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Supporting Information Text12

1. High resolution network models13

We constructed a high resolution Gaussian Network Model (GNM) for each of 7 proteins.(1–3) In each case, the high resolution14

model represented each of the n amino acids with its α carbon. We employed the ProDy server to construct a contact matrix,15

θij , from the folded structure, r∗, for each protein.(4) For each distinct pair of atoms, i and j, in the high resolution GNM, the16

contact matrix is17

θij =
{

1 if r∗ij < Rc

0 otherwise
[1]18

where r∗ij is the distance between the pair in the folded reference structure and we define the parameter Rc = 7.5Å. The high19

resolution GNM potential is then defined20

uGNM(r|r∗) = 1
2Γ

n∑
i=1

n∑
j>i

θij
(
rij − r∗ij

)2
, [2]21

where Γ is an irrelevant dimensional constant, rij is the vector from atom i to atom j in configuration r, and r∗ij is the22

corresponding vector in the folded structure, r∗. Note that the main text presents results in terms of dimensionless quantities,23

while this SI explicitly treats the relevant dimensional factors. This GNM potential separates into independent potentials24

governing the fluctuations in each Cartesian direction, each of which is of the form:25

u(q) = 1
2Γq†κq, [3]26

where q = (q1, . . . , qn) specifies the atomic displacements from equilibrium in one Cartesian direction, † denotes the transpose,27

and the curvature of the potential is28

κij = niδij − θij , [4]29

where ni =
∑

j(6=i) θij is the total number of contacts formed by atom i. Because uGNM is invariant under translation, κ30

possesses a one-dimensional null-space.31

The thermodynamic and statistical properties of the atomic GNM can be analytically determined.(1, 5) The equilibrium32

probability distribution is given by33

p(q) = z−1 exp [−βu(q)] , [5]34

where β = 1/kBT is the inverse of the physical temperature, T , and35

z =
∫

dq e−βu(q) = n1/2L
√

(2π)n−1 det c, [6]36

where L is the (one-dimensional) volume and c = (βΓκ)−1 is the covariance matrix. In Eq. (6), the factor n1/2L comes from37

free translation, while the remaining factor comes from vibrational motion. Note that because κ is singular, we employ κ−1 to38

represent the Moore-Penrose pseudoinverse acting in the n − 1 dimensional space of vibrations. Similarly, we consider the39

determinant of this projection: det κ = λ1 · · ·λn−1, where λ1, . . . , λn−1 are the n− 1 positive vibrational eigenvalues of κ.40

The (dimensionless) excess configurational entropy, s, is then computed41

s = −
∫

dq p(q) ln [Lnp(q)] [7]42

= (n− 1)s0 −
1
2 ln tκ [8]43

where s0 = 1
2

(
1 + ln[2π/βΓL2]

)
is a protein-independent constant and tκ = n−1 det κ. We employ h = 1

2 ln tκ to quantify the44

“non-trivial” information stored in the equilibrium distribution for the high-resolution GNM.45

The covariance matrix describing equilibrium fluctuations is46

c =
〈
qq†
〉

= (βΓκ)−1 [9]47

We quantify the “vibrational power” of the high-resolution GNM in terms of the mass-weighted fluctuations:48

σ =

〈
n∑
i=1

mq2
i

〉
= Trnmc = kBT

n−1∑
i=1

ω−2
i [10]49

where we have assigned a mass m to each atom, ωi =
√

Γλi/m > 0 is the ith vibrational frequency, and Trn indicates the50

trace over the atomic degrees of freedom.51
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2. Coarse-grained Representations52

The mapping, M, specifies a CG representation of the high resolution GNM by determining the configuration Q = (Q1, . . . , QN )53

for N CG degrees of freedom as a function of the high resolution configuration, q = (q1, . . . , qn), for n ≥ N atomic degrees of54

freedom:55

M : q→ Q = M(q). [11]56

In the present work, we consider mappings that partition the n atoms into N disjoint groups and associate a CG “site” with57

each atomic group. The mapping determines the coordinate of each site as the mass center for the associated atomic group.58

In the present work we consider only atomic groups with the additional properties: (1) each atom is associated with only59

one atomic group, (2) each atomic group contains R = n/N atoms, and (3) the bonds between atoms in each group form a60

connected network.61

The equilibrium distribution, p(q), of the high-resolution model and the mapping, M, then specify a “mapped” ensemble in62

which each CG configuration has probability63

P (Q; M) =
∫

dq p(q)δ(Q−M(q)) = z−1L−N+n exp [−βW (Q)] [12]64

where W (Q) = W (Q; M) is the “exact” CG potential obtained by renormalizing the microscopic potential(6–8)65

exp [−βW (Q)] = LN−n
∫

dq exp [−βu(q)] δ(Q−M(q)) . [13]66

Because67

L−N
∫

dQ exp [−βW (Q)] = L−n
∫

dq exp [−βu(q)] , [14]68

this definition ensures that the excess free energies of the CG and high-resolution models are equal.(9) The exact CG potential69

can be decomposed into energetic and entropic components(10, 11)70

W (Q) = UW (Q)− TSW (Q). [15]71

For the GNM, Eq. (13) can be analytically calculated.(10) The energetic and entropic components of W are72

UW (Q) = 1
2ΓQ†KQ + 1

2(n−N)kBT [16]73

SW (Q) = 1
2(n−N)s0 + 1

2 (lnTK − ln tκ) [17]74

where K =
(
Mκ−1M†)−1 is the renormalized Hessian and TK = N−1 det K.75

The (dimensionless) excess entropy of the mapped ensemble is76

S = −
∫

dQ P (Q; M) ln
[
LNP (Q; M)

]
= (N − 1)s0 −

1
2 lnTK. [18]77

As for the microscopic model, we define H = H(M) = 1
2 lnTK as the non-trivial information preserved in the mapped ensemble.78

Consequently, we define the “information quality” of the representation M by79

I = I(M) = H(M)/h = lnTK/ ln tκ, [19]80

i.e., the fraction of the information in the microscopic ensemble that is preserved by M.81

The covariance in the mapped ensemble is82

C = C(M) = (βΓK)−1 = McM†. [20]83

The vibrational power of the mapped ensemble is then84

Σ = Σ(M) =

〈
N∑
I=1

MQ2
I

〉
= TrNMC = kBT

N−1∑
I=1

Ω−2
I , [21]85

where we have assigned a mass M = mn/N to each CG site, ΩI =
√

ΓΛI/M > 0 is the Ith vibrational frequency, ΛI is the Ith
86

positive eigenvalue of K, and TrN indicates the trace over the CG degrees of freedom. Consequently, we quantify the spectral87

quality of the representation M by88

Q = Q(M) = Σ(M)/σ, [22]89

i.e., the fraction of vibrational power in the microscopic ensemble that is preserved by M.90

