

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037592
Article Type:	Original research
Date Submitted by the Author:	09-Feb-2020
Complete List of Authors:	Hasan, Md. Mehedi ; The University of Queensland Institute for Social Science Research, Tasnim, Fariha; International Centre for Diarrhoeal Disease Research Bangladesh, Maternal and Child Health Division Tariqujjaman, Md.; International Centre for Diarrhoeal Disease Research Bangladesh, Nutrition and Clinical Services Division Ahmed, Sayem; Liverpool School of Tropical Medicine, Department of Tropical Biology; International Centre for Diarrhoeal Disease Research Bangladesh, Health Systems and Population Studies Division Mamun, Abdullah; University of Queensland, Institute for Social Science Research; University of Queensland, ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre)
Keywords:	Hypertension < CARDIOLOGY, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based study

Authors: Md. Mehedi Hasan^{1,2*}, Fariha Tasnim³, Md. Tariqujjaman⁴, Sayem Ahmed ⁵⁻⁷ and Abdullah A Mamun^{1,2}

Author affiliations

¹Institute for Social Science Research, The University of Queensland, Indooroopilly, Queensland 4068, Australia

² ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre), The University of Queensland, Indooroopilly, Queensland 4068, Australia

³ Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁴Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁵ Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

⁶Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁷Health Economics and Policy Research Group, Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden

* Correspondence:
Md. Mehedi Hasan
Institute for Social Science Research
ARC Centre of Excellence for Children and Families over the Life Course
The University of Queensland
80 Meiers Road, Long Pocket Precinct, Indooroopilly, Queensland 4068, Australia
Phone: +61 470 237 155
Fax: + 61 7 334 67646
E-mail: m.m.hasan@ugconnect.edu.au

BMJ Open

ABSTRACT

Objective: To examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

Design: This study used cross-sectional 2016 Nepal Demographic and Health Survey (NDHS) data. We defined a hypertensive patient to remain undiagnosed if the patient had systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg and not once took any prescribed medicine to lower/control blood pressure or told by health professionals to have hypertension. Multiple binary logistic regression analysis was performed and Concentration Index was measured.

Setting: Nepal

Participants: Adult patients with hypertension

Results: Among 3334 hypertensive patients, 50.4% remained undiagnosed during the survey in Nepal. Adjusted model reveals that patients who were male, belonged to households other than richest quintile, and lived in Province 4 and Province 5 were at higher risk and patients who were 65+ years of age and were overweight/obese were at lower risk of remaining undiagnosed for hypertension. The poor-rich gap was 24.6 percentage points (Q1= 64.1% vs Q5= 39.6%) and poor:rich ratio was 1.6 (Q1/Q5= 1.6) in the prevalence of undiagnosed hypertension. Undiagnosed hypertension was disproportionately distributed among socioeconomically worse-off Nepalese patients (Concentration Index, C= -0.18). Inequalities in the prevalence of undiagnosed hypertension further varied across other grographic locations including place of residence, ecologicl zones and administrative provinces.

Conclusions: Among Nepalese hypertensive patients, undiagnosed hypertension was highly prevalent with substantial inequalities that warrants efforts including increasing awareness and enactment of social insurance policy for prevention and control of this burden.

Keywords: Undiagnosed hypertension, Inequality, Demographic and Health Survey, Nepal

Strengths and limitations of this study

- This study determined the prevalence of undiagnosed hypertension in Nepal using the most updated population-based nationally representative data
- This study explored the factors that potentially drive the prevalence of hypertensive patients remained undiagnosed
- This study measured both absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces
- The cross-sectional nature of the data limits us to measure causal association between undiagnosed hypertension and the explanatory variables studied
- The association of some potential behavioral or lifestyle factors and family history with undiagnosed hypertension remain unmeasured due to lack of information

INTRODUCTION

Globally, hypertension -or raised blood pressure is a directing factor for cardiovascular diseases (CVDs), specially heart diseases, myocardial infarctions, kidney failure, strokes, disability and premature deaths [1–3]. Hypertension affects one billion people and kills nine million people every year worldwide [1]. In South-East Asian countries including Nepal, hypertension affects one out of three adults, which accounts for nearly 1.5 million adult deaths annually; and 9.4% of the total deaths [4]. Studies identified, more than 50% people having hypertension remained undiagnosed in South-East Asian region [5]. Among South Asian countries, Nepal has one of the highest prevalence of hypertension [6].

Currently, Nepal is facing an epidemiological transitions with increasing prevalence of hypertension [7]. Several studies have been driven so far to understand the actual prevalence of hypertension in Nepal. A study based on the Nepal Demographic and Health Survey 2016 showed, about 20% Nepalese adults (aged \geq 18 years) had hypertension [8]. Studies also found, the prevalence of hypertension ranges from 23% to 34% in Nepal [7,9–12]. Furthermore, national NCD risk factor survey in 2013 showed about 25.7% adults aging 15-69 years had hypertension in Nepal [13]. This survey also found that a large number of (42.7%) adults had never measured their blood pressure. For prevention, control and proper treatment of hypertension, it is prior need to correctly diagnose this disease. In addition, failure to early diagnosis and treatment of hypertension may lead to serious health hazards, disability in the later life, or eventually deaths. Number of government, non-government and private health facilities are providing health services including diagnosis, medication and treatment for hypertension. However, the existing health systems of Nepal is not ready for diagnosis, treatment and control of hypertension especially for the mass people at the community level indicating the challenges to tackle this burden [14].

