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S1. Kinetic theory of protein aggregation into amyloid fibrils and its inhibition

S1.1. Kinetic equations in the absence of inhibitor. We briefly review here some key aspects of the master equation formalism
for amyloid fibril formation. The time course of an amyloid aggregation reaction is described in terms of the underlying
microscopic steps (Fig. 1A of the main text) by tracking the evolution of f(t,7), which describes the concentration at time ¢ of
fibrillar aggregates consisting of j monomers. f(t,j) satisfies the following (mean-field) master equation (1-4):

of(t,4)

) k()£ (2,5 = 1) = 2010 )+ Bam()™ Gy + Km0 850 i (49), [S1a]

i
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where m(t) is the concentration of monomers, §; ; denotes the Kronecker delta function and

ki = rate constant for primary nucleation, [S1b]
k2 = rate constant for secondary nucleation, [Sic]
k+ = rate constant for aggregate elongation (growth), [S1d]
n1 = reaction order for primary nucleation, [Sie€]
ne = reaction order for secondary nucleation. [S1f]

A note on reaction orders for fibril nucleation: both primary and secondary nucleation of new filaments are believed to be
non-classical, multi-step nucleation processes (4-7). Hence, the reaction orders ni and ns are in general not equal to the
physical size of the critical nuclei (4-7), unlike in classical nucleation theory. Instead, the reaction orders ni and n2 should be
thought of as describing the dependence of the rate-limiting step of these nucleation processes on the available monomer (see
e.g Refs. (4, 7) for a discussion on the interpretation of reaction orders for amyloid aggregation).

The most common experimental observables in amyloid aggregation typically correspond to coarse-grained fields, including

P(t) = aggregate number concentration, [S2a]
M(t) = aggregate mass concentration, [S2Db]
m(t) = monomer concentration. [S2¢]

The coarse-grained fields in Eq. (S2) correspond to the lowest principal moments of the aggregate size distribution f(t, j)

P) =Y ft5), M) = if(t)). (53]

Hence, the time evolution of P(¢) and M (t) is obtained by summation of the master equation Eq. (Sla) over j, yielding (1-4):

PO — k(e + kam(e)" M (1), S
d'rgit) = —2kim(t)P(t) — nikim(t)™ — nokom(t)"* M (t) = — d]\c/‘llt(t)' [S5]

In general, elongation is fast compared to nucleation. Indeed, the steady-state value of the average length of aggregates can be
shown to scale as \/k4 /(k2 m['2~") (8). Increasing the relative importance of growth over nucleation results in longer fibrils.
Since fibrillar aggregates are typically several monomers long (~ 103-104)7 secondary (and hence also primary) nucleation must
be slow compared to growth. This condition allows us to neglect the nucleation terms in Eq. (S5) in front of the growth term.
With this simplification, we thus arrive the following set of differential equations (Egs. (1) of main text) (1-4):

%ﬁt) — Fm(®)™ + kam(t)" M(8), [S6a)]
d”;ft) = kym(t)P(t) = fd]‘i(t). (S6b]

The terms on the right-hand side of Eq. (S6a) describe the total rate of the formation of new fibrils from primary and secondary
nucleation, respectively. Similarly, Eq. (S6b) describes the consumption of monomers (hence buildup of aggregate mass)
through elongation. The total mass of monomers myot is conserved

Mmeot = m(t) + M (). [S7]

S1.2. Integrated rate laws in the absence of inhibitor. An analytical solution to the aggregation kinetics in the absence of
an inhibitor, Eq. (S6), has been obtained previously using self-consistent approaches (1, 2, 4). The underlying idea behind
this method consists in using a fixed-point iteration to solve Eq. (S6), a strategy which results is self-consistent solutions of
increasing accuracy. In practice, Eq. (S6) can be transformed into a fixed-point equation by formal integration

P(t) = k‘l/ m(s)"lds+k2/ m(s)™ M(s)ds, [S8al
0 0

M(t) = Mot {1 — exp (—2k+/ P(s)ds)} . [S8b]
0

Denoting with A the integral operator on the right-hand side of Eq. (S8) and « = [P(t), M (t)], Eq. (S8) corresponds to a fixed
point equation x(t) = A[x(t)] and the fixed point «* of A is precisely the required solution to Eq. (S6). Fixed-point equations
can be solved using fixed-point iteration methods by applying the operator A repeatedly on a starting value x¢o sufficiently
close to the true solution. In the limit of infinitely many iterations, the fixed-point iteration converges to the true solution
" = lim A"[zo]. [S9]

n—oo
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As the starting point of our fixed-point iteration we choose the linear solution to Eq. (S6) that emerges by fixing the monomer
concentration to a constant and is thus exact at early times, when depletion of monomers is negligible. As we will see below,
this starting point yields a highly accurate self-consistent solution already after one step of the fixed-point iteration. Fixing
m(t) >~ mot in Eq. (S6) yields a set of linear equations

P
dd%(t) = kim{gs + kam{2 Mo(t), [S10a)]
dj‘éi(t) = 2k ot Po(t), [S10D)

where the subscript “0” in Py and My indicates the linearised solution. Eq. (S10) can be written in matrix form as

dwo
— =A b S11
a - Amet S11]
or, explicitly,
g PO (t) — 0 k‘szl(;Zt PO (t) + klm?olt [812]
dt Mo(t) 2k+mtot 0 My (t) 0 ’
—_—— ——
=A =z =b
The solution to Eq. (S11) with initial condition xo(0) = 0 is
t
xo(t) = / e =p ds. [S13]
0
To determine the exponential of the matrix A it is convenient to diagonalise A by writing
A=UDU ', [S14]
where
T
D= T2 [S15]
is a diagonal matrix consisting of the different eigenvalues x1, x2,--- of A and the rows of the matrix U are the eigenvectors to
the eigenvalues x;, i = 1,2, ---. Hence, the solution to Eq. (S11) can be written as
(er1t)
" oA-s) " D-s) -1 - (e"2f-1) -1
zo(t)= [ e Vbds=U eV Vs |UTb=U — U b [S16]
0 0