Note that the metrics I and Q are bounded between 0 and 1, only equalling 1 in the limit that N → n.91
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3. Connection to basic graph and network concepts92

The GNM has a particularly simple and informative connection to basic concepts in the theories of graphs(12) and networks.(13)93

For each atom i = 1, . . . , n treated by the GNM, one associates a vertex vi of a graph (or equivalently a node of a network),94

which we shall simply indicate by i. Between each pair of atoms, i and j, that are connected by a spring in the GNM potential,95

one associates an edge eij = eji connecting the i and j vertices. The resulting vertex set96

V = {1, 2, . . . , n} [23]97

and edge set98

E = {eij |i, j ∈ V, θij = 1} [24]99

define a graph, G = (V,E), which we refer to as the (intramolecular) protein interaction network for a specific protein. The100

contact matrix, θij , which specifies which atoms of the GNM are connected by springs, corresponds to the adjacency matrix of101

the protein interaction network. The curvature of the GNM potential, κij , is the corresponding graph Laplacian. Because the102

bonds of the GNM form a connected network, the protein interaction network is also connected, i.e., the edges in E provide103

a path between any two vertices in V . Moreover, the quantity tκ, which determines the protein-specific contribution to the104

GNM configurational entropy, equals the number of distinct trees that span the protein interaction network according to the105

Kirchhoff’s matrix-tree theorem. A spanning tree is a subgraph of a connected graph that connects all of the vertices in V with106

a subset of the edges in E and that includes no cycles.(12)107

Simple graph concepts are also useful for considering CG mappings. In the present work, we consider maps, M, that108

partition the n atoms of the GNM into N disjoint and connected atomic groups that each contain R = n/N atoms. This109

partitioning corresponds to defining a set of N equally sized communities in the protein interaction network.(13) It is then110

convenient to associate the mapping, M, for an N site CG model with N atomic groups M = (S1, . . . , SN ) where SI is the Ith
111

atomic group. The requirements that the atomic groups are equally sized, disjoint, and account for all the atoms correspond to112

the following criteria113

|SI | = R for all I [25]114

SI ∩ SJ = ∅ for all I 6= J [26]115

N⋃
I=1

SI = V = {1, 2, . . . , n}. [27]116

where |SI | indicates the number of elements in SI , i.e., the number of atoms associated with site I. Given the mapping117

M = (S1, . . . , SN ), it is convenient to define for each I and J118

EIJ = EIJ(M) = {eij ∈ E|i ∈ SI , j ∈ SJ}. [28]119

In the case that I 6= J , EIJ is the set of edges connecting atoms in site SI to atoms SJ . This set plays an important role in the120

move-sets developed for exploring mapping space.121

Given the mapping, M = (S1, . . . , SN ), it is useful to define for each site I a subgraph of the protein interaction network,122

GI = (SI , EII), that is formed by connecting the vertices i ∈ SI with the edges, EII , that are internal to the site I. The123

restriction to connected maps implies that the corresponding subgraphs GI must be connected for each site I = 1, . . . , N .124

It is also useful to define articulation nodes, which become important when swapping atoms between sites in the course of125

“swap-based” moves in mapping space. In brief, an articulation node is a vertex that causes a connected graph to become126

disconnected upon the removal of the vertex and all edges connecting (i.e., adjacent to) the vertex. More precisely, consider a127

move that, starting from a connected map M = (S1, . . . , SN ), generates a new map M′ = (S′1, . . . , S′N ), by exchanging a pair128

of atoms i and j between two sites I and J . This creates two new sites129

SI → S′I = SI−i ∪ {j} [29]130

SJ → S′J = SJ−j ∪ {i} [30]131

where SI−i = SI − {i} and SJ−j = SJ − {j} indicate the sets of R− 1 vertices remaining in SI and SJ after vertices i and j,132

respectively, have been removed. Similarly, we define133

EI−i = {ekl ∈ E|k, l ∈ SI−i} [31]134

EJ−j = {ekl ∈ E|k, l ∈ SJ−j} [32]135

as the sets of edges that remain in EII and EJJ after removing any edges that connect to vertices i ∈ SI and j ∈ SJ , respectively.136

The vertex i ∈ SI is an articulation vertex of GI if the graph GI−i = (SI−i, EI−i) is disconnected. Similarly, the vertex j ∈ SJ137

is an articulation vertex of GJ if the graph GJ−j = (SJ−j , EJ−j) is disconnected.138
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4. Sampling representations139

A. Mapping space. The mapping, M, specifies a particular CG representation of the underlying microscopic model. As noted140

above, the mapping defines the coordinate of each CG site as the mass center of an associated atomic group. Each mapping,141

M, then corresponds to a partitioning of the n atoms into N disjoint connected groups M = (S1, S2, . . . , SN ) where SI is the142

Ith atomic group. More precisely, we consider maps that satisfy the following properties143

1. Each atomic group includes R = n/N atoms, i.e., |SI | = R for all I.144

2. Each atom is included in only one atomic group, i.e., SI ∩ SJ = ∅ for all I 6= J .145

3. The atoms in each group are connected by a network of bonds, i.e., GI = (SI , EII) is a connected subgraph for all I.146

We denote by S the set of mappings that satisfy these 3 properties. In particular, the “block map,” Mbl ∈ S, is defined by147

assigning atoms i = 1, 2, . . . , R to group 1, assigning atoms i = R+ 1, R+ 2, . . . , 2R to group 2, etc.148

The following subsection defines a “swap-based” move-set for exploring mapping space starting from the block map, Mbl.149

However, we have not proved that this move-set is ergodic in S. Consequently, it is possible that there exist some maps M ∈ S150

that cannot be reached from Mbl via the swap move-set. Thus, our exploration of mapping space is limited to the set of151

connected maps that can be reached from the block map via swap-moves, i.e., to the set152

Sbl = {M ∈ S|dMS(M,Mbl) <∞} [33]153

where dMS(M,Mbl) is the minimum number of swap moves necessary to reach the map M starting from Mbl.154

The following subsection also considers a less restrictive “site-based” move-set. Numerical calculations indicate that both155

move-sets provide equivalent sampling, which suggests that the swap-based move-set may be ergodic for the class of protein156