To prevent hypertension, the disease needs to be diagnosed first before any related complications arise. However there is lack of evidence about the prevalence of undiagnosed hypertension in Nepal at national and subnational levels. The estimates of undiagnosed hypertension, and its sociodemographic inequalities at national and subnational level may help the policy makers for formulating effective strategies for screening, treatment and control as well as prevention of such burden by identifying the most vulnerable groups. Therefore, given the importance of this burden, we aimed to examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

METHODS

Data source

We used the most updated nationally representative cross-sectional data from Nepal Demographic and Health Survey (NDHS). Though the data of Demographic and Health Surveys is managed by Measure Evaluation, the NDHS was conducted from June 2016 to January 2017 by a private research organization named "NEW ERA" under the monitoring and supervision of the Ministry of Health, Nepal. Designed specially to estimate the prevalence of hypertension nationally in Nepal, the NDHS 2016 obtained informed consent from the household head on behalf of all household members of each surveyed households [15]. For academic and scientific purposes, this anonymous dataset without any identifiers was made available by the ICF International, Maryland, United States [15]. We obtained approval with access to use the data to conduct this study.

Survey procedure

In 2015, Nepal declared some new places to fall under municipalities and some municipalities have been reformed [8]. After these changes, Nepal has been divided into seven administrative provinces comprising several districts under each province and urban-rural areas. These urban and rural areas were divided into small administrative units as wards. Because of having comparatively greater number of households in urban areas, the urban area was further divided into enumeration area (EA). The primary sampling unit (PSU) were wards for both urban and rural areas [15]. Because of some changes in administrative areas, Nepal revised the sampling frame of National Population and Housing Census (NPHC). The 2016 NDHS used this revised sampling frame and applied a multistage survey that respectively conducted in two and three stages in rural and urban areas. NDHS selected the PSUs proportionately to the size in the first stage and then the random selection of EAs from the systematic selection of households from each PSU in second stage. In third stage, the selection of households were by using stratified cluster sampling technique in urban setting. A detailed description about the methodology is available elsewhere [15]. A total of 11490 households were selected from 383 wards, of which 5520 households from 184 wards were from urban settings and 5970 households from 199 wards were from rural settings. From these households, all the residents whose age 15 years or above were eligible for the measurement of blood pressure. With an overall 95% response rate, a total of 14823 individuals participated in the survey.

Outcome variable

To measure hypertension, the 2016 NDHS used the UA-767F/FAC (A&D Medical) automated device to record the blood pressure of the participants. With 5 minutes intervals between each

measurement, the 2016 NDHS recorded the measurements of blood pressure for three times in a sitting position. NDHS considered the last two measures of blood pressure levels and used their mean to detect hypertension. The survey used the World Health Organization (WHO) guidelines to report a participant as hypertensive [15]. This guideline has integrated the 2017 guidelines of the American College of Cardiology/American Society of Hypertension [16,17]. According to the guideline, a participant with systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure $(DBP) \ge 90 \text{ mmHg}$ is diagnosed as a hypertension case. We also considered participants as patients of hypertension if s/he was previously told by health professional to have hypertension or taking medication to control hypertension. Our outcome variable is undiagnosed hypertension. We considered a patient to remain undiagnosed if the patient had SBP≥140 mmHg or DBP≥90 mmHg during blood pressure measurement of biomarker test of the survey and not once took any prescribed medicine to lower/control blood pressure or being told by health professionals to have , ien hypertensionprior survey [18,19].

Explanatory variables

This study considered a set of socio-demographic and behavioral characteristics as independent variables. Age (in years), sex, Body Mas Index (BMI) measured through dividing the weight by squared height (kg/m^2) , education level, household wealth status place of residence, ecological zone, and provinces were considered as socio-demographic characteristics of the patients. Age was categorized as 15-24, 25-34, 35-44, 45-54, 55-64 and \geq 65 years. Sex had two categories, male and female.. The BMI was categorized as thin/underweight (BMI<18.5 kg/m²), normal (18.5 kg/m²) ≤BMI<25 kg/m²) and overweight/obese (BMI≥25.0 kg/m²). Based on the highest class completed by the respondents, level of education was classified as no education, primary, secondary and

BMJ Open

higher. NDHS used principal component analysis [15] to construct the wealth index to desegregate the households into five socioeconomic quintiles (poorest, poorer, middle, richer and richest). The place of residence was stratified as urban and rural across all geographic location. Nepal was ecologically divided in Mountain, Hill and Terai. Using 2015 reformation, 7 administrative provinces were considered as Province 1, Province 2, Province 3, Province 4, Province 5, Province 6 and Province 7. Three behavioral characteristics of respondents, caffeine, tobacco and alcohol consumption were considered as independent variables each of which contained dichotomous response on whether respondent consume caffeine, tobacco or alcohol.

Statistical analyses

We described the prevalence of undiagnosed hypertension and background characteristics of the study patients by using univariate analysis technique. The estimates of each of the categorical variables included in this study were reported with numbers, weighted percentages and 95% confidence intervals (CI) of estimates. The weighted prevalence of undiagnosed hypertension was determined across the background characteristics of the study patients from bivariate analysis. Statistical significance was detected by applying Chi-square test. Then, we conducted simple and multiple binary logistic regression analyses to examine the correlates of undiagnosed hypertension. The results of the regression analysis were presenterd in terms of odds ratio with respective 95% CI. Variables that were statistically significant in simple logistic regression analysis were entered in the multiple regression model to estimate the adjusted odds ratio (AOR). Notably, the statistical significance was defined at 5% level (p-value<0.05). Variance inflation factors to detect multicolleniarity among the independent vaiables were assessed before incorporating them into the multiple regression model. Due to hierarchical structure of NDHS data, we considered the

cluster sampling design of the 2016 NDHS to estimate the prevalence and determinants in this study [15]. We excluded cases with missing values for blood pressure measurements.