The resulting solution for Py(t) is a sum of exponentials e®¢*
T

n Tit 1
Py(t) = kimis, Z Ulju<U71)jl7 [517]
j=1

where U;; denotes the ij-th component of the matrix U. We obtain a self-consistent solution for the total aggregate mass
concentration by substituting Eq. (S17) into Eq. (S8b), hence performing a step of the fixed-point iteration. This yields

Mtot

n zit 1
Mi(t) =1- exp <2k+k1m?01t Z U1j% (Ul)j1> [818]
J

j=1

For the matrix A in Eq. (S12) the eigenvalues are 21 = x and z2 = —k, where k = \/2kkam[2"". The associated eigenvectors

s K
are <2k+1’“°t) and ( 2k+1mt0f>, respectively. Hence:
) ) [S19]

K _ K kymiot
U = [ 2k+mtot 2k Mot = U '=
1 1
(e +e " —2), [S20]

[SIERNIE

K
_ kgmiot
K

Therefore, using Eq. (S17) we find
kimig

Po (t) - 2K
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where

A 2k kiml [S21]
K = A/2kykom]2t! [S22]

A and k are effective aggregate proliferation rates of aggregates through primary and secondary nucleation, respectively. A
self-consistent solution for the aggregation kinetics in the absence of an inhibitor is thus obtained using Eq. (S18) as

M) _ 1—exp < X (emt +e "~ 2)) [S23]

Mtot 2%2

We can simplify the solution Eq. (S18) by noticing that, after a very rapid phase of adaptation, the behaviour of Py(t) is
going to be dominated by the fastest growing exponential term, which corresponds to the largest positive eigenvalue assumed
here to be x1. Thus:

Un (U™ .
Py(t) ~ klm;gt(i)“ (em—1). [S24]
x1
For the matrix A in Eq. (S12), which has the eigenvalues 1 = k and 2 = —k, the dominant term in Py is
Po(t) ~ % (e'“t — 1) [S25]
~— .

To construct a self-consistent solution for the total aggregate mass concentration, we now substitute Eq. (S25) into Eq. (S8b)

m =1 exp (—2k+ /t PO(S)dS) [826}

Mot

ME) _ 1—exp (—2/\:2 (e - 1)) [S27]

Mtot

and obtain

which is Eq. (2) of the main text.
We note that an alternative analytical solution, which is more accurate than Eq. (S27) for na > 1, has been obtained (9) by

considering a different initial point for the fixed point iteration
Py(t)

Po(t) ’

[928]
1+ 5)

where Py(t) is Eq. (S25) and P(o0) is the terminal aggregate number concentration. Substituting Eq. (S28) into Eq. (S8b)
yields

k2
M(t) Bi+Cy B_4Cpe™\ e 4,
— =1 . )
Mot <B+ + Cyert B_ 4+ C4 € [S29a]
where
)\2
Ce=+95 [S29b)]
2 22
koo = , 5
K\/nz(nz +1) + nik? [S29¢]
koo = /K3 — 4C, C_k2, S29d]
By = % [S29¢]

Also in this case, the solution is dependent on A\ and k.
We conclude this section by mentioning a technical point, which will become useful later in Sec. S2. We note that the
self-consistent solution Eq. (S27) can be written using Eq. (524) as:

Un (U
M) ~1—exp <—2k+k:1m?01t11(2)11 (emlt - 1)) [S30]

Mot ml

By comparing Eq. (S30) with Eq. (S27) we see that we can express the rate parameters A and x as

k=m1, A=+ 2kikim} (/200 (U-1) | [S31]

The formula in Eq. (S31) provides an explicit way to determine how the rate parameters x and A are affected by the presence
of an inhibitor from a consideration of the eigenvalues and eigenvectors of the matrix A describing inhibited linearised kinetics.
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S$1.3. Modes of inhibition. To understand how the presence of inhibitor molecules affects the aggregation dynamics described by
Eq. (S6a) and Eq. (S6b), we consider in detail the possible modes of inhibition when a drug-like small molecule is incorporated
into the dynamics of aggregation. In general, we distinguish three main scenarios for how the inhibitor molecule can interfere
with the aggregation process (Fig. 1B of main text):

1. Binding to monomers — The first possibility for the inhibitor to influence the aggregation process is by reversibly
binding to the monomers. Through reversible binding and unbinding, the monomers can be activated or deactivated.
Deactivated monomers have a reduced propensity to participate to the aggregation process. We denote the rate constants
for binding to and unbinding from the monomers as k;;' and kST respectively. The ratio kot/ kS = K., is the equilibrium
constant for monomer binding.

2. Binding to fibril ends — Another possibility is that inhibitor molecules block the ends of fibrils, thereby preventing
them from growing by recruiting free monomers from solution. The rate constants for binding to and unbinding from the
fibril ends are indicated respectively as k2" and kST, and the associated equilibrium binding constant is k;’"/k;’ﬁ = K.
For simplicity, we assume that inhibitor binding/unbinding occur with the same rates at both fibril ends; our approach
could in principle be generalised to account for different binding and dissociation rates at and from both fibril ends.