GNM’s that we consider. Note, though, that the main text and SI only present results for the swap-based move-set.157

B. Move-sets. We consider two move-sets for exploring mapping space. Both consider moves from one connected map,158

M = (S1, . . . , SN ) ∈ Sbl, to a new connected map, M′ = (S′1, . . . , S′N ) ∈ Sbl, in which 2 of the N sites have been redefined,159

while the remaining N − 2 sites are unchanged. Moreover, both move-sets are reversible in the sense that if M→M′ is allowed,160

then M′ →M is also allowed. Consequently, dMS(M,M′) = dMS(M′,M) for both move-sets. Additionally, given a move-set161

MS, we define two maps, M and M′, as neighbors if dMS(M,M′) = 1.162

B.1. Swap-based. Given the map M = (S1, . . . , SN ), the swap-based move-set consists of all connected maps, M′ ∈ S, that can163

be constructed by swapping a pair of atoms between a pair of sites, while leaving the remaining sites unchanged. Operationally,164

this move-set is constructed as follows:165

1. For each pair of distinct sites, SI and SJ , defined by M, we construct the set, EIJ = EIJ(M), defined in Eq. (28)166

2. We then construct the set, TIJ(M), enumerating all (unordered) pairs of edges, [eij , ei′j′ ], formed by 4 distinct atoms167

connecting the two sites:168

TIJ(M) = {[eij , ei′j′ ]|eij , ei′j′ ∈ EIJ(M) with i, i′ ∈ SI , j, j′ ∈ SJ , and i 6= i′, j 6= j′} [34]169

3. For each pair of edges [eij , ei′j′ ] ∈ TIJ we consider two swaps that define moves to two new possible maps, M1 and M2:170

(a) swap (i ↔ j′): Define S′I = SI − {i} ∪ {j′} by replacing atom i with atom j′, define S′J = SJ − {j′} ∪ {i} by171

replacing atom j′ with atom i, and define M1 by replacing SI and SJ with S′I and S′J , respectively, while leaving172

the remaining N − 2 sites unchanged.173

(b) swap (i′ ↔ j): Define S′I = SI − {i′} ∪ {j} by replacing atom i′ with atom j, define S′J = SJ − {j} ∪ {i′} by174

replacing atom j with atom i′, and define M2 by replacing SI and SJ with S′I and S′J , respectively, while leaving175

the remaining N − 2 sites unchanged.176

(c) Check that the proposed new maps, M1 and M2, remain connected. Note that the two swaps ensure that the moved177

atoms are connected to at least one atom in their new site. Consequently, if a proposed swap does not move an178

articulation node, then the resulting map is allowed as a new move. However, if the proposed swap does move an179

articulation node, then the resulting site may be disconnected. In this case, the resulting map is only allowed if the180

atom replacing the articulation node ensures connectivity of the new site.181

By performing steps 1-3 for each distinct pair of sites SI and SJ defined by M, we identify all allowed maps M′ that can be182

generated from M via swap-based moves.183
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B.2. Site-based. Given the connected mapping M = (S1, . . . , SN ) ∈ S, the site-based move-set consists of all connected maps,184

M′ ∈ S, that can be constructed by first merging a pair of sites, SI and SJ , to form a “super-site” ŜIJ , and then splitting ŜIJ185

into 2 new connected sites S′I and S′J , while leaving the remaining N − 2 sites unchanged. In order to apply this move-set we186

first determine the following prior to simulation187

1. all possible connected sites of R atoms that can be formed from the protein interaction network.188

2. all possible super-sites of 2R distinct atoms that can be formed from merging two of these connected sites189

In this way, we determine all possible pairs of connected sites [S1, S2] that can be formed by splitting any relevant super-190

site, Ŝ into two disjoint groups each containing R atoms. Then, during the course of the simulation, given the mapping,191

M = (S1, . . . , SN ) ∈ S, the site-based move-set identifies possible moves, M→M′ as follows:192

1. For each pair of distinct sites, SI and SJ , defined by M, we construct the super-site ŜIJ .193

2. Using our precomputed list, we identify each pair of new connected sites, S′I and S′J , that can be formed by splitting the194

super-site ŜIJ .195

3. Each such division of the super-site ŜIJ determines a new map, M′, defined by replacing SI and SJ with S′I and S′J ,196

respectively, while leaving the N − 2 remaining sites unchanged.197

By performing steps 1-3 for each distinct pair of sites SI and SJ defined by M, we identify all allowed maps M′ that can be198

generated from M via site-based moves.199

C. Exhaustive enumeration. For sufficiently small proteins with sufficiently simple interaction networks, it is possible to200

exhaustively enumerate all possible CG representations in Sbl via a “breadth-first” search. In this breadth-first search we201

enumerate successive generations of new maps by identifying neighbors of previously identified maps. In this calculation, we202

only employed swap-moves to identify neighbors.203

The “zeroth generation” list includes only the block map, Mbl. We then generate a “first generation” list of all maps, M′,204

that are neighbors of Mbl. We then identify the neighbors of each first generation map in order to identify a list of “second205

generation” maps. In generating this second generation, we ensure that each second generation map is unique and also exclude206

maps identified in previous generations, i.e., the block and first generation maps. We continue in this manner creating lists of207

unique nth generation maps that are not included in prior generations, until all maps that can be reached have been previously208

identified. The union of these generations then corresponds to the complete set of maps that can be reached from Mbl, i.e., the209

union corresponds to Sbl.210

D. Monte Carlo methods. In most cases, it is not feasible to exhaustively all possible maps in Sbl. Consequently, we employ211

Monte Carlo methods to more effectively explore and characterize the statistical properties of Sbl at each resolution.212

D.1. Energy and Temperature. Since we are particularly interested in characterizing the information content, I, and spectral213

quality, Q, of CG maps, we performed Monte Carlo simulations to sample maps, M, while employing these metrics to214

determine dimensionless energy functions E = E(M). Equilibrium Monte Carlo simulations will then sample M ∈ Sbl from the215

distribution(14)216

PM = exp [−βEE(M)]/QE(βE) [35]217

where E is either 2H or 1−Q, βE is the (inverse) temperature conjugate to E , and the normalization is218

QE(βE) =
∑

M∈Sbl

exp [−βEE(M)] . [36]219

Note that equilibrium MC simulations sample maps with varying values of E as βE is varied:220

• simulations with βE →∞ primarily sample maps that minimize E221

• simulations with βE > 0 primarily sample maps with relatively small values of E222

• simulations with βE → 0 primarily sample maps with characteristic values of E223