Proposed by Wagstaff [20] to measure the inequality, we estimated the concentration index (C), to show the degree and direction of wealth-based inequality in undiagnosed hypertension prevalence. For the purpose of calculating C, the households were ranked from the poorest to the richest according to their socioeconomic characteristics. We plotted a concentration curve to portray the distribution of undiagnosed hypertension. The Y-axis of the concentration curve representing the cumulative proportion of undiagnosed hypertension and the X-axis represents the cumulative proportions of the population across wealth quintiles. When the concentration curve coincide with the diagonal, the prevalence of undiagnosed hypertension is treated as equally distributed across socioeconomic groups. In contrast, the concentration curve typically deviate from the diagonal if there exist inequalities in the prevalence of undiagnosed hypertension. The C is defined as twice the area between the concentration curve and the diagonal [21-23]. The index value can range between -1 and +1, a positive value implies prevalence of undiagnosed hypertension is more concentrated among the better-off socioeconomic group and a negative value implies prevalence is more concentrated among less affluent group [22,24]. We repeat the estimation of C across other geographical locations such as place of residence, ecological zones and provinces to detect the group of patients with highest severity of socioeconomic inequalities in the prevalence of undiagnosed hypertension. STATA (version 13) was used to perform all the analyses [25].

Patient and public involvement

Patients and publics were not involved in developing the research questions, measuring outcome and designing the study. Information of the participants were anonymous.

RESULTS

General Characteristics of the Study Participants

Table 1 shows the general characteristics of the study participants. Among the patients studied, the average age of patients was 49.8 years (95% CI 49.1, 50.5) with the lowest percentage of patients belonged to 15-24 years age group (6.6%) and highest percentage of patients belonged to 45-54 years age group (20.9%). Numbers of males (49.5%) and females (50.5%) in the sample were almost equal. Nearly half of the patients were normal in terms of their BMI while more than one third of the patients were overweight/obese. Though two-third of the patients resided in urban area (64.9%), the educational status of the patients were poor. Nearly half of the patients had no education while 24.1% and 11.5% had secondary and higher education respectively. The highest number of patients belonged to richest wealth quintile (28.3%) and the lowest number of patients were from province 3 (26.0%) followed by province 5 (17.8%) and province 1 (17.0%). However, only 5.6% of the patients were from mountain ecological zone.

Prevalence of Undiagnosed Hypertension among Hypertensive Patients

In our study, we found 3334 cases who had hypertension during the survey. More than half of them were detected as remaining undiagnosed (50.4%). The prevalence of undiagnosed hypertension among the patients varied across their age (*p*-value < 0.001), sex (*p*-value < 0.001), BMI (*p*-value < 0.001), wealth quintile (*p*-value < 0.001) and place of residence (*p*-value < 0.01). The prevalence of undiagnosed hypertension were higher among patients with 15-24 years age group and steadily decreasing with the increase of age. The prevalence of undiagnosed

hypertension was higher among male patients (54.2%) than female (46.7%). Compare to patients with normal BMI, the prevalence of undiagnosed hypertension was higher among thin patients (57.8%) and lower among overweight/obese patients (44.4%). Compare to patients of the richest wealth quintile (39.6%), the prevalence of undiagnosed hypertension was higher among patients of the poorest (64.1%) and poorer (55.8%) quintiles. The rate of undiagnosed hypertension was higher among rural patients (55.2%) compare to urban (47.8%). No educational, ecological and provincial variations in the prevalence of undiagnosed hypertension was observed (**Table 1**).

Determinants of Undiagnosed Hypertension among Hypertensive Patients

We found that patient's age, sex, BMI, wealth quintile, place of residence and province were significantly associated with the prevalence of undiagnosed hypertension among hypertensive patients in unadjusted logistic regression analysis (see **supplementary**).

Figure 1 represents the results of multiple logistic regression analysis. The multiple binary logistic regression model showed that patient's age, sex, BMI, wealth quintile and province had significant association with undiagnosed hypertension. Elderly patients ≥ 65 years of age had a lower likelihood of being undiagnosed for hypertension than patients with age 15-24 years (Adjusted Odds Ratio, AOR = 0.65; 95% CI 0.48, 0.91). Male patients were 1.29 times more likely than female patients to remain undiagnosed for hypertension (AOR = 1.29, 95% CI 1.11, 1.51). Compare to patients with normal BMI, overweight/obese patients (AOR = 0.80, 95% CI 0.69, 0.93) were less likely to have undiagnosed hypertension.

We found wealth quintiles as potential correlates of undiagnosed hypertension. The risk of remaining undiagnosed for hypertension was increasing with the decrease of patient's

BMJ Open

socioeconomic status. Patients with a poorer socioeconomic status had higher chance of having undiagnosed hypertension compared to higher socioeconomic quintiles. Patients of poorest and poorer wealth quintiles were 2.49 (AOR = 2.49; 95% CI 1.90, 3.30) and 1.67 (AOR = 1.67; 95% CI 1.29, 2.16) times more likely to have an undiagnosed hypertension condition than patients of richest wealth quintile.

