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S| Materials and Methods

Protein expression and purification. hGR N564A and AncGR2 N33A mutations were produced using
QuikChange site-directed mutagenesis kit (Agilent) and constructs were verified by Sanger sequencing
prior to use. All AncGR2 LBD constructs were expressed in E. coli BL21 cells, induced by 0.3 mM
isopropyl-1-thio-D-galactopyranoside (IPTG) and 50 uM drug [hydrocortisone (HCY); prednisolone
(PRED); C,¢-desacetyl deflazacort (dDFZ); or vamorolone (VAM)] at 16 °C, and further grown overnight.
AncGR2 LBD with or without a maltose-binding protein (MBP)-fused His tag were purified as previously
reported (1). AncGR2 LBD with a N-terminal His-SUMO tag was purified by His-Trap affinity
chromatography (GE Healthcare). Protein was further purified by Superdex 75 size exclusion
chromatography in a buffer containing 20 mM HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA, 5 mM DTT,
and 0.005 % Tween-20 for Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction
(MARCONI).

Crystallization, data collection and structure determination. GR2 LBD was concentrated to 4 mg/ml
with two-fold excess PGC1a NR Box 2 peptide (NH,-EEPSLLKKLLLAPA-COOQO’) or SHP peptide (NH-
QGAASRPAILYALLSSSLK-COQ)) in a buffer containing 20 mM HEPES (pH 7.4), 200 mM NaCl, and 5 %
glycerol. Crystals were grown by the hanging-drop vapor diffusion method at 16 °C. Crystals of the
AncGR2 LBD-PRED were formed in 0.2 M ammonium acetate, 3.0 M sodium formate, and 0.1 M HEPES
8.0. AncGR2 LBD-dDFZ crystals were obtained in 0.2 M ammonium acetate, 2.5 M sodium formate, and
0.1 M Tris pH 8.5. AncGR2 LBD-VAM was crystalized in 256% PEG 300 and 0.1 M Tris pH 8.5. Crystals

were flash-frozen in liquid nitrogen after soaking for 5 s in mother liquor containing 25% glycerol.

X-ray diffraction data were collected on the South East Regional Collaborative Access Team
(SER-CAT) beamline 22-ID at the Advanced Photon Source (APS) at Argonne National Laboratories at
100 K and processed using HKL-2000 (2). The structures were determined by molecular replacement
using the structure of AncGR2 LBD-Dex (PDB: 3GN8) as an initial search model (3) with program Phaser-
MR (4). Repeated rounds of manual refitting and crystallographic refinement were performed using
PHENIX (v1.12) and COOT (5). PyMOL (v1.8.2) was used to perform alignments and generate figures

(Schrdédinger, LLC). Hydrogen bonds and hydrophobic contacts were identified by Ligplot (v.4.5.3) (6).



Ligand binding and coregulator binding assays. 100 nM MBP-fused GR2LBD preincubated with 12
nM FAM-labelled DEX was used for competition ligand binding assays with increasing amounts of
unlabeled PRED, dDFZ or HCY added into the solution. The fluorescence polarization (FP) signal
(Ex=485 nm; Em=528 nm) was recorded using a BioTek Neo plate-reader (Winooski, VT). Three
technical replicates and three biological replicates were conducted, and graphical compilations of all data

were created. Binding data were fit with one-site Ki-fit curve in GraphPad Prism v8 (GraphPad, Inc).

Different N-terminal FAM-labelled peptides at 50 nM was used for coregulator binding assays
with increasing amount of GR2 LBD titrated into the solution. The FP signal was recorded as mentioned
above. Three technical replicates and three biological replicates were conducted and graphs were
compilations of all data collected. Binding data were fit with a one-site binding curve in GraphPad Prism

v8 (1).

MARCONI. The assay mixture for h\GR consists of 1 nM GST-tagged hGR LBD (aa 521-777, Invitrogen),
25 nM ALEXA-488 conjugated GST antibody (Fisher Scientific), and 5 mM DTT, in Coregulator buffer F
(Invitrogen) in the presence of solvent only (2% DMSO) or 1 uM drug as indicated. The reaction mixture
for GR2 consists of 10 nM His-SUMO-tagged GR2 WT or N33A (expressed in the presence of drug as
indicated), 25 nM ALEXA-488 conjugated penta-His antibody (Qiagen), 5 mM DTT, in reaction buffer (as
mentioned above) in the presence of additional 1 uM of the respective drug to preserve full loading.
Experiments were conducted on a PamStation96 (PamGene) at room temperature. In short, PamChip
arrays (PamGene) were blocked for 20 cycles with 1% BSA (Calbiochem) in Tris-buffered saline (TBS),
incubated for 40 minutes with 25 ul assay mix using 3 arrays per mix and finally rinsed twice with TBS.
Binding on array (tif) images were quantified with BioNavigator software (PamGene). A modulation index,
i.e. the log-transformed ratio of binding in presence over absence (solvent) of compound, was calculated
for each interaction. Significance of the modulation was assessed using Student’s t-Test and FDR post

hoc correction.