• simulations with βE < 0 primarily sample maps with relatively large values of E224

• simulations with βE → −∞ primarily sample maps that maximize E .225

Thus, by performing MC simulations at a range of inverse temperatures, βE , we sample maps M ∈ Sbl covering the entire226

range for E .227
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D.2. Detailed balance. In order to ensure that the MC simulations sample the distribution given by Eq. (35), we require that the228

simulations satisfy the detailed balance condition:229

Pr(M→M′) = Pr(M′ →M) [37]230

where, at equilibrium, the probability for moving from a given map M to a new map M′ is given by231

Pr(M→M′) = PM π(M→M′) [38]232

and π(M→M′) is the transition probability. We decompose the transition probability(14)233

π(M→M′) = g(M→M′) Acc(M→M′) [39]234

where g(M →M′) is the probability of proposing the move to M′ and Acc(M →M′) is the probability for accepting this235

move. In our simulations, we propose all allowed moves with equal probability such that236

g(M→M′) = C−1
M 1M,M′ [40]237

where CM is the number of maps that neighbor M and 1M,M′ is an indicator function that equals 1 if M and M′ are neighbors238

and vanishes otherwise. Note that CM and g(M →M′) both depend upon the move-set employed in the MC simulations.239

More importantly, since we restrict our sampling to connected maps, CM is not a constant, but instead depends upon M.240

Consequently, in order to ensure detailed balance, we accept allowed moves with probability241

Acc(M→M′) = CM

max{CM, CM′}
min {1,PM′/PM} . [41]242

We have found this acceptance probability useful, although other acceptance probabilities are possible as long as they satisfy243

Eq. (37), while accounting for Eq. (40).244

D.3. Monte Carlo simulations. We performed equilibrium MC simulations to sample and characterize mapping space, Sbl, for each245

protein at each resolution, R. The majority of our simulations employed the swap-based move-set described in B.1, although246

we also performed simulations with the site-based move-set in order to test the convergence of our simulations. Each MC247

simulation employed either 2H(M) or 1−Q(M), as an energy function, E = E(M), at a fixed conjugate (inverse) temperature248

βE . The combination of a specific energy function E and specific βE determine a “state point” for our simulations.(15) We249

employed a finer spacing of conjugate temperatures to sample near variance peaks in the corresponding energy, while employing250

a wider spacing of temperatures to sample simpler regions of the energy landscape.251

Given a map, M, each step of the simulation involved three steps.252

1. We enumerated all CM possible neighbors of the current map, M, according to the specified move-set.253

2. We randomly selected one of these neighbors, M′, according to the uniform distribution g(M→M′) given by Eq. (40).254

3. We accepted the proposed move M→M′ with probability Acc(M→M′) given by Eq. (41), while remaining at map M255

with probability 1−Acc(M→M′).256

Each simulation started from the N site block map, Mbl. We treated at least the first 104 MC steps as an equilibration257

period. Subsequently, we sampled maps after every tenth MC step.258

D.4. Simulated annealing. Prior to performing equilibrium MC simulations, we first performed simulated annealing in order to259

determine the relevant range for each energy function E and to estimate the appropriate conjugate (inverse) temperatures260

that should be employed in equilibrium simulations. These simulations began at very large positive temperature (i.e., inverse261

temperature βE = +ε for some very small, positive ε). The temperature was gradually decreased in log-based steps towards262

0 (i.e., until the inverse temperature βE reached a maximum value, M, for some very large constant M> 0). After each263

temperature decrease, the simulation continued via equilibrium MC steps at constant temperature until a pseudo-equilibrium264

was reached when the energy plateaued. At this point the temperature was decreased again.265

By performing multiple (i.e., order 10) independent simulated annealing calculations, we determined the ground state266

mapping, ME0, that minimized the energy, E , as well as a first estimate for the low-energy side of the density of states.267

We performed corresponding simulated annealing studies for negative temperatures to determine the maximum value of the268

energy and estimate the high-energy side of the density of states. In addition to determining the relevant range of energies,269

these simulations provided guidance for the appropriate conjugate temperatures that should be employed in equilibrium MC270

simulations.271

D.5. Subsampling. Given the correlated time series of maps, M, sampled from equilibrium MC simulations with the energy272

function E at a conjugate temperature, βE , we first estimated the correlation length of the time series from the PyMBAR273

time-series module.(15) We then subsampled the time series according to twice the estimated correlation length. In cases that274

we performed multiple MC simulations at the same state point, we determined the maximum correlation length among these275

simulations. We then employed this rate to subsample all simulations at this state point. Furthermore, we completely discarded276

any data from MC simulations that appeared trapped in basins in the free energy landscape. After this pruning process, we277

typically obtained approximately 106 statistically independent samples for each protein at each conjugate temperature for both278

energy functions.279
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D.6. Densities of states. Based upon this dataset, we employed the PyMBAR package to estimate the statistical weight of each280

sampled map at each state point of interest.(15) We estimated the density of states by discretizing the relevant range for the281

corresponding energy (i.e., E = 1
2hI or 1−Q) and summing the statistical weights for the samples assigned to each bin in the282

high temperature (i.e., βE → 0) limit. We employed a bin spacing of δI = .001 and δQ = .0025 for estimating the densities283

of states for all proteins except 1UBQ, for which δI = .0025 and δQ = .005. We obtained similar estimates for the densities284

of states when using a more sophisticated kernel density estimator. The temperature-dependent free energy surfaces were285

estimated from (the logarithm of) the total statistical weight for the maps in each bin at the appropriate temperature. The 1D286

DoS for each energy was then shifted to generate the DoS, Ω(O), for the corresponding order parameter O = I or Q. The 2D287

DoS’s were estimated by creating a two dimensional array (Q, I) of bins with the above spacing δQ, δI, and summing the288

statistical weights in each bin in the high temperature limit.289

D.7. Alignment of densities of states. Since the MBAR calculations estimate statistical weights rather than absolute probabilities,290

they can only determine the densities of states Ω(E) to within an unknown constant. In order to estimate this constant, we291

attempted to exhaustively enumerate the best maps, i.e., the maps that correspond to the density of states near the minimum292

value of E . The procedure is quite similar to the “breadth-first” procedure for exhaustively enumerating maps and employs293

swap-moves to identify neighbors, as described in subsection 4.C. This procedure starts from the optimal, ground state map,294

M0, minimizing the energy E(M0) = E0, and requires an criterion, Ethr, for enumerating maps.295

Starting from M0, we identify a first generation of all unique maps, M, that neighbor M0 and also lie below the threshold,296