Moreover, significant provincial variation was evident in the prevalence of undiagnosed hypertension among hypertensive patients. Patients of province 4 (AOR = 1.36, 95% CI 1.04, 1.79) and province 5 (AOR = 1.43, 95% CI 1.05, 1.95) were more likely to had undiagnosed hypertension than patients of province 1.

Socioeconomic Inequalities in Undiagnosed Hypertension among Hypertensive Patients

Figure 2 depicts the inequalities in the prevalence of undiagnosed hypertension among hypertensive patients. The absolute poor (Q1) - rich (Q5) difference in the distribution of undiagnosed hypertension was 24.6% between poorest and richest, meaning that the prevalence of undiagnosed hypertension was greater by 24.6 percentage points among the poorest. The relative measure of inequality in terms of poor (Q1): rich (Q5) ratio was 1.6 for the prevalence of undiagnosed hypertension among patients, depicting that the prevalence of undiagnosed hypertension among patients, depicting that the prevalence of undiagnosed hypertension among patients among the poorest than richest. We found negative value of the Concentration Index (C = -0.18) which represents that the prevalence of undiagnosed hypertension among hypertensive patients was disproportionately distributed among worse-off socioeconomic groups.

In addition, patients living in mountain and in province 7 had large gaps in the prevalence of undiagnosed hypertension (**Figure 3**). The higher Q1:Q5 ratio were observed among those who had large Q1-Q5 gaps in the prevalence of undiagnosed hypertension across different geographic locations. We found large negative values of C among those who had higher Q1-Q5 gaps and Q1:Q5 ratio for the prevalence of undiagnosed hypertension. See **Figure 3** for details.

DISCUSSION

Undiagnosed hypertension may lead to adverse health consequences, including some organ damages [26]. Utilizing NDHS 2016 data, this study intended to estimate the prevalence of undiagnosed hypertension. In addition, the risk factors and inequalities associated with it among Nepalese hypertensive patients were identified. About half of the biomarker partekars were found hypertension positive who were not screened/diagnosed before the survey. Patients unwillingness for regular check-up before any health complication arises due to lack of awareness as well as inaccessibility to screening services may direct this high prevalence [27]. Gap in knowledge, attitude and practice of healthy lifestyle as preventive measure to NCDs may also act as a driver of undiagnosed hypertension [27–29]. Community-based awareness on changing lifestyle to address the burden of NCD from the society as a whole might be effective in reducing this gap [30].

Several studies reported higher risk of hypertension among people who were older in age, male, urban dwellers, had higher education level, regular consumer of tobacco and alcohol, and who are overweight [6,8,28,29]. In contrast, we found that patients aged 65+ years and who were overweight/obese were at lower risk of remaining undiagnosed from this disease. However, our

BMJ Open

findings depicted greater proportion of undiagnosed patients among those who were young and physically thin. Young or underweight people are less conscious about their health status as they might have the misconception that they are less likely to suffer from non-communicable diseases [31]. None the less, richest are more aware than the poorest people about the health hazards, typically have greater access for screening diseases and can have the ability to afford treatment cost for the diseases in Nepal [28]. This could lead the poor than the rich to be more exposed to undiagnosed hypertension. On the other hand, similar to risk factors of hypertension, undiagnosed hypertension were also more prevalent among males and tobacco users [6,29]. Although difference in lifestyle practice between male and female in Nepal may not be the key factor behind such exposure, research need to be done to identify the actual risk factor [29].

Globally few studies have been conducted on undiagnosed hypertension to date. World Health Organization, mentioning hypertension as a silent killer, stated the prevalence of hypertension is higher in low- and middle-income countries than developed and high income countries [1]. Our results proves this claim and also aligns with findings from Bangladesh and Sub-Saharan Africa [19,32,33]. Although situated in closer geographic region, prevalence of undiagnosed hypertension from this study differs from that of India and China which are more developed and belongs to high income countries with up to date facility setup and health policies for their citizens [34,35]. Similarly, findings from studies conducted in countries with more developed health facilities and advanced screening system such as Japan, Korea, England, Ireland, Egypt , Brazil and USA were also found to have lower level of undiagnosed hypertension than Nepal as found in this study [36–42].

In Nepal, despite the detection of risk factors [6,8,29] and inequalities [28], the prevalence of hypertension was well investigated nationally which lead policy makers to successfully steer away

it's progression [43]. However, this effort will be meaningless unless all patients at risk of hypertension are accurately diagnosed and detected. On that account, it is necessary to identify whether unequal distribution of undiagnosed hypertension exists among patients with hypertension across different socioeconomic groups. It will aid in setting priorities and proper allocation of resources. Our study reveals existence of inequalities in the distribution of undiagnosed hypertension due to economic status, with poorest had higher prevalence of undiagnosed hypertension than richest and showed greater degree of wealth-based inequality concentrated among the poorest. These inequalities were more prevalent among patients living in different geographical locations including place of residence, ecological zones and administrative provinces. Such disparity may ascribed to greater awareness and more utilization of healthcare benefits by people who are rich [28]. Such inequality might increase the catastrophic health spending given the rise of catastrophic household expenditure due to non-communicable diseases in Nepal [14,44]. Public health strategies might reduce this gap by concentrating more on implementing social health insurance policies which has to be equitable for all [36,44]. In this aspect, policy makers could take into consideration the disparities in the distribution of undiagnosed hypertension found in this study.