Differential scanning fluorimetry (DSF). GR2 LBD in 20 mM Tris (pH 7.4), 300 mM NaCl, and 5 %
glycerol at 10 uM was used for DSF assays. Protein was incubated with 50 uM PRED, dDFZ, or VAM in

the presence of 50 uM coregulator peptides and SYPRO® orange dye (Sigma) at a final dilution of



1:1000. The peptide sequences used were as follows: Tif2 NR Box 3 (NH2-KENALLRYLLDKDD-CQOQ),
SMRT (NH2-TNMGLEAIIRKALMGKY-COQ’) and NCoR ID2 (NH2-DPASNLGLEDIIRKALMGSFDDK-
COOQO"). Temperature scans were performed from 25 °C to 95 °C at a rate of 0.5 °C/min using a StepOne
Plus Real Time PCR System (ThermoFisher) with fluorescence monitored using the ROX filter (602 nm).
Three technical replicates and three biological replicates were conducted. The data were normalized and
fit to a two-state model with a single transition between native and denatured protein using Boltzmann

sigmoidal curve as previously described (1, 7).

Hydrogen-deuterium exchange-mass spectrometry (HDX-MS). HDX-MS was performed on AncGR2
LBD-PRED and -VAM at 2 mg/ml using a UPLC coupled with a Q-Tof Premier MS and a robotic
autosampler (Waters Corp, Milford, MA) as previously described (1). Briefly, triplicate exchange reactions
were initialized by diluting each protein sample 1:7 (v/v) into 10 mM phosphate buffer in 99.9 % D,0 for 0,
10, 100, 1000 and 10000 seconds. Precooled quenching buffer [100 mM phosphate, 0.5 M tris(2-
carboxyethyl) phosphine, 0.8% formic acid, and 2% acetonitrile, pH 2.5] was added to stop the exchange
reaction prior to exposure to an online pepsin column (Waters Corp, Milford, MA). Peptides were
separated by a C18 UPLC column and analyzed by MS. Peptides were identified using ProteinLynx
Global SERVER™ (PLGS) and the deuterium incorporation data were processed in DynamX (v3.0). The
HDX difference between different states was calculated by comparing the relative fractional uptake for

each residue at a given time.

Molecular dynamics simulations. All 1000 ns molecular dynamics simulations were performed with
Amber18 (8) using a 2 fs timestep as previously described (1). Briefly, AncGR2 LBD-PRED, -dDFZ, and -
VAM complexes were solvated in an octahedral box of TIP3P water with 10 A buffer surrounding it,
supplemented with Na* and CI ions to a final concentration of 150 mM to neutralize the protein. All bonds
between heavy atoms and hydrogens were fixed with the SHAKE algorithm (9). Root mean square
fluctuations (RMSF) were calculated on Ca atoms of protein residues for each frame in the trajectory
using the initial structure as the reference. Carma program and NetworkView plugin in VMD (10) were
utilized for producing the dynamic network by calculating the cartesian covariance and correlation

between two nodes (11). The edge distances were derived from pairwise correlations as a measure of



communication within the network. Suboptimal paths were identified using the Floyd-Warshall algorithm
(12) and analyzed by subopt program in the VMD NetworkView plugin (10).

Reporter gene assays. Reporter gene assays were performed as previously reported (13). Briefly, HeLa
cells were maintained and passaged in a-minimal essential medium (Life Technologies) supplemented
with 10 % stripped FBS (Invitrogen). Cells were grown in 96-well plates to 70 % confluence and
transfected with 10 ng of hGR WT or N564A mutant, 50 ng of SGK and IL8 kBRE firefly luciferase
reporter, and 1 ng of Renilla luciferase reporter under the control of the constitutively active pRL-CMV
promoter using with FuGeneHD (Roche Applied Science). Cells were treated with different concentrations
of drugs or DMSO 24 hours after transfection in triplicate. Renilla and firefly luciferase activities were
measured 24 hours after drug treatment using the DualGlo kit (Promega) by a BioTek Neo plate-reader

(Winooski, VT).

