective diffusion constant

DHBM =
kBTHBM

6πηHBMR
. (11)

The viscosities from the HBM model and water heating are shown in Supporting Figure S10 (a) for

H = 56.8 mJ/mm2. In Supporting Figure S10 (b) the diffusion coefficient is shown for H = 56.8

mJ/mm2 together with the time-dependent model and HBM model as shown in Figure 4 of the

main text.

The non-linear heating mechanism is further highlighted by studying the dependence of the

relaxation rate Γ as a function of H at fixed np (i.e., vertical cuts through Supporting Figure S9 a).

The results are shown in Supporting Figure S11 (a) for five values of np. The data were modeled

by exponential functions

Γ(H) = a exp(bH), (12)

which roughly follows the expected change of Γ with temperature (see Eq. 9). The growth rate

b is shown in Supporting Figure S11 (b). We observe a constant value of b at low np, where the
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data taken for H = 27.7 mJ/mm2 are compared to the heating of water as solvent (blue), the heating of the

individual nanoparticles (NP, red), the time-dependent model where the NP transfer heat to the surrounding

water volume (green), and the model of hot diffusing particles (purple) [14].
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Supporting Figure S10. a) Viscosities of water from [16] and from HBM model for H = 56.8 mJ/mm2. b)

Diffusion coefficient for H = 56.8 mJ/mm2 compared to the time-dependent model and the HBM model

using ηHBM (dashed-dotted line) and η(T ) with T = THBM (dashed line).

heating of the nanoparticle dominates leading to a constant temperature. This is in agreement

with the results from Fig. 4 d, where the temperature does not change significantly up to np ≈ 20.

For larger values of np, the growth rate b increases significantly where the heating of the solvent

dominates. The contribution of the heating of the nanoparticles and the solvent are highlighted

by the solid lines representing the different models as discussed in Supporting Figure S9.

As a consequence of the non-linear heating, the dynamics become heterogeneous. This can be

quantified by the Kohlrausch-Williams-Watt (KWW) exponent γ that becomes less than 1.

Fits to the correlation functions C(np, np + n) are shown in Supporting Figure S12. Here, we

compare fits to a single exponential f(q, τ) = exp(−Γτ) with fits to the KWW function f(q, τ) =
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Supporting Figure S11. (a) Relaxation rate Γ as a function of H. The lines are fits to the exponential

function (Eq. 12). (b) Growth rate b from Eq. 12 together with the growth rate calculated from the heating

models.

Supporting Figure S12. Correlation functions C(np, np + n) for q = 0.125 nm−1 and the three highest

fluences. Fits using (i) a single exponential (dashed lines) and (ii) stretched exponential (solid lines) are

compared.

exp(−[Γτ ]γ) (Eq. 3) in the main text. The speckle contrast has been fixed to the result obtained

from the static samples as described in the main text. For H = 10.5 mJ/mm2 we typically obtain

γ ≈ 1, indicating a single-exponential relaxation. In contrast, for the two highest fluences, the

single exponentials only model the data well for small np.

This is further demonstrated by the goodness of the fits by calculating the root mean square

error for different values of np, see Supporting Figure S13. While the fit to a stretched exponential

for H = 10.5 mJ/mm2 yields γ ≈ 1, the rmse values are similar for both models. For the two

highest fluences, strong deviations appear with increasing np, demonstrating the need for using the

KWW model of a stretched exponential to model the data.

The KWW exponents γ extracted from C(np, np + n) are shown in Supporting Figure S14

for the highest fluences probed. With increasing np, γ decreases reflecting increasing dynamical
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Supporting Figure S13. Root mean square errors of the fits to the single and stretched exponentials.
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Supporting Figure S14. KWW exponents for H = 27.7 mJ/mm2 (left) and H = 56.8 mJ/mm2 (right) as a

function of np for some q values.

heterogeneities. In this case the correlation function for different experimental times te becomes

g2(te, τ) = 1 +
1

V

∫
V

exp

(
−q2 kBTeff(V ′, te, τ)

6πRηeff(Teff(V ′, te, τ))
τ

)
dV ′, (13)

with the sample volume V exposed to the beam, particle radius R, and effective viscosity ηeff . This

integral leads to an effective broadening of g2 with increasing differences in effective temperature

Teff .

The q-dependence of γ is shown in Supporting Figure S15 for three different values of np. In

general, γ slightly decreases with increasing q at large np (here shown for np = 100). This indicates

a higher degree of heterogeneity at large q corresponding to shorter length scales and suggests a

larger impact of temperature heterogeneity at short length scales. This follows our model, assuming

larger temperature differences closer to the particles’ surface. At lower np values, the q-dependence

appears to be different, e.g., γ increases with q for both fluences as shown for np = 12. This behavior

is found in the regime where all diffusion models fail to explain the diffusivity data (np < 20, see

Fig. 4c) and may thus be a fingerprint of the break-down of the Stokes-Einstein relation where the
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Supporting Figure S15. KWW exponents for the two highest fluences as function of q for three values of np.

nanoparticles move faster than expected from their and the solvent temperature – thus leading to

increased heterogeneity on longer length scales. With further increasing np, the q-dependence of

the KWW exponents changes as discussed above. This happens at different np for the two fluences,

as highlighted for np = 24 in Supporting Figure V C. Here, the data at H = 56.8 mJ/mm2 still

increases with q, while γ is constant for H = 27.7 mJ/mm2. Note that the differences between

at different q-values are generally weak. Furthermore, with increasing np, and thus increasing

relaxation rates, we are able to observe only the long-time tails of the correlation function leading

to larger error bars for γ.
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