Ignoring the population at risk of hypertention may become a major threat to health outcomes to any nation. This study bestows an immense opportunity to estimate the prevalence of undiagnosed hypertension which had not yet been studied nationally in Nepal. NDHS 2016 through incorporation of biomarker test bears evidence that a substantial proportion of individuals are suffering from blood pressure abnormalities. This in fact emphasise the need of conducting routine screening for hypertension widened with the greatest possible coverage in the population. A routine surveillance system with technology-based screening can aid in tracing disease incidence Page 17 of 28

BMJ Open

as well as people at risk of being undiagnosed [45]. Our study findings will be helpful to initiate policies and programs in capturing the highest domain of underprivileged population and bring them under routine surveillance at community level with optimum cost.

Strengths and limitations

We used most updated nationally representative cross-sectional data to determine the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal. We considered complex survey design to capture variations due to designing. However, there may have residuals and unmeasured potential behavioral or lifestyle factors of undiagnosed hypertension that may remain unmeasured due to lack of information. Since our data was corss-sectional, the relationship between undiagnosed hypertension and confounders were probabilistic rather than causal. However, identification of potential correlates through using odds ratio is widely acceptable. This study measured both absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces to further guide policy/decision makers for better allocation of resources to reduce the burden.

CONCLUSIONS

This study manifests, in Nepal huge number of respondents with hypertension remained undiagnosed. Initiative for non-communicable disease diagnoses prioritizing those who are down and out requires to be implemented. Community-based awareness should be raised to improve knowledge, attitude and practice of the people particularly those who are young, slender, poor and male given their higher risk of being undiagnosed. Moreover, identification of inequalities among different risk groups will be beneficial in achieving universal health coverage of sustainable development goal (Goal 3.8.1). Social insurance policies under integrated national NCD policy should be properly enacted to ensure socioeconomically disadvantaged populations covered under the scheme for prevention and control of hypertension from them.

Acknowledgments

We acknowledge the MEASURE DHS for providing access to NDHS 2016 datasets.

Contributors

MMH and AAM conceptualized the study. MMH performed the data analysis and interpretation of the findings. MMH, FT, MT and SA contributed to writing. AAM and SA critically reviewed the analysis and final version of the manuscript. All authors made a through review of the final draft and approved it for submission. eliezoni

Funding

This research received no external funding.

Competing interests

None declared.

Ethical approval

The NDHS survey methodology and questionnaire was reviewed and approved by the ethical review board of Nepal Research Council and ICF Institutional. NDHS obtained informed consent from the respondents before conducting the survey. Therefore, separate ethical approval was not required for this study and we are using publicly available de-identified data.

Data sharing statement

Data are available in a public, open access repository. All data related to study are included in the

manuscript.

REFEENCES

- 1 Day WH. World Health Organisation. A global brief on Hypertension. Published Online First: 2013. doi:10.1136/bmj.1.4815.882-a
- 2 Wojciechowski D P V. β-blockers in the management of hypertension: focus on nebivolol. *Expert Rev Cardiovasc Ther* 2014;**6**:471–9.
- 3 Chockalingam A, Facc MS, C NRCF, *et al.* Worldwide epidemic of hypertension. 2006;**22**:553–5.
- 4 Region SA. Noncommunicable Diseases in the South-East Asia Region. 2011.
- 5 Mohan V, Seedat YK, Pradeepa R. The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings. *Int J Hypertens* 2013;**2013**:1–14. doi:10.1155/2013/409083
- 6 Agho KE, Osuagwu UL, Ezeh OK, *et al.* Gender differences in factors associated with prehypertension and hypertension in Nepal: A nationwide survey. *PLoS One* 2018;**13**:1– 18. doi:10.1371/journal.pone.0203278
- 7 Vaidya A, Pathak RP, Pandey MR. Prevalence of hypertension in Nepalese community triples in 25 years: A repeat cross-sectional study in rural Kathmandu. *Indian Heart J* 2012;**64**:128–31. doi:10.1016/S0019-4832(12)60045-5
- 8 Hasan M, Sutradhar I, Akter T, *et al.* Prevalence and determinants of hypertension among adult population in Nepal: Data from Nepal demographic and health survey 2016. *PLoS One* 2018;**13**:1–14. doi:10.1371/journal.pone.0198028
- Ghimire A, Shrestha NR, Thapa L, *et al.* Prevalence of Hypertension, Obesity, Diabetes, and Metabolic Syndrome in Nepal. *Int J Hypertens* 2011;2011:1–9. doi:10.4061/2011/821971
- 10 Shrestha UK, Singh DL, Bhattarai MD. The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal. *Diabet Med* 2006;**23**:1130–5. doi:10.1111/j.1464-5491.2006.01953.x
- 11 Mehta KD, Karki P, Lamsal M, Paudel IS, Majhi S, Das BK, Sharma S, Jha N BN. Hyperglycemia, glucose intolerance, hypertension and socioeconomic position in eastern Nepal. *Southeast Asian J Trop Med Public Heal* 2011;**42**:197–207.
- 12 McLachlan CS, Sharma R, Khanal V, et al. Prevalence of Hypertension in Member