3. Binding to fibril surface — A third relevant possibility to consider is the binding of inhibitor molecules to the catalytic
surface of existing fibrils. Inhibitor molecules bind the surface with rate constant kg™, thereby potentially blocking the
autocatalytic cycle of surface-catalyzed secondary nucleation. Inhibitor molecules can unbind from the fibril surface with
rate constant k%, thereby allowing aggregates to catalyze again the formation of new aggregates on their surface. The

equilibrium constant for binding to the surface of fibrils is k;’“/k;’ﬁ = K.

S$1.4. Kinetic equations in the presence of inhibitor. Depending on the specific chemical characteristics of the inhibitor molecule
under consideration, all or only a subgroup of the various modes of inhibition described in the previous section could be active.
In the most general scenario, protein aggregation kinetics in the presence of an inhibitor is captured by the following set of
coupled differential equations, as an extension of Eq. (S6a) and Eq. (S6b) (Eq. (3) of main text):

dFPs (t)

T = k()" + kame(8)" Mi(t) — K Ci(8) P (1) + kS Py (1), [S32a]
d]\fift(t) = 2k‘+mf(t)Pf(t) — k"G (t)Mf(t) + k;ﬂMb (t)7 [832]3]
) — k(1) Pr(t) — K2 Ca(t)me(t) + Kl (1), 532
d%’t(t) — KPP — KT (1), (s324]
M,

IR  kerute) Mi(e) — K0 (1), $32¢]
d?’lz,;(t) = kg Ci(t)ms(t) — k?fmb(t), [S32f]
dC;(t) dPy(t) dMy(t) dmp(?)
= - - 2

dt dt dt at 15326}

where

P(t),P,(t) = free/bound aggregate number concentration, [S32h]
M(t), Mp(t) =  free/bound aggregate mass concentration, [S32i]
mg(t), mp(t) = free/bound monomer concentration, [S32j]

Ci(t) = (free) inhibitor concentration. [S32K]

Eq. (S32) must be coupled to the conservation of total protein mass miot, which implies:
Mot = me(t) + mu(t) + Me(t) + My (t). [S33]

Total monomer and aggregate concentrations — effective kinetic equations. It is useful to introduce total aggregate number, aggregate
mass and monomer concentrations as

P(t) = PFP(t)+ B(3), [S34a]
M) = M(t) + Mu(t), [S34b]
m(t) = me(t) +mn(t), [S34c]
which satisfy the following equations
%]Et) = klmf(t)nl -+ k‘sz(t)nQ Mf(t), [834d]
d’gt(t) ok me(t)Pi(t) = —dj‘i(t)‘ (S34e]
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Eq. (S34d) and Eq. (S34e) highlight the origin of inhibition: compared to uninhibited kinetics, Eq. (S6a) and Eq. (S6b), free
(instead of total) monomer, aggregate number and aggregate mass concentrations appear on the right hand side of the kinetic
equations Eq. (S34d) and Eq. (S34e). Thus, different microscopic events of aggregation (elongation, primary and secondary
nucleation) are inhibited depending to which of the “aggregate species” P, M or m the inhibitor binds. As we will see in
Sec. S2, the speed of inhibitor binding to the targeted species also determines the efficacy of its inhibitory action.

S$1.5. Fast inhibitor binding (equilibrium inhibition regime). Important simplifications emerge in the limit of fast binding of the
inhibitor to monomers and aggregates (the meaning of “fast” can be quantified rigorously using asymptotic analysis, see Sec. S2
and e.g. Eq. (S62)). We term this regime equilibrium inhibition regime. In this case, time variations of bound species can be
approximatively set equal to zero in Eq. (S32d)-Eq. (S32f)

dPy(t) ~ d My (¢) N dm, (t)

dt e~ dt =0 [585]
This implies
dCi(t)
1 ~ 0, [S36]

i.e. the inhibitor concentration is approximately constant. This procedure yields simple relationships that link the concentrations
of free and bound material as

mf(t) = Kmmb(t), Pf(t) = KCPb(t), Mf(t) = KSMb(t), [8373}
where
ko kot ko
e A [S37D)

are the equilibrium constants for inhibitor binding to monomers, fibril ends or fibril surface, respectively. Using Eq. (S34) we
obtain relationships between the amount of free and total material, as:

mi(t) = % Pi(t) = % Mi(t) = 1?20; [S38]
Thus, Eq. (S34d) and Eq. (S34e) become:
dM(t) m(t) P(t)
a (1 + chi> (1 + KeCi> ’ 15391
dP(t) mt) \ m@t) \"° [ M)
dt _k1(1+chi) +k2<1+chi> <1+Ksci>' [540)

Eq. (S39) and Eq. (S40) are equivalent to the kinetic equations in the absence of inhibitor, Eq. (S6a) and Eq. (S6b), but the
kinetic parameters are replaced by “effective” rate constants that depend on the inhibitor concentration (Table S1).

eff

0= (mrea) (i) 41
k+ 1—|—ch7, 1+KeCz

kST 1 n1

o <1+chi) ’ [542]
kST 1 n2 1

ke (1+chi) (1+Kscz-)' [543]

The time course of aggregate mass concentration in the presence of an inhibitor in the fast binding limit can therefore be
obtained by replacing the rate parameters in Eq. (S27) by Eq. (S41)-Eq. (S43), i.e.