E(M) ≤ Ethr. We then repeat the process for each map in this first generation in order to obtain a second generation of new297

maps for which E(M) ≤ Ethr. This procedure is repeated for successive generations until the next generation is empty because298

all potential members, M, of the next generation have either been previously enumerated or they lie above the threshold,299

i.e., E(M) > Ethr. This procedure is then successively repeated with increasing threshold, Ethr, until the procedure does not300

terminate within a set time. The resulting enumerated maps are then used to estimate the density of states for energies301

E slightly greater than E0. For some range, E0 ≤ E ≤ Ethr, the enumerated density of states parallels the density of states302

obtained from the MBAR calculation. We then vertically shift the MBAR density of states to match the enumerated density of303

states in this range.304

D.8. Statistical uncertainty. We estimated statistical uncertainties via bootstrapping. We resampled (with replacement) from the305

original data set of subsampled maps at each simulated state point. We repeated the MBAR calculation with this resampled306

data in order to obtain a new estimate for the statistical weight of each map at each state point. We then employed these307

new statistical weights to estimate the densities of states, as well as each observable of interest. We repeated this process 100308

independent times. The reported uncertainties are the standard deviations from these 100 calculations of each observable.309

5. Observables310

A. Radius of gyration. Given a three-dimensional equilibrium PDB structure, r∗, for a protein, we define r∗iα as the α Cartesian311

coordinate of atom i in the PDB structure. A CG mapping, M, then specifies a CG representation, R∗, of the PDB structure.312

We define R∗Iα as the α Cartesian coordinate for the CG site SI in the mapped structure. We then define the gyration tensor,313

GI = GI(M), for CG site SI :314

GI;αγ = GI;αγ(M) = N

n

∑
i∈SI

δr∗iαδr
∗
iγ [42]315

where δr∗iα = r∗iα −R∗Iα and 1 ≤ α, γ ≤ 3. The radius of gyration of site I in mapping M is given by316

R2
G;I(M) =

3∑
α=1

λ2
GI ;α [43]317

where λGI ;α is the α eigenvalue of the gyration tensor, GI . We then define318

RG = RG(M) = N−1
N∑
I=1

RG;I(M). [44]319

Finally, in the main text, we present the mean radius of gyration as a function of temperature:320

RG(T ) =
∑
M

PM(T )RG(M) [45]321

where T = TE is the temperature conjugate to E = 1−Q.322
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B. Variation of information. As noted above, we consider CG mappings that correspond to partitions of the n atoms among N323

CG sites. The variation of information (VI) provides a formal metric for quantifying the “distance” between two mappings that324

is commonly used to compare different partitions of sets.(16)325

Consider a mapping, M = (S1, . . . , SN ), of n atoms into N sites. We define PI(M) as the probability of randomly picking326

(according to a uniform distribution) an atom, i, that is associated with site I. Thus,327

PI(M) = n−1|SI |, [46]328

where |SI | denotes the size of the set SI , i.e., the number of atoms associated with site I. The information associated with this329

partitioning is then330

H1(M) = −
N∑
I=1

PI(M) logPI(M). [47]331

In the present work, we consider only maps for which all sites correspond to an equal number of atoms. Consequently, in this332

work PI(M) = N−1 for all I and any M, such that H1(M) = logN for any mapping M with N sites.333

Now consider two distinct mappings, M = (S1, . . . , SN ) and M′ = (S′1, . . . , S′N′) that map the n atoms to N and to N ′334

sites, respectively. We define PII′(M,M′) as the probability for randomly picking (according to a uniform distribution) an335

atom i that is associated with site I in mapping M and also associated with site I ′ in mapping M′. Thus,336

PII′(M,M′) = n−1|SI ∩ SI′ | = PI′I(M′,M), [48]337

where |SI ∩ SI′ | is the number of atoms that are mapped to site I by M and are also mapped to site I ′ by M′. Note that338

N′∑
I′=1

PII′(M,M′) = PI(M). [49]339

The total information(17) stored in the distribution PII′ is340

H2(M,M′) = −
N∑
I=1

N′∑
I′=1

PII′(M,M′) logPII′(M,M′) [50]341

the mutual information, MI, shared between the two mappings is342

MI(M,M′) = −
N∑
I=1

N′∑
I′=1

PII′(M,M′) log
[
PII′(M,M′)
PI(M)PI′(M′)

]
. [51]343

We define the distance d(M,M′) between M and M′ as VI:344

d(M,M′) ≡ VI(M,M′) ≡ H2(M,M′)−MI(M,M′) [52]345

= H1(M) +H1(M′)− 2MI(M,M′). [53]346

Note that VI allows one to quantify distances between mappings with different numbers of sites, i.e., for which N 6= N ′.347

However, in the present work we only compare mappings with the same number of sites.348

C. Modularity. As described in the main text and elaborated upon in Section 3 of this SI, the process of coarse-graining the349

GNM is very closely related to the process of clustering edges in a graph or defining communities in a network. The atoms and350

springs of the microscopic GNM correspond to the vertices and edges, respectively, of the graph that defines the underlying351

network. The Hessian of the microscopic GNM potential, κij = niδij − θij , corresponds to the graph Laplacian, Lij ; the contact352

matrix of the GNM, θij , corresponds to the adjacency matrix of the graph, Aij ; and the number of contacts formed by atom i,353

ni =
∑

j(6=i) θij , corresponds to the degree, ki, of vertex i. The total number of edges in the network is then m = 1
2
∑

i
ni.354

The process of coarse-graining the GNM represents the n original atoms with N CG sites, which we shall denote here355

C1, . . . , CN . In particular, we consider maps, M, that associate each atom, i, with a unique CG site, which we shall denote356

Ĉi ∈ {C1, . . . , CN}. This corresponds to partitioning the n vertices of the underlying graph into N communities. Newman and357

Girvan(18) proposed quantifying the “strength” of the resulting communities according to the modularity:358

Q(M) = 1
2m
∑
(i,j)