	Countries of South Asian Association for Regional Cooperation (SAARC). <i>Medicine (Baltimore)</i> 2014; 93 :e74. doi:10.1097/md.000000000000074
13	Habits D. Non Communicable Diseases Risk Factors : STEPS Survey Nepal 2013. 2013.
14	Dhital SM, Karki A. Dealing with the burden of hypertension in Nepal : current status, challenges and health system issues. <i>Reg Heal Forum</i> 2013; 17 :44–52.
15	MOHP New ERA and ICF DHS Program. Nepal Demographic and Health Survey 2016. 2017;:636.
16	Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American college of cardiology/American Heart Association task . 2018. doi:10.1161/HYP.000000000000066
17	Chalmers J. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. <i>Clin Exp Hypertens</i> 1999; 21 :1009–60. doi:10.3109/10641969909061028
18	Hou X. Urban – Rural Disparity of and Untreated Hypertension in China. <i>Asia Pac J Public Heal</i> 2008; 20 :159–69.
19	Ahmed S, Tariqujjaman M, Rahman MA, <i>et al.</i> Inequalities in the prevalence of undiagnosed hypertension among Bangladeshi adults: Evidence from a nationwide survey. <i>Int J Equity Health</i> 2019; 18 :1–12. doi:10.1186/s12939-019-0930-5
20	Wagstaff A. The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. <i>Health Econ</i> 2005; 14 :429–32. doi:10.1002/hec.953
21	Wagstaff A, Doorslaer E van, Paci P. On the measurement of horizontal inequity in the delivery of health care. <i>J Health Econ</i> 1991; 10 :169–205.
22	Kakwani N, Wagstaff A, Doorslaer E van. Socioeconomic inequalities in health: measurement, computation and statistical inference. <i>J Econom</i> 1997;77:87–103.
23	O'Donnell O, Doorslaer E Van. Analyzing Health Equity Using Household Survey Data,. Washington. 2008. doi:10.2471/BLT.08.052357
24	Koolman X, Doorslaer E van. On the interpretation of a concentration index of inequality. <i>Health Econ</i> 2004; 13 :649–56.
25	StataCorp. Stata Statistical Software: Release 13. 2013.
26	Schmieder RE. Hypertoniebedingte endorganschäden. <i>Dtsch Arztebl</i> 2010; 107 :866–73. doi:10.3238/arztebl.2010.0866
27	Shrestha S, Shrestha A, Koju RP, <i>et al.</i> Barriers and facilitators to treatment among patients with newly diagnosed hypertension in Nepal. <i>Heart Asia</i> 2018; 10 :1–7. doi:10.1136/heartasia-2018-011047
	19
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6	28	Mishra SR, Ghimire S, Shrestha N, <i>et al.</i> Socio-economic inequalities in hypertension burden and cascade of services: nationwide cross-sectional study in Nepal. <i>J Hum Hypertens</i> 2019; 33 :613–25. doi:10.1038/s41371-019-0165-3
7 8 9 10	29	Chataut J, Adhikari R, Sinha N. The prevalence of and risk factors for hypertension in adults living in central development region of Nepal. <i>Kathmandu Univ Med J</i> 2011; 9 :13–8.
11 12 13 14	30	Kim Y, Kong KA. Do hypertensive individuals who are aware of their disease follow Lifestyle recommendations better than those who are not aware? <i>PLoS One</i> 2015; 10 :1–13. doi:10.1371/journal.pone.0136858
15 16 17 18	31	Karmacharya BM, Koju RP, LoGerfo JP, <i>et al.</i> Awareness, treatment and control of hypertension in Nepal: Findings from the Dhulikhel Heart Study. <i>Heart Asia</i> 2017; 9 :1–8. doi:10.1136/heartasia-2016-010766
19 20 21 22	32	Islam FM a, Bhuiyan a, Chakrabarti R, <i>et al.</i> Undiagnosed hypertension in a rural district in Bangladesh: The Bangladesh Population-based Diabetes and Eye Study (BPDES). <i>J Hum Hypertens</i> 2016; 30 :252–9. doi:10.1038/jhh.2015.65
23 24 25 26 27	33	Ataklte F, Erqou S, Kaptoge S, <i>et al.</i> Burden of undiagnosed hypertension in sub-saharan africa: A systematic review and meta-analysis. <i>Hypertension</i> 2015; 65 :291–8. doi:10.1161/HYPERTENSIONAHA.114.04394
27 28 29 30 31	34	Joshi SR, Saboo B, Vadivale M, <i>et al.</i> Prevalence of diagnosed and undiagnosed diabetes and hypertension in India-results from the screening India's twin epidemic (SITE) study. <i>Diabetes Technol Ther</i> 2012; 14 :8–15. doi:10.1089/dia.2011.0243
32 33 34 35	35	Li X, Xu J, Yao H, <i>et al.</i> Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: A cross-sectional population-based survey. <i>Front Med China</i> 2012;6:322–8. doi:10.1007/s11684-012-0204-8
36 37 38 39	36	Zallman L, Himmelstein D, Woolhandler S, <i>et al.</i> Undiagnosed and Uncontrolled Hypertension and Hyperlipidemia among Immigrants in the US. <i>J Immigr Minor Heal</i> 2013; 15 :858–65. doi:10.1007/s10903-012-9695-2.Undiagnosed
40 41 42	37	Choo EH, Ihm SH, Lim S, <i>et al.</i> A simple screening score for undiagnosed hypertension. <i>Int J Cardiol</i> 2014; 172 :e465–7. doi:10.1016/j.ijcard.2014.01.040
43 44 45 46	38	Abd Elaziz KM, Dewedar SA, Sabbour S, <i>et al.</i> Screening for hypertension among adults: Community outreach in Cairo, Egypt. <i>J Public Heal (United Kingdom)</i> 2015; 37 :701–6. doi:10.1093/pubmed/fdu085
47 48 49 50	39	Chor D, Pinho Ribeiro AL, Sá Carvalho M, <i>et al.</i> Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: Results of the ELSA-Brasil study. <i>PLoS One</i> 2015; 10 :1–14. doi:10.1371/journal.pone.0127382
51 52 53 54	40	Mosca I, Kenny RA. Exploring differences in prevalence of diagnosed, measured and undiagnosed hypertension: the case of Ireland and the United States of America. <i>Int J Public Health</i> 2014; 59 :759–67. doi:10.1007/s00038-014-0573-7
55 56 57	41	Saito Y, Davarian S, Takahashi A, et al. Diagnosis and Control of Hypertension in the
58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Elderly Populations of Japan and the United States. *Int J Popul Stud* 2015;**1**:19–28. doi:10.1016/j.physbeh.2017.03.040