Mi(t) =1—exp (_)\gﬂ (encﬁt _ 1)) , [844}

2
Mtot 2"€eff

where the effective kinetic parameters are given by:

Aeff . ( 1 )
A 1+ KunC;
na+1

1 1
()™ () (k) v
K 1+ KnC; 1+ K.C; 1+ KC;

When na > 1, Eq. (S29a) may be used to describe inhibited aggregation kinetics, where A and k are replaced by Aegr and Kegr,
respectively.

ny+1
2z

[N

(rv7e) [545]
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Table S1. Effective couplings (rate constants) of the various steps of aggregation in the equilibrium regime.

Targeted species Monomers Aggregate ends Fibril surface
Inhibited steps

Primary nucleation \/ X X
Secondary nucleation \/ X \/
Elongation \/ \/ X

. eff eff eff
Effective rate Moo (L ™ BT _q kT
Iz 1+K,.C; Ky Ky
constants kSF ( 1 )m kS 1 kS 1
(equilibrium k. A\ IHKLC, ko T ko 1+K.C;
inhibiti k+ _ 1 k+ _ 1 k+ =1
inhibition) kr = 1+KnmC; ky  1+K.C; ke T

S$1.6. Scaling argument to determine inhibition regimes. In Sec. S1.5, we have assumed “fast” inhibitor binding. We can
determine the relevant timescale that differentiates the different inhibition regimes using a simple scaling argument. We
illustrate this idea for an inhibitor that binds aggregate ends. A rigorous timescale analysis based on matched asymptotics is
given in Sec. S2. Successful inhibition requires binding to be sufficiently fast; to quantify the meaning of “fast” in this case,
we need to compare the terms kg™ P;(t)C;(t) and kamg(t)"2 M (t) in Eq. (S32). Equating these two terms, using the fact that
aggregate number concentration scales as P ~ k/(2ky) (8), yields

kam2 ! ~ %kﬁ“& = kCi ~ k. [S47]
+

This simple argument shows that the relevant timescale for comparing inhibitor binding is 1/. In general, 1/x emerges as the
key timescale to which the inhibitor binding rate k%'C; to the target X = m,e,s must be compared.
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S2. Integrated rate laws in the presence of an inhibitor

We now discuss the mathematical details associated with the derivation of analytical solutions to the aggregation kinetics in
the presence of an inhibitor, Eq. (4) of the main text. In this derivation we do not assume fast inhibitor binding to the target.
For clarity of exposition we discuss each inhibition mechanism separately. In each case we follow the steps outlined in Sec. S1.2
to derive a self-consistent solution to the aggregation kinetics.

S2.1. Binding to fibril surface. In the case of an inhibitor binding the surface of fibrils, the kinetic equations are

dﬁit) — klm(t)m + k’zm(t)nsz(t) [S483,}
‘“‘gi;(t) = 2y m(8)P(t) — K CiMe(t) + K M (1), [S48D)
WO _ henumt(t) — K0 1), [S48c]

Summing Eq. (S48b) and Eq. (S48c) we find

dM() _ dMi(t) | dMi(1)

= = 2kem()P(), [S49]

which can be integrated formally using M (t) + m(t) = myot to yield

M(t) = Mot {1 — €xXp (2k+ /t P(s)ds)} : [S50]

Crucially, in the presence of an inhibitor that binds fibril surfaces we recover the same fixed-point operator that we obtained
in the absence of the inhibitor, Eq. (S8b). Thus, we can obtain a self-consistent solution to inhibited kinetics by the same
method described in Sec. S1.2. As the starting point for deriving such a self-consistent solution we linearise Eq. (S48) by
setting m =~ myo¢ throughout, yielding

dPo(t n n
;t( ) — ko, + ka3 Me oft) [S51a]
dM;o(t
%() = 2k+mto¢P(t) — k)gnCiMf’O(t) + k:ﬂMb70 (t), [S51b}
dMy o(t
%() = k" CiMio(t) — k" My o(t), [S51c]
where the subscript 0 indicates the linearised solution. Eq. (S51) can be written in matrix form as ddito = Axg + b, where
d Po(t) 0 kamig, 0 Po(t) kimig,
o Mio(t) | = | 2kymeos —kS"Ci KT M o(t) 0 . [S52]
My, 0(t) 0 krC; =k ) \Myo(t) 0
N—— N——
=A =xg =b

To find the eigenvalues of the above matrix A, we consider its characteristic polynomial:
2+ (kSC; + kST a? — kP — kTR =0, [S53]

where k = \/2kikam[2t". Eq. (S53) yields 1 positive eigenvalue ;1 and two 2 eigenvalues 23 with negative real part.
The explicit expressions for these eigenvalues are rather complex and can be written in terms of two relevant dimensionless
combinations of parameters

= kG and b= KC; [S54]
as
1 a Ao
xl——3<a+b+0+c), [8553}
N <a+ +gc+§2A°> [S55b)
1 a 2 A(J
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. SN2 _ 3\ 1/3
where & = —1%\/&7 C = (%) , Ao = (CLJr%)2 +3, Ay = 2(a+ %)3 +9(a+%) — 27%. The associated

eigenvectors are

kam 2 (z1+k5) kam 2 (z2+kSTF) kam 2 (z3+k5)
kOO C,; 2y KOV C; ) kOO C; )
z1+kg , z2+kg , z3+kg , [S56]
k‘s’“ Ci k;’“Ci kg“ ci
1 1 1

The self-consistent solution to the aggregation kinetics in the presence of an inhibitor binding the surface of fibrils is therefore

n zjt _
Mi(t) e <_2k+k1m?olt Z Ulj% (Ul)j1> [S57]

Mtot ] 3
where x1, z2, and z3 are given in Eq. (S55) and the rows of the matrix U are the eigenvectors in Eq. (S56).