[
θij −

ninj
2m

]
δ(Ĉi, Ĉj), [54]359

where the sum is performed over all vertex pairs, while δ(Ĉi, Ĉj) = 1 if the atoms (nodes) i and j are mapped to the same CG360

site (community) and otherwise vanishes.(13)361
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D. Essential dynamics coarse-graining. It is also instructive to compare the present work with the essential dynamics coarse-362

graining (EDCG) methodology.(19) The EDCG method partitions the n atoms into N coherently moving atomic groups based363

upon analyzing the “essential dynamics” (ED) subspace(20) that is defined from the covariance matrix, cMD, of an atomically364

detailed molecular dynamics (MD) trajectory.365

We label the atoms i, j = 1, . . . , n and Cartesian directions d, d′ = 1, 2, 3. Given nt configurations r(t) = (rid(t)) sampled366

from a trajectory, one eliminates any overall translation and rotational motion. The MD covariance matrix is a 3n× 3n matrix,367

cMD ∈ R3n × R3n, with elements:368

cMD(id, jd′) = n−1
t

nt∑
t=1

∆rid(t)∆rjd′(t), [55]369

where ∆rid(t) = rid(t)− 〈rid〉 quantifies the displacement of atom i from its average position (relative to the mass center) in370

configuration r(t). Because cMD is symmetric, its eigenvectors, {ηq}, form a complete orthonormal basis and371

cMD =
∑
q

ηqµqη
†
q , [56]372

where we have sorted the corresponding eigenvalues, {µq}, in order of decreasing magnitude. In practice, the eigenvalues373

quickly decay and a relatively small number, nED, of eigenvectors dominate cMD. The ED subspace is then defined by these374

dominant eigenvectors. In particular, the projection operator375

PED =
nED∑
q=1

ηqη
†
q [57]376

defines motion in the ED subspace377

∆rED(t) = PED∆r(t). [58]378

The EDCG methodology attempts to group atoms into CG sites such that each atomic group moves coherently in the ED379

subspace. In practice, the EDCG methodology minimizes the residual:380

χ2(M) = 1
3N

N∑
I=1

3∑
d=1

1
nt

nt∑
t=1

(∑
i∈SI

∑
j≥i∈SI

| ∆rED;id(t)−∆rED;jd(t) |2
)

[59]381

= 1
3N

N∑
I=1

3∑
d=1

∑
i∈SI

∑
j≥i∈SI

(cED(id, id)− 2cED(id, jd) + cED(jd, jd)) [60]382

where i ∈ SI indicates the atoms i that are mapped to CG site I by the map, M = (S1, . . . , SN ), and cED = PEDcMDPED.383

In the context of the present work, the MD covariance matrix, cMD in Eq. (55) is replaced by the GNM covariance matrix,384

c ∈ Rn × Rn, in Eq. (9):385

c =
〈
qq†
〉

=
∑
q

ηq (βΓλq)−1 η†q [61]386

where ηq and λq are the eigenvectors and eigenvalues, respectively, of the Kirchoff matrix, κ. These eigenvectors then define387

the ED subspace according to Eq. (57) and cED = PEDcPED as before. The EDCG residual then becomes:388

χ2(M) = 1
N

N∑
I=1

∑
i∈SI

∑
j≥i∈SI

(cED;ii − 2cED;ij + cED;jj) [62]389

6. Additional results390

A. Model Proteins. The main text focuses on results for a 40 residue three-helix bundle protein with PDBID 2ERL. In this391

Supporting Information (SI) document, we present similar results for an additional 6 proteins with varying size and structure.392

Table 1 lists these proteins. Supporting Figures S1 and S2 characterize these 6 proteins. The left panels of these figures present393

the corresponding three-dimensional folded structures. The right panels combine the Kirchoff matrix, κ, with the (scaled)394

covariance matrix, βΓc = κ−1, for each protein. Supporting Figures S3 and S4 present the DoS’s for ln Ω(I) and ln Ω(Q),395

respectively, for the three smaller proteins described by Supporting Fig. S1. Supporting Figures S5 and S6 present the DoS’s396

for ln Ω(I) and ln Ω(Q), respectively, for the three larger proteins described by Supporting Fig. S2. The DoS’s for the larger397

proteins are only determined for positive temperatures.398
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B. Characterizing optimal maps. The present subsection provides further analysis of “optimal” maps. Supporting figures S7,399

S8, and S9 present the optimal maps for CG models of the proteins 3HJD, 1IJU, and 3E7R, respectively, with the indicated400

number of sites. In these three figures, the top and bottom rows present the maps that maximize Q and I, respectively.401

Supporting figures S10, S11, and S12 present the maps for CG models that maximize Q for the proteins 1UG4, 2V1Q, and402

1UBQ, respectively, with the indicated number of sites. These figures reinforce the results for 2ERL that are presented in403

Fig. 3 of the main text. The maps that maximize Q tend to form compact, localized sites, while maps that maximize I tend to404

form loose, distributed sites.405

Supporting figures S13, S14, and S15 present the 10 maps with maximal spectral fitness in N = 2, 4, and 8 site representations.406

These figures demonstrate that the optimal ten clusterings correspond to similar clusterings, although there is notable variation.407

C. Correlations with spectral fitness. The present subsection provides insight into the characteristic properties of “good” maps.408

Specifically, we present scatter plots indicating the correlations that are observed among sampled maps. Supporting figure S17409

presents the correlation of Q with the “size” of each map as defined by the RG(M) metric, which is defined in subsection 5.A.410

Supporting figure S17 presents the correlation of Q with the distance d0(M) = VI(M,M0) of a map, M, from the “ground411

state” map, M0, that maximizes Q, which is defined in subsection 5.B. Supporting figure S18 presents the correlation of Q412

with the modularity, Q(M), of the associated clustering, which is defined in subsection 5.C. Table S2 presents the best fit lines413

and R2 values that characterize each correlation.414

The spectral quality, Q, of a map is strongly anti-correlated with both its size, RG, and also with its distance, d0, from415

the ground state. Interestingly, the Q - d0 correlation appears to indicate two different regimes. In particular, the slope of416

this correlation becomes steeper very near the ground state map. Moreover, as Q approaches it maximum value for the given417

resolution, the d0 distribution broadens significantly and develops a long “tail” towards the ground state map, M0. Thus,418

there is considerable variation among clusterings with high spectral quality, as suggested by Supporting figures S13-S15. This419

also explains the maximum in var(d0) at very low temperature, which is presented in Fig. 4 of the main text. Conversely, the420

spectral quality is positively correlated with the modularity, Q, except at the highest resolution, for which there appears to be421

little correlation. As the resolution decreases, the slope of Q - Q correlation systematically increases. Therefore, it appears422

that RG and Q may prove most useful for identifying the mapping with optimal spectral quality.423