- 42 Marshall A, Nazroo J, Feeney K, *et al.* Comparison of hypertension healthcare outcomes among older people in the USA and England. *J Epidemiol Community Health* 2016;**70**:264–70. doi:10.1136/jech-2014-205336
- 43 World Health Organization. Multisectoral Action Plan on the Prevention and Control of NCD (2014-2020). 2014. https://extranet.who.int/nutrition/gina/sites/default/files/NPL 2014 NCD Multisectoral Action Plan.pdf
- E. S, S. G, M.M. R, *et al.* Catastrophic household expenditure on health in Nepal: A cross-sectional survey. *Bull World Health Organ* 2014;**92**:760–7. doi:http://dx.doi.org/10.2471/BLT.13.126615

45 Rakotz MK, Ewigman BG, Sarav M, *et al.* A technology-based quality innovation to identify undiagnosed hypertension among active primary care patients. *Ann Fam Med* 2014;**12**:352–8. doi:10.1370/afm.1665

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
ر ر	
6	
7	
8	
9	
1	
1	1
1	1
1	-
1	
1	2
1	
1	f
1 1	1
1	ξ
1	9
2	(
- -	
2 2 2	
2	4
2	1
2	2
2	
2	
2	6
2	,
2 2	ş
2	2
3	(
3	
3	-
2	-
5	
3	2
3	5
2	,
3 3	-
2	1
3	
3	9
4	(
л	
4 4	
4	4
4	2
4	2
4	
4	
4 4 4	,
4	۶
۸	(
4 5	2
5	ſ

59

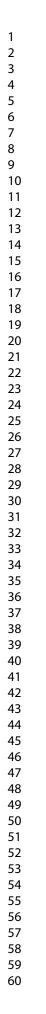
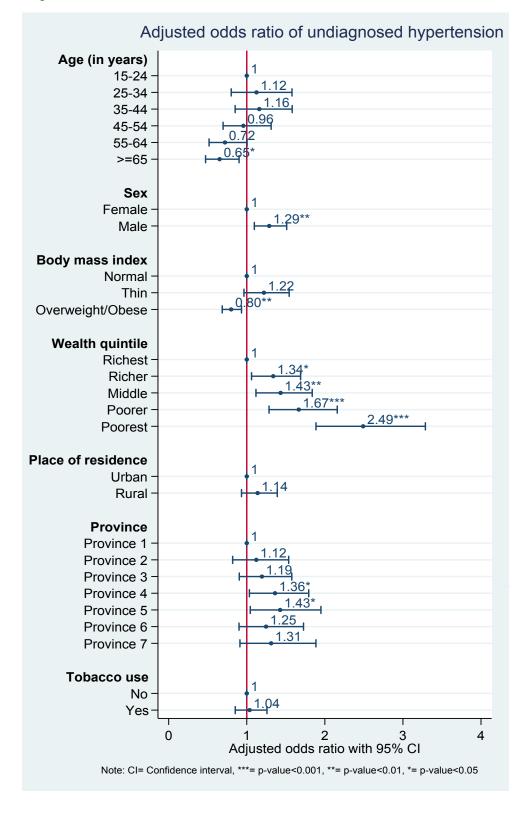
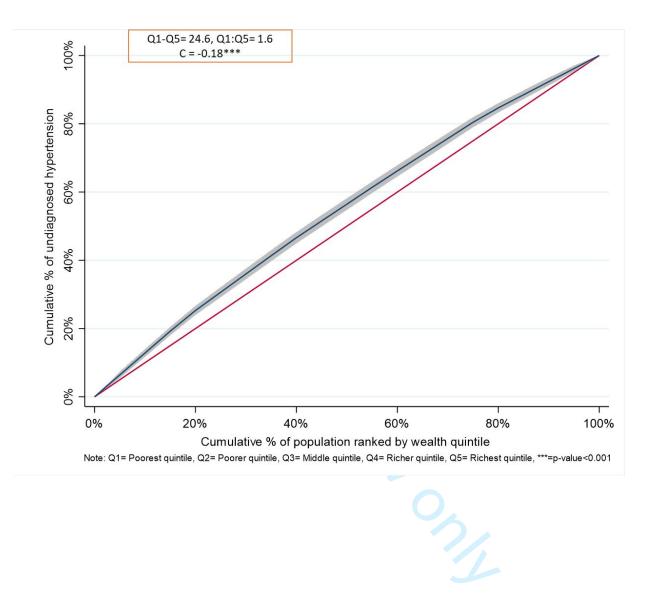