As we did in the absence of an inhibitor, we can simplify our self-consistent solution by truncating the sum of exponentials
in Eq. (S57). Note that there is only one positive eigenvalue z1, while the other two eigenvalues z2 and x3 have a negative real
part. Thus, we keep only the exponentially growing term e®'* — 1 in front of the exponentially decaying terms e®2* — 1 and
e*s' — 1. Using

kgmnz (1'1 + k‘c}ﬂ) 1 k?nci$1.132$3
Up = ——tot - 5 7 U = = . S58
H k" Ciza ( )11 komp2 k(21 — x2) (21 — x3) [S58]
in combination with Eq. (S24), we obtain
n zaxs(z1 + k) a1t
Po(t) ~ k ! r—1). S59
0( ) 1mt0tx kSOH(ZKl _ ZKQ)(.’L‘l _ -'L‘S) (e ) [ ]
Finally, using Eq. (S58) in Eq. (S30) and Eq. (S31) we obtain the self-consistent solution to the aggregation kinetics as
M(t) )‘sz Kegt
E :1—eXp (_%ZH (6 F —1) 5 [860]
where the explicit expressions for keg and Aeg are obtained by substituting Eq. (S58) in Eq. (S31) as
Aeft 2xox3 (71 + k&)
off = T1, = S61
Feft = 21 A \/k;’ﬂ(ml —z2)(z1 — x3) [561]

The truncation of the sum of exponentials in Eq. (S57) allows us therefore to relate the solution in the presence of an inhibitor
to the solution obtained in the absence of the inhibitor and therefore to interpret inhibited kinetics in terms of effective rate
parameters A and k.

Dominant balance - fast inhibitor binding limit. In the above section we have solved Eq. (S53) explicitly, but the resulting expressions
are complicated. In the limit of fast binding of the inhibitor to fibril surfaces, we can obtain approximate expressions for
the roots of the characteristic polynomial using a dominant balance method (10) as follows. Fast binding corresponds to the

situation when

kSC
==

a > 1. S62]

In this case, we can solve the characteristic equation Eq. (S53) considering x as a small parameter. The possible dominant
balances for Eq. (S53) are:

o If z = O(1), then the leading order terms in the characteristic equation Eq. (S53) for small « are

224+ (kC+ kM2 =0 = oz~ —(kCi+ K. [S63]

o If z = O(k), then we write x = kX, where X = O(1). The characteristic equation Eq. (S53) then becomes
kX2 4 (kSO + kSN2 — kX — k2T = 0. [S64]

Neglecting the terms proportional to x, we find the leading order terms in the characteristic equation as

kCi+ X2 kT =0 = X~ /ET/(kC + keT) =z~ tr/1/(1 4 K.Cy) [S65]

9 of 18



In summary, the three approximate eigenvalues found using dominant balance are:

_ 1 _ ; _ _(r.om v, off
xliﬁ”l—i—KsC,—’ To = R”l—i—KsCi’ z3 = —(ks"Ci + kg ). [S66]

We have one positive and two negative eigenvalues. Using the approximated eigenvalues Eq. (S66) in Eq. (S31) we arrive at the
final solution

M(t) )\23 Kefrt
—1_ _ e efft _ S67
M) _y ey ( por (et 1)), [567]
where using x < KC;
Aeff 2wows (w1 +kST) 1, Beff _ %1 _ (;>% [S68]
X V@ —ae) (@ —as) 8 kR \1+ K

which is the same result of Sec. S1.5.

Fig. S1. Construction of phase diagram of possible inhibition regimes for an inhibitor that binds fibril surface sites. Contour lines are shown here in steps of 0.1. Boundary lines
are however not sharp: the extent of inhibition is in fact a continuous function of a = k" C; /k and b = K, C;.
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S$2.2. Binding to fibril ends. In the case of an inhibitor that binds fibril ends, the kinetic equations are

de(t)

5 = Fm()" + kam(8)" M(t) — K" CiPe(t) + kST Py (¢), [S69a]
d]‘gt(t) — Yem(t)Pi(t), [S69b]
dlz’t(t) — K CiP(E) — KT Py (8). 1S69¢]

Formal integration of Eq. (S69b) in this case yields

M(t) = muot [1 — exp (—2l€+ /t Pf(S)dS)] : [570]
0

Therefore, we can obtain a self-consistent solution for the case of an inhibitor that bind fibril ends by obtaining an expression
for P in the linearised Eq. (S69). To this end, we set m =~ myot in Eq. (S69), which yields the following linearised equations

de(t)

3 = Famig + kamig Mo(t) — kZ"CiPro(t) + kST Py o (t), [S71a)
d]‘éi(t) = 2k Mot Pr o (1), [S71b]
df%;)(t) = kSHCin’O (t) — k:fjHPb,o (t), [8710]
or in matrix form
d Pf,o(t) —kf;“Cz- kgmﬁi k;’ff Pf,o(t) k1m,?01t

) Mo(t) | = | 2kymiot 0 0 Mo(t) | + 0 . [ST2]