D. Relation to essential-dynamics coarse-graining. It is instructive to compare the spectral quality to the metric, χ2, that is424

adopted by the EDCG methodology.(19) Subsection 5.D defines χ2 and describes the EDCG methodology in detail. Supporting425

figure S19 presents a scatter plot indicating the correlation between Q and χ2 for 4 different model proteins and various426

resolutions R = n/N . Clearly, χ2 is strongly anti-correlated with Q at all but the highest resolutions. Table S2 quantifies427

this correlation. Thus, maps with high spectral quality define atomic groups that move rigidly within the essential dynamics428

subspace. Moreover, the slope characterizing this correlation becomes increasingly steep with increased coarsening, R.429

Based upon the correlation between Q and χ2, we employed our sampled maps to estimate the density of states for the430

EDCG metric, Ω(χ2). Specifically, given the maps sampled from MC simulations employing E = 1−Q as an energy function,431

we constructed histograms for χ2 based upon the statistical weight for each sampled map in the TQ →∞ limit. Supporting432

figure S20 presents the resulting estimate for the density of states, Ω(χ2) for different model proteins. These densities of states433

also demonstrate noticeable inflection points. This suggests that similar phase transitions would be observed if χ2 were adopted434

as the primary metric for characterizing the landscape of CG representations. Thus, we expect that the findings of the main435

text will be quite robust and apply for a wide variety of metrics that are employed to identify coherently moving atomic groups.436

E. Sensitivity to cutoff. The microscopic GNM employed a cut-off Rc = 7.5Å to determine the microscopic contact matrix, θij .437

This subsection investigates the sensitivity of our findings to this cut-off.438

Specifically, we constructed two additional microscopic GNM’s for the model protein 2ERL, which employed cut-offs of439

Rc = 6.0 Å and Rc = 10.0Å. We performed corresponding MC simulations for both of these new GNM’s. Supporting figure S21440

characterizes these additional simulations. The GNM with the longest cut-off (right column) undergoes phase transitions441

at the resolutions R = 20, 10 and 8, which are precisely the same resolutions for which phase transitions are observed in442

the original GNM with Rc = 7.5Å. The GNM with the shortest cut-off (left column) only undergoes phase transitions at443

the resolutions R = 20 and R = 10. We hypothesize that this effect is due to the fact that there is less information present444

in the Rc = 6.0Å model, and, consequently, a coarser resolution is required in order to distinguish between the two phases.445

Nevertheless, all three GNM’s for 2ERL demonstrate qualitatively similar phase behavior with only minor changes in the446

critical resolution. Thus, we conclude that the results of the main text are robust with respect to minor variations in the447

definition of the microscopic GNM.448
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Fig. S1. Characterization of the additional small proteins: 3HJD (A), 1IJU (B) and 3E7R (C). (Left) Cartoon representations of the equilibrium folded structures. (Right) Intensity
plots of the upper and lower halves of the symmetric connectivity, κ, and covariance, c = κ−1, matrices, respectively.
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Fig. S2. Characterization of the large proteins: 1UG4 (A), 2V1Q (B) and 1UBQ (C). (Left) Cartoon representations of the equilibrium folded structures. (Right) Intensity plots of
the upper and lower halves of the symmetric connectivity, κ, and covariance, c = κ−1, matrices, respectively.
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Fig. S3. Statistical analysis of mapping space for the additional small proteins: 3HJD (A), 1IJU (B) and 3E7R (C). The (logarithm of) the density of states Ω quantifying the
number of maps, M, with given information content, I at varying resolutions, R = n/N , indicated by the colors of the legend. The black crosses (‘+’) indicate I for the block
map at each resolution.
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Fig. S4. Statistical analysis of mapping space for the additional small proteins: 3HJD (A), 1IJU (B) and 3E7R (C). The (logarithm of) the density of states Ω quantifying the
number of maps, M, with given spectral quality,Q, at varying resolutions, R = n/N , indicated by the colors of the legend. The black crosses (‘+’) indicateQ for the block
map at each resolution.
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Fig. S5. Statistical analysis of mapping space for the large proteins: 1UG4 (A), 2V1Q (B) and 1UBQ (C). The (logarithm of) the density of states Ω quantifying the number of
maps, M, with given information content, I at varying resolutions, R = n/N , indicated by the colors of the legend. The black crosses (‘+’) indicate I for the block map at each
resolution.
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Fig. S6. Statistical analysis of mapping space for the large proteins: 1UG4 (A), 2V1Q (B) and 1UBQ (C). The (logarithm of) the density of states Ω quantifying the number of
maps, M, with given spectral quality,Q, at varying resolutions, R = n/N , indicated by the colors of the legend. The black crosses (‘+’) indicateQ for the block map at each
resolution.
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Fig. S7. CG representations with maximalQ (top) and I (bottom) for CG models of 3HJD with N = 2, 5, and 6 CG sites. The representations are indicated by assigning the
same color to each residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional
structure.
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Fig. S8. CG representations with maximalQ (top) and I (bottom) for CG models of 1IJU with N = 2, 4, and 9 CG sites. The representations are indicated by assigning the
same color to each residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional
structure.
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Fig. S9. CG representations with maximalQ (top) and I (bottom) for CG models of 3E7R with N = 2, 4, and 8 CG sites. The representations are indicated by assigning the
same color to each residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional
structure.
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Fig. S10. CG representations with maximalQ for CG models of 1UG4 with N = 2, 4, and 6 CG sites. The representations are indicated by assigning the same color to each
residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional structure.
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Fig. S11. CG representations with maximalQ for CG models of 2V1Q with N = 2, 4, and 6 CG sites. The representations are indicated by assigning the same color to each
residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional structure.

22 of 35 Thomas T. Foley, Katherine M. Kidder, M. Scott Shell, W. G. Noid



Fig. S12. CG representations with maximalQ for CG models of 1UBQ with N = 2, 4, and 6 CG sites. The representations are indicated by assigning the same color to each
residue in the same CG site. The bar graphs indicate the linear sequence of the protein, while the cartoons indicates its equilibrium three-dimensional structure.
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Fig. S13. Sequence alignment of the 10 maps with N = 2 sites that provide maximal spectral quality,Q, for the model protein 2ERL. Each row corresponds to a single map,
M, withQ(M), indicated along the y-axis. The x-axis indicates the atomic sequence, while the colors indicate the site assignment of each atom.
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Fig. S14. Sequence alignment of the 10 maps with N = 4 sites that provide maximal spectral quality,Q, for the model protein 2ERL. Each row corresponds to a single map,
M, withQ(M), indicated along the y-axis. The x-axis indicates the atomic sequence, while the colors indicate the site assignment of each atom.
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Fig. S15. Sequence alignment of the 10 maps with N = 8 sites that provide maximal spectral quality,Q, for the model protein 2ERL. Each row corresponds to a single map,
M, withQ(M), indicated along the y-axis. The x-axis indicates the atomic sequence, while the colors indicate the site assignment of each atom.