GR dimerization assays. NanoLuc luciferase-based bioluminescence resonance energy transfer
(BRET") assay and Protein-Fragment Complementation Assay (NanoPCA) were carried out as previously
described(14-16). For NanoPCA, GR WT and GR A458T/1628 A monomeric mutant (Mon) were subcloned
into NanoLuc luciferase (NLuc)-PCA vectors containing the N- or C-NLuc fragments using Gateway
cloning system (Invitrogen, CA). For BRET" assay, GR WT and Mon were cloned into BRET vectors
containing a NLuc or Venus-tag. All plasmids generated were confirmed by sequencing. HEK293T cells
were maintained as Hela cells used in reporter gene assays. For NanoPCA, cells were transfected with 1
ng of both N- and C-NLuc-fused GR (WT or Mon) or GR with empty NLuc vectors and then treated with
drugs at 1 yM or DMSO in triplicate 24 hours later. Luciferase activities were measured 24 hours after
drug treatment using the NanoGlo kit (Promega) by a BioTek Neo plate-reader (Winooski, VT). The PCA
signal (signal/background ratios) were calculated as a ratio of averaged experiment signal to the higher
averaged background obtained from both empty vector controls. For BRET assay, cells were transfected
with 5 ng of Nluc-GR and 320 ng of venus-GR or pcDNA (as the no venus control). After drug treatment,
the donor luminescence signal at 450 nm and acceptor emission signal at 530 nm were measured using
the NanoGilo kit (Promega) by a BioTek Neo plate-reader (Winooski, VT). The BRET" signal is the ratio of
intensity of acceptor signal over donor signal and the net BRET" is the difference in BRET" signal of Nluc-

GR/venus-GR pair and the NLuc-GR/pcDNA control.



al a2
Q000000Q Q000000000000000000000000Q Q00 Q0Q
. . . 29. 33 36 39. . .
PNl VAN DTS LLEVIEPEVL YEG YD SUS#AP DENSINRIAMEIT LN)IILGGROVNYEAVKWAKAMPGFRNLHLDD 60

Kkegkhhhhkdhhdhhhhoghhhhgohhgs Kghkghhh dhhdhhhhgohdhhhhhhghhhhhdhhhdhs

a3 p1 B2 a4
— 000
70 73 80 .92 . 111 115 .
hGRLBD QMTLLQYSWMLMAFLGWRSYQSNLCFAPDLINERM LPMYDQCMLSS 651
VT V38 MOMTLLOY SWMHLMAFELGWR S Yi{0 SIN[e|NI¥L. c F AP D LN I NERRMOL PF4M ¥ D O CleJe]M L)tk S S IS TX]

Khkkhkhkhkhhkhkh Khkkkghhhhhhkghh | hokkhhkhkghhhghk *k *kkkkgghk gkh%

as g3 ab
20000 2QQQQQQQQQQQ =—>

Q2

hGRLBD RLQVSYEEYLCMKLLLLSVPKDGLKSQFDEIRMTYIKELGKAIVKREGNSSQN 711
AncGR2LBD JAYRLOVS YBIEYLCMK)LLLLSIVPKDGLKSOQIWIFDEIRMTYIKELGKAIVKREGNSSOQON 180

kg Khhkkhkkkghhhkhhk hhkdhkhohhhhhhhdhh ghhhhhhhhhhdhhhhdhdhhdrdrdk

a7 a8 B4
Q00 Q00000000000 0QQ —_—

208

. 201 . 218 . 224 . .
hGRLBD WQRFYQLTKLLDSMHEVLLCFTFKSEFPEMLAEIINQPKGK 771
J U7 V38 IWORF YOL TKLLDSMHENV[E]SL L[}3C FFT FINKEMS\YE F PEMLAE I IEIN QP Kigi@:\GEAY KT

dhkkhkhhhhhhhhhhhkh ok _ dkhgokhdh hhgekgehehhhhkhkhkhkhkhkhghkkokkg, Kk, sk

hGRLBD LLFHOKEAK]
AncGR2LBD |[BBP:ANY 246

*kkkkx

Figure S1. Sequence alignment of hGR and AncGR2 LBD. Identical residues are highlighted with a
red background while similar residues are displayed in red text. Secondary structure elements are
indicated at the top. Number of residues participating H-bonding and hydrophobic interactions with
ligands (related to Figure 2) and the allosteric communication from ligand to AF-H (related to Figure 5) are
labeled. This figure was generated by ClustalW and ESPript.