Pb,o(t) ké’“C’i 0 —ké’ﬁ Pb,O(t) 0

=A =g =b

Next, we determine the eigenvalues of A by considering the characteristic polynomial:
22+ (kC + kS a? — kP — kTR = 0. [S73]
We see that the characteristic polynomial in Eq. (S73) is identical to the one we found in the case of an inhibitor that binds

the surface of fibrils, Eq. (S53). Therefore, the eigenvalues 1, s, x3 are given by Eq. (S55) where k™ and kST are replaced by
ES™ respectively kST, The associated eigenvectors are

w1+kgﬂ xz-!—kgff x3+kgﬁ
kgnCy kghCy kgnCy
2ky Mo (1 +kT) | | 2ky muor (w2+kg™) | | 2ky Mot (w3 +ke™) | | [S74]
kSR Chay kSR Can kSR Coay
1 1 1
such that
T2 + k;’“ —1 k" Cixy
Ui = “Jongr (U )11 = ' [875]
kenC, (271 — xg)(ﬂ?l - 333)

n xoxs(x1 + kéﬂ) z1t
Po(t) ~ k ! _1). S76
b(0) = iy et L) (e 1) 576

Finally, using Eq. (S75) in Eq. (S30) and Eq. (S31) we obtain the required self-consistent solution for the case of an inhibitor of

aggregate elongation
M(t) )‘23 Keft
7 =1 _en efft _ 1
e exp < 22 (¢ ) ) [S77]

where ke and Aeg are determined by substituting Eq. (S58) in Eq. (S31) as

. Aeff 21 (21 + k&)
Feft = Z1, )\ o \/(azl — 9[32)(3:1 — 32’3) [878]
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k2" Cy . .

<—* > 1, we can obtain approximate

expressions for the roots of the characteristic polynomial using a dominant balance argument as above. The eigenvalues are
approximatively given by

_ 1 _ 1 _ on v, off
xli&“l—l—KeCi’ To = m/il—l—KQCi’ x3 = —(kg Ci + ko).

Dominant balance - fast binding limit. In the limit of fast binding to fibril surfaces,

[S79]
Using Eq. (S79) in Eq. (S58) with Eq. (S62) in the limit x < kg"C;, we arrive at the final solution
M(t) >\2ﬂ' Kefrt
7 =1 _tett eff® _
Mot exp< 2K2g (e ) ’ [S80]
where
1
Nt [ 2wi(m 4 RSF) kST 2 ( 1 )% Fefl _ @1 _ <71 )% [$81]
A (xl —xg)(a:l —$3) o k:g“Ci—i—ké’ff o 1+ K.C; ’ K Kk 1+ K.C; ’

Our asymptotic analysis thus recovers the pre-equilibrium solution found in Sec. S1.5 in the limit of fast inhibitor binding.
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S§2.3. Binding to monomers. The kinetic equations in the presence of an inhibitor that binds monomers are:

WP — im0 + kame(t)"™ 0 (1), (S82a)
dﬂjt(t) — 2 me(t)P(8), [S82b]
meft(” = ki ()P () — K Come(t) + K (1), (582¢]
d"fi‘;(t) — K Cime(t) — kK (1), [$82d)]

The derivation of an analytical solution in this case requires more careful considerations, since the linearization procedure for
Eq. (S82) does not occur simply by fixing the monomer concentration to a constant. A rigorous linearization of the equations
in this limit can be obtained by using the method of matched asymptotics (see e.g. Ref. (10)). Asymptotic analysis is useful in
the context of protein aggregation kinetics, since there is a separation of timescales between primary nucleation (which is very
slow) and the subsequent growth of aggregates (which is comparatively very fast). This timescale separation is formalised in
terms of the the following parameter
k1 m?c};z

e = T < 1, [S83]
which is typically much less than unity. For example, typical values for ¢ in the case of the amyloid-3 peptide are ¢ = 5 x 107!
for AB42 (3) or € = 3 x 1072 for AB40 (11). Physically, a small € is necessary to ensure that the aggregates that are formed
during the reaction are long. If nucleation is slow compared to growth, few nuclei will form which can grow very long. On the
contrary, when nucleation is fast compared to growth, many nuclei can form; fewer monomers, however, will be available for
growth, causing aggregates to be shorter on average (see discussion after Eq. (S5)).

Perturbation expansion. Since € < 1 can be considered as small perturbation parameter, we construct a perturbation solution to
Eq. (S82). To this end, it is convenient to rewrite Eq. (S32) in dimensionless form first:

%(TT) = ermig(T)™ + vo e (7)™ (1 — () — mb(T)), [S84a]
RT) e (r) PUr) — o e () 13 (7). (S84b]
YT _ () — i (), (584

where we have eliminated the equation for M (¢) using conservation of mass, Eq. (S33), we have defined

p o= DO [84d]
Mot

me = 0 [S84e]
Mot

i, = Tl [S84f]
Mot

T = 2k+mtott, [884g]

and we have introduced the following dimensionless parameters:
vy = ot [S84h]
Bm = = [S84i]
om = —Fm [584j]

A perturbation series solution of Eq. (S84) can now be constructed as

P(r) = PO()+ePY(r)+0(?), [S85a]
mi(r) = me(r) +emi (T) o), [S85b]
mu(t) = mp Q1) +emn(r) + O(?). [S85¢]
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O(eY) solution - initial layer dynamics. After inserting the perturbation expansions Eq. (S85) in Eq. (S84) and then collecting
terms for each order of ¢, we arrive at the equations at order £°:

p(0)

deT(T) =y Tﬁf(O)(T)nz (1 _ mf(O)(T) _ Tﬁb(o)(T)), [S86a]
=.(0) _

W) i@ () PO (7) — e (7) + a1 O(7), [S86D)

T

7. (0)
dmziﬁ) — Bt @ (7) = a1y (), [S86c]

T

Applying the initial conditions 77:(?(0) = 1 and P (0) = m1,? (0) = 0, we see immediately that the solution to the O(e%)
equation, Eq. (S86), is

PO =y, [S8Ta]
5.0 _ P ~(am+Bm)T
= (0) _ /Bm —(am+Bm)T

my ) = P (1 —e ) . [S87¢]