26 of 35 Thomas T. Foley, Katherine M. Kidder, M. Scott Shell, W. G. Noid



Fig. S16. Scatter plot of (Q, RG) among sampled maps for (A) 2ERL, (B) 3HJD, (C)1IJU, and (D) 3E7R at the resolutions R = n/N , indicated by the
colors in the legend.
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Fig. S17. Scatter plot of (Q, d0) among sampled maps for (A) 2ERL, (B) 3HJD, (C)1IJU, and (D) 3E7R at the resolutions R = n/N , indicated by the colors in the legend.
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Fig. S18. Scatter plot of (Q, Q) among sampled maps for (A) 2ERL, (B) 3HJD, (C)1IJU, and (D) 3E7R at the resolutions R = n/N , indicated by the colors in the legend.
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Fig. S19. Scatter plot of (Q, χ2) among sampled maps for (A) 2ERL, (B) 3HJD, (C)1IJU, and (D) 3E7R at the resolutions R = n/N , indicated by the colors in the legend.
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Fig. S20. Numerical estimate for the natural logarithm of the density of states, ln Ω(χ2), quantifying the number of maps, M, with given value of χ2 at the resolutions,
R = n/N , indicated by the colors of the legend.
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Fig. S21. Statistical analysis of mapping space for GNM’s with the cutoff Rc = 6.0Å (left column) and Rc = 10.0 Å (right column). The top row presents the natural logarithm
of the density of states, ln Ω(Q), quantifying the number of maps, M, with given spectral quality,Q, at the resolutions, R = n/N , indicated by the colors of the legend. The
middle and bottom rows represent the mean and relative variance of the spectral quality as a function of the temperature T = TQ conjugate to E = 1−Q. As in the main
text, the variance is scaled with respect to the variance in the high temperature limit, TQ →∞.
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Table S1. Model proteins. For each protein, we indicate the PDBID of the equilibrium structure, r∗, the number of amino acids, n, that are
treated in the high-resolution GNM, as well as any residues that are neglected by the GNM. The PDB structures for 3HJD and 2V1Q correspond
to symmetric dimers, while the the PDB structure for 1IJU is a symmetric tetramer. In these three cases, the GNM is defined by the structure
of chain A in the PDB file. In the case of 1UBQ, the last 4 residues correspond to a flexible tail that is trimmed from the GNM.

PDBID number of residues (n) residues trimmed
2ERL 40 0
3HJD 30 31-60
1IJU 36 37-144
3E7R 40 0
1UG4 60 0
2V1Q 60 61-120
1UBQ 72 73-76

Thomas T. Foley, Katherine M. Kidder, M. Scott Shell, W. G. Noid 33 of 35



Table S2. Table of lines of best fit correlations of four metrics with Q

Protein R
χ2 Q d0 Rg

Slope Intercept r2 Slope Intercept r2 Slope Intercept r2 Slope Intercept r2

2ERL

20 -79.966 22.536 1.0 - 3.356 -0.11 0.93 -3.321 1.45 0.45 -1.766 0.922 0.93
10 -21.031 8.335 1.0 1.677 -0.13 0.93 -7.164 3.022 0.84 -1.617 0.969 0.95
8 -13.598 5.983 1.0 1.454 -0.151 0.9 -7.392 3.47 0.86 -1.567 0.979 0.93
5 -5.659 3.036 1.0 1.049 -0.197 0.81 -6.796 4.109 0.72 -1.427 0.989 0.91
4 -3.693 2.196 0.99 1.088 -0.293 0.83 -8.927 5.344 0.76 -1.492 1.047 0.9
2 -0.589 0.534 0.73 -0.014 0.08 0.02 -15.938 11.415 0.33 -2.021 1.564 0.55

3HJD

15 -44.037 14.073 0.99 2.627 -0.119 0.82 -3.397 1.47 0.61 -1.699 0.886 0.95
10 -21.034 8.14 1.0 1.849 -0.15 0.89 -6.445 2.512 0.79 -1.686 0.928 0.95
6 -8.187 3.926 1.0 1.156 -0.166 0.86 -6.321 3.324 0.72 -1.503 0.958 0.91
5 -5.724 3.011 1.0 1.013 -0.182 0.83 -6.784 3.795 0.73 -1.429 0.962 0.89
3 -2.029 1.392 0.98 0.668 -0.213 0.77 -9.054 5.778 0.68 -1.503 1.089 0.86
2 -0.591 0.544 0.77 -0.079 0.106 0.32 -12.97 9.248 0.28 -1.704 1.34 0.43

1IJU

18 -13.245 4.106 0.99 3.35 -0.118 0.9 -6.286 1.542 0.81 -1.744 0.865 0.97
12 -6.875 2.523 0.99 2.528 -0.171 0.94 -8.48 2.593 0.88 -1.878 0.911 0.98
9 -3.644 1.717 0.97 2.528 -0.171 0.94 -9.302 3.332 0.88 -1.91 0.954 0.97
6 -1.521 0.98 0.97 1.393 -0.211 0.86 -8.039 3.852 0.72 -1.869 1.019 0.94
4 -0.567 0.52 0.84 1.086 -0.27 0.85 -8.224 4.703 0.64 -1.794 1.093 0.91
3 -0.259 0.313 0.72 0.841 -0.281 0.82 -10.523 6.355 0.68 -1.78 1.178 0.89
2 -0.122 0.163 0.56 -0.053 0.089 0.22 -16.699 11.359 0.47 -2.054 1.523 0.58

3E7R

20 -18.18 4.902 1.0 2.826 -0.092 0.94 -5.499 1.504 0.91 -2.125 0.93 0.99
10 -4.619 1.925 0.99 1.722 -0.14 0.9 -7.863 3.18 0.91 -2.138 1.013 0.99
8 -2.809 1.405 0.98 1.431 -0.15 0.85 -7.774 3.504 0.81 -2.132 1.051 0.99
5 -1.005 0.705 0.91 1.116 -0.221 0.74 -8.214 4.496 0.66 -2.055 1.138 0.98
4 -0.622 0.505 0.83 1.241 -0.342 0.83 -8.998 5.209 0.64 -2.058 1.206 0.96
2 -0.135 0.159 0.38 -0.005 0.059 0.0 -19.787 13.33 0.4 -2.573 1.848 0.58
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