Figure S2. Structural comparison between AncGR2 LBD in complexes with prednisolone, C21-
desacetyl deflazacort and vamorolone. (a). Structural overlay of the prednisolone (PRED, marine)- and
C,4-desacetyl deflazacort (dDFZ, cyan)- bound AncGR2 LBD. Inset: overlay of compound PRED and
dDFZ. (b). Structural overlay of the PRED (marine)- and vamorolone (VAM, grey)- bound AncGR2 LBD.
Inset (left): hydrogen bonding between H3 and the loop preceding AF-2; Inset (right): overlay of
compound PRED and VAM.
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Figure S3. Coregulator binding profiles for AncGR2 LBD in complex with ligands. AncGR2 LBD
with PRED (a), dDFZ (b), and VAM (c) was titrated into various FAM-labelled coregulator peptides to
monitor fluorescence polarization signal changes to determine binding affinities. These data are
represented as mean + ( S.D.) from three replicates and from three independent experiments.
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Figure S4. Thermostability of AncGR2 LBD bound to PRED, dDFZ and VAM and in complex with
different coregulators. (a-c) Thermal unfolding curves of AncGR2 LBD bound to PRED (a), dDFZ (b),
and VAM (c) in presence of coactivators. These data are represented as mean * ( S.D.) from three
replicates and from three independent experiments. (d). Thermostability for various coregulators bound to
AncGR2 LBD with different ligands are expressed as Tm (°C) with 95% confidence interval from three

replicates and from three independent experiments.
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Figure S5. Recognition of SHP at the AncGR2 LBD AF-2 surface. (a) SHP binds to AncGR2 LBD AF-
2 and forms extensive hydrophobic contacts with LBD (participating residues colored in yellow). (b)
Primary charge clamps are mediated by Glu224 and Lys48 (shown in blue) to hold SHP in place. (c)
Stronger charge clamp is formed between Lys 48 and A150, analogous to S27 in SHP, in the PGC1a
binding as indicated by shorter hydrogen bond length.
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Figure S6. HDX-MS analysis of AncGR2LBD in complex with PRED and VAM. (a) Sequence map of
peptic fragments identified in HDX-MS show 99 % coverage of AncGR2 LBD. (b) Relative fractional
deuterium uptake mapped onto the structure of AncGR2 LBD with VAM or PRED. The relative deuterium
uptake is colored along the continuous gradient from blue to red, with their intensity scaling to the
magnitude.
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Table $1. X-ray Data Collection and Refinement Statistics

AncGR2 LBD - AncGR2 LBD - AncGR2 LBD -
PRED-PGC1a dDFZ-PGC1a VAM-SHP
Data Collection
Space Group Cc222 CcC222 C121
Unit Cell Dimension
a, b, c (A) a:71._1, b=96.1, a=71;7, b=96.5, a=87._1, b=52.9,
c=108.0 c=107.5. c=69.7.
a, B,y (°) 90, 90, 90 90, 90, 90 90, 90, 90
Resolution (A) 1.60 (1.66-1.60) * 1.45 (1.50-1.45) 1.59 (1.64 -1.59)
Rpim 0.058 (0.386) 0.069 (0.560) 0.081 (0.444)
CC% 0.952 (0.765) 0.971 (0.571) 0.921 (0.684)
llo 13.3(2.3) 10.7 (1.8) 10.9 (1.3)
Completeness 98.7 (93.9) 99.7 (99.1) 96.6 (87.4)
Redundancy 12.0 (9.6) 12.0 (8.2) 5.5 (3.2)
Refinement

No. Reflections

48001 (4531)

66028 (6507)

37223 (3352)

Rwork/Rfree 17.4/18.7 17.5/19.7 18.4/21.3

No. Atoms

Protein 2214 2248 2203

Ligand 44 47 50

Water 148 175 61

B-factors

Protein 39.0 32.3 34.3

ligand 41.5 42.3 37.3

Water 49.8 46.5 37.0
R.M.S. deviations

Bond lengths (A) 0.01 0.01 0.01

Bond angles (°) 0.86 1.24 0.95
Ramachandran plot (%)

Most favored 96.6 97.7 98.1

Outliers 0 0 0

*Values in the parentheses are for the highest resolution shell.

(PRED= prednisolone; dDFZ= C,s-desacetyl deflazacort; VAM= vamorolone)
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