Hence, due to to the separation of timescales between nucleation and growth, the dynamics of the system evolves initially
through a rapid phase of equilibration, where the inhibitor binds monomers but no aggregates form at leading order in €. Note
that during this initial phase, the total monomer concentration m® = mf(o) + mb(°> = 1 is constant at leading order in e.
During the initial layer phase, which is the temporal equivalent of a boundary layer (e.g. in fluid dynamics), the initial value of
the monomer concentration relaxes quickly to the equilibrium value before any aggregation occurs (see Figs. S2 and
Fig. 2 of the main text).

a+5

O(e') solution — slow manifold. After this initial, rapid phase of monomer redistribution through inhibitor binding, the system
enters a slower phase of dynamics where, at leading order in ¢, the system stays on the slow manifold

Qm

mf(T):ioc +ﬁ

m(T) [S88]
at all times. This relationship, valid in the slow manifold, is verified against numerical integration of Eq. (S32) in Fig. S2d.

To obtain a solution valid for the slow manifold, we collect terms of order ' in our perturbation expansion of Eq. (S84).
Using Eq. (S87), we arrive at the following first order equations:

p(1)
%(T) — mf(o)( ) + 1 mf(O)( )2 ( _ Tr_lf(1>(7') _ ’Iﬁb(U(T)) [S89a]
T
= (1) _
WD) @ (PO ) — e () + i (7), [S89b]
7 (1)
dmlt;lir(ﬂ = Bm mf(l)(,,_) — ’rﬁb(l)(T), [SSQC}

where, to match with the O(¢") solution, we set

1— e_g(a-"_%)
1+

- (0) _

me = Ko, [890}

where a = kg'C; /k and b = K C;. In terms of the original dimensional variables, Eq. (S89) can be written as

1 1
d Pf( : 0 —kamiGipg®  —kamigpg® P( : kimyggi g
| o = ke kG k! <1> + 0 , [S91]
m® 0 krC; — kol <1> 0

and can be considered to be the equivalent of the linearised equations Eq. (??) and Eq. (S72). The eigenvalues of the above

matrix are
x1 =R\ 02T @ = —ra 2T, — (k22 Cy + kT [S92]

with associated eigenvectors

oy (kS 4SRN Oy ta) _ wa (kST kSR Oy tan)

BB C, 2hy Mot 0 RSB C, 2hy Mot O 0
ko oy , kT , -1 [S93]
kP Ci kRO 1
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It follows

7I1(k?nff + kf;“Ci + $1) (Uﬁl) . kot Cy 2k+mtotuo
11

Uy = =—
H kP Ci 2k myot ho 21 (kS + k9P Cy + 1)

[S94]

Formal integration of Eq. (S82b) yields

M (t) = myos {1 — exp (2k+,uo /t P(s)ds)] , [S95]

where we used Eq. (S90). Therefore using Eq. (S94), we find the following self-consistent solution to the aggregation kinetics
with a monomer binder

M(t 2
M)y exp (-2 (erent — 1)), [S96]
Mtot 2Iieﬂp
where the expressions for the effective A\ and x are
Aeft ni+1
<2 T U (UY), = gy [S97a)
K T ng+1
o _ ;1 =1 2 [S97D]
a b
=2 P e —— e B e ]
k<]
5 08 5 0.8 mSrmmmmmmmmmmmmmmmmmmmeee
» 0.6 C; [pM] =
& —0 =
E 04 — 826 3 - = Perturbative
S 0.2 04 solution
2 .
0'o 2 4 6 8 10 0 2 4 6 8 10
Time (hours) Time (hours)
c d
1 1
. L. - = Rescaled total
§'5 0.8 0T :;::g?]atlve E‘é 0.8/~ monomer (slow
= 0.6 =06 {‘ manifold)
— = )
= = \
é: 0.4 3 0.4 \
0.2f S 0.2 \
I \\
0. 0. —
0 2 4 6 8 10 0 2 4 6 8 10
Time (hours) Time (hours)

Fig. S2. (a) Time course of aggregate mass concentration in the presence of increasing concentrations of an inhibitor of that binds monomers calculated using numerical
integration of the master equation Eq. (S32) (solid lines) and our analytical solution (dashed line). (b-c) Free and bound monomer concentrations. In the initial layer phase,
there is rapid binding of the inhibitor to the free monomers (dashed lines indicate the O (°) perturbation solution Eq. (887)); no aggregation occurs during this phase. A slow
manifold phase follows, where the both the free and bound monomer concentrations decrease slowly due to aggregation. (d) In the slow manifold, there is a relationship
linking the free monomer concentration to the total monomer concentration Eq. (S88). This relationship is verified here numerically through integration of the master equation
Eq. (832) (solid line: free monomer concentration, dashed line: Eq. (S88)). Calculation parameters are the same as in the left column of Fig. 2 of the main text.
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S$2.4. Combining binding to monomers, fibril ends and fibril surface. We now consider the case when the inhibitor can bind
all protein species, i.e. monomers, fibril ends and surfaces. We proceed in a similar way to the previous sections and we first
nondimensionalise Eq. (S32) by introducing a rescaled time coordinate 7 = 2k myott, the variables

A_BO 5 RO o M) o M@ mlt) ()

f = 9 b = ) f = ) b = ) ms = ) mp = ) [8983‘}
Mtot Mot Mtot Mtot Mtot Mtot

and the following dimensionless parameters:

komp2~! kRC; kRC;
— 1) — AN = = SQSb
V2 2k+ ) BX 2k+mtot ) X 2k+mtot ’ X m,s, e [ }

By seeking for a perturbation solution Pr(7) = Pf(O)(T) +e 13f(1)(7) + O(e?), etc. we arrive at the following equations at order
O(e%)

p. (1 n n n B, (1 n

]ff i —Be  —vapy®  —vapy® Qe —vapiy? ]if ) o'

J | s —PBm Om 0 0 1M 0
= my® | = 0 Ben —m 0 0 m® |+ o |, [S99]

pb(l) Be 0 0 —Qle 0 ]5b(1) 0

Mb(l) 0 —Bs —Bs 0 —(as + Bs) Mb(l) 0

where o = am/(m + Bm). The characteristic polynomial of the above matrix is
(x4 am + Bm) ot + (e + Be + as + ﬁs)fd + [(ae + Be)(as + Bs) — l/z,ugz+l]x2 — (e + as)u2u82+1m — aeasygu32+l =0.

[S100]

Using dominant balance argument, we can find an approximated expression for the largest (positive) eigenvalue z1 by writing
z1 = /12X1 leading to (ae + Be)(as + Bs) X7 — ceasp? ' =0, ie.

na+1
Qe Qg Qm
e (o) ) ()™ st

Using Eq. (?7) the final solution for the aggregate mass is found to be:

M(t) AQH Keglt

7l =1 _ € eff —1 102

m(0) exp( 2Kk2g [e ] ’ [5102]

where

nitl n

A e+ Be am + P T \1+ KunC; 1+ K.C;/)
no+1 n

- (mtm) (239) (23%) (i)™ (i) (i)’ o
K \ e+ Be as + fBs am + Bm T\ 1+ KuC; 1+ K.C; 1+ K.C;)

In summary, our asymptotic analysis of Eq. (S32) shows that, in the case when the inhibitor can bind monomers, fibril ends
and surfaces, the rate parameters are renormalized according to the following scheme:

=~ (e () 5109
kv \1+ KnCi) \1+K.C;)’

kST 1 n1

o <1+chi) 7 [S106]
kST 1 n2 1

ke (1+chi) (1+Ksci)’ [S107]

which recovers Eq. (S41). The effect of the individual modes of inhibition on A and x combine multiplicatively.
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off off
Table S2. Effective rates of aggregation AT and “— as a function of a = EPC;i/k and b = Kx C;. These functions yield the plots in

Fig. 3a,b of the main text. In this table z1, z2, x3 are the 3 roots of the equation z3 + (a + %) 2 —x— % =0.

Targeted species Monomers Aggregate ends Fibril surface
ny+1 1

_ ot 1me5(+8)\ 2 201 (et3) )2
Effective rate of 1. pathways =~ (T m

I o . 7(a+% 2;1
Effective rate of 2. pathways - (elT) 1

Parameter definition :rlz—% (a-&-ki;-C—i- %) zz:—é (a+%+§C+§2%) Z3:—% (a+%+§20+£%)
a=—2— b=KxC; I3
7 T\ 1/3
c:(#) Ao=(a+2)"+3 Ar=2(a+2)"+9(a+g) 272

S3. Asymptotic solutions to aggregation kinetics with variable inhibitor concentration

Our asymptotic approach for solving Eq. (S32) can be generalized straightforwardly to account for the situation of variable
binder concentration. We discuss here this idea on the example of monomer binding; the treatment for binding to fibril ends or
fibril surfaces is fully analogous. On accounting for a variable binder concentration, the non-dimensionalized moment equations

(see Eq. (S84)) in this case are:

dp n _ _
dE'T) =eme(T)™ + vome(r)"? (1 —ms(1) — mb(ﬂ):
dTﬁf(T) — = _ _
") = —iiie(r) P(r) — B Cu(r)ria(r) + i (7),
YAT) — g Cutryon(r) — avmn(r) = 150,
where
. C;
’ Miot
kot
B N 2k+mtot ’
koﬂ
e« = 2k+mtot '
Using a perturbation expansion P = PO 4 PO 4 ... ctc., the equations at order €° are found to be:
p(0)
P by (2 (1= ) =),
dme© _ _
WD) @ (1) PO(r) — BC (YO () + 0O (7),
7. (0) _ ~ (0)
dmde (T) — ﬂ Cz(()) (T)mf(()) (T) —a mb<0) (T) _ dCsz (T)

PO = 0,
BET
mb(‘)) _ AlAQ (1 — € )
Ay — AqebET
BET
mf(o) A1A2 (1 — € )
Ao — A1€B§T
a(o) = — i,

where

[S108a]
[S108b)]

[S108¢]

[S108d]

[S108e]

[S108f]

[S109a]
[S109D)]

[S109¢]

[S110]

[S111]

[S112]

[S113]

[S114]
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and £ = A1 — Az. Thus, we have separation of timescales and the solution is given by

where

M (t) N [ nemt
1 — Lot (gremtt _q 11
o exp< 22 (¢ ) ) [S115]
n12+1
)\eff . ni+1 B 1
L —(1-) 7 = (W) : [S116]
n22+1
Reff natl _ 1
T=(1-4) T = <1+KmC§q) . [S117]

Hence, 1 — A2 corresponds to the equilibrium concentration of free monomers. The kinetics are expressed in terms effective
rate parameters which are renormalized by the presence of inhibitor according to the following scheme:

ki}hibition 1
= 11
ki 14+ KnC;Y’ [S118]
kinhibition 1 n1
n = 11
En (1 T K,,,C§Q> ’ (5119
kithibition B 1 n2
k2 \1+KnCH ’ [S120]

where C7? is the equilibrium concentration of inhibitor.
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