60

 Table 1: Characteristics of the study participants


	Total			Diagno	Diagnosed hypertension		Undiagnosed hypertension			Chi- — Square
Variables	n	%	95% CI	n	%	95% CI	n	%	95% CI	Statistic (p- value)
Overall	3334			1634	49.6	47.1-52.1	1700	50.4	47.9-52.9	
Age										29.6317
15-24	237	6.6	5.6-7.8	107	43.1	36.1-50.4	130	56.9	49.6-63.9	0.0008
25-34	449	13.2	11.9-14.5	196	43.8	38.4-49.3	253	56.2	50.7-61.6	
35-44	637	19.6	18-21.3	287	45.2	40.1-50.3	350	54.8	49.7-59.9	
45-54	687	20.9	19.2-22.8	333	49.4	45-53.8	354	50.6	46.2-55	
55-64	643	18.9	17.4-20.5	344	54.7	49.8-59.5	299	45.3	40.5-50.2	
>=65	681	20.8	19-22.7	367	55.1	50.3-59.8	314	44.9	40.2-49.7	
Sex										18.35
Male	1640	49.5	47.7-51.3	746	45.8	42.6-49.1	894	54.2	50.9-57.4	0.0003
Female	1694	50.5	48.7-52.3	888	53.3	50.1-56.4	806	46.7	43.6-49.9	
BMI										29.251
Normal	1816	53.6	51.2-56.1	841	47.1	44.3-50	975	52.9	50-55.7	0.0001
Thin	361	11.1	9.9-12.5	156	42.2	35.7-49	205	57.8	51-64.3	
Overweight/obese	1120	35.2	32.5-38	620	55.6	51.7-59.5	500	44.4	40.5-48.3	
Education										6.5852
No education	1576	46.5	44.1-48.9	778	50.9	47.5-54.4	798	49.1	45.6-52.5	0.2125
Primary	602	17.8	16.2-19.5	285	46.1	41.1-51.1	317	53.9	48.9-58.9	
Secondary	804	24.1	22.5-25.9	383	48	43.6-52.4	421	52	47.6-56.4	
Higher	350	11.5	9.9-13.5	187	53	46.9-58.9	163	47	41.1-53.1	
Wealth Quintile										90.708
Poorest	610	15.5	13.3-18	211	35.9	31.9-40	399	64.1	60-68.1	0.0000
Poorer	689	19.2	16.9-21.7	313	44.2	39.8-48.7	376	55.8	51.3-60.2	
Middle	604	17.3	15.2-19.6	301	49.5	44.5-54.5	303	50.5	45.5-55.5	
Richer	667	19.7	17.1-22.6	344	50.2	44.9-55.5	323	49.8	44.5-55.1	
Richest	764	28.3	24-33	465		55.4-65.2	299	39.6	34.8-44.6	
Place of residence	,	-0.0	2.00		00.1	0000		27.0	2	16.691
Urban	2221	64.9	59.9-69.6	1152	52.2	49-55.4	1069	47.8	44.6-51	0.0057
Rural	1113	35.1	30.4-40.1	482	44.8	40.7-48.9	631	55.2	51.1-59.3	0.0027
Ecological zone	1115	55.1	50.1 10.1	102	11.0	10.7 10.9	051	55.2	51.1 59.5	3.43
Mountain	200	56	3.6-8.6	92	47.1	39.4-54.8	108	52.9	45.2-60.6	0.3721
Hill	1694	49.9	44.2-55.6	788	48.3	45.1-51.5	906	51.7	48.5-54.9	0.5721
Terai	1440	44.5	39.2-49.9	754	51.4		686	48.6	44.4-52.9	
Province	1440	44.3	57.2-47.7	734	51.4	+/.1-33.0	000	4 0.0		23.786
Province 1	490	17	15.2-19	265	53	47.7-58.3	225	47	41.7-52.3	0.0511
										0.0311
Province 2	460	16.2	14.2-18.3	243	53.1	46.5-59.6	217	46.9	40.4-53.5	
Province 3	575	26	21.8-30.6	303	52.7	46.8-58.5	272	47.3	41.5-53.2	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


2											
3	Province 4	578	13.2	11.5-15.1	273	46.9	42-51.7	305	53.1	48.3-58	
4 5	Province 5	553	17.8	15.4-20.4	253	45.4	39-51.9	300	54.6	48.1-61	
6	Province 6	343	3.9	3.3-4.6	148	39.8	32.9-47.1	195	60.2	52.9-67.1	
7 8 9	Province 7 Caffeine consumption	335	6	5-7.2	149	41.9	33.8-50.5	186	58.1	49.5-66.2	0.2587
10	No	2942	88.4	86.7-89.9	1434	49.4	46.9-52.0	1508	50.6	48.0-53.1	0.6895
11 12	Yes	392	11.6	10.1-13.3	200	50.8	44.1-57.4	192	49.2	42.6-55.8	
12	Tobacco use										5.3524
14	No	2826	84.9	83.2-86.6	1410	50.4	47.8-53.1	1416	49.6	46.9-52.2	0.0338
15	Yes	508	15.1	13.5-16.8	224	44.8	40.0-49.8	284	55.1	50.2-60.0	
16 17	Alcohol										
17	consumption										2.4122
19	No	3249		97.1-98.4	1600	49.8	47.2-52.8	1649	50.2	47.6-52.8	0.1505
20	Yes	85		1.6-2.9	34	40.6	29.4-52.9	51	59.4	47.1-70.6	
21	Note: $n = Nu$	umber of sam	ple, CI	= Confidence	e interval						
22											
23 24											
25											
26											
27											
28											
29											
30 31											
32											
33											
34											
35											
36											
37											
38 39											
40											
41											
42											
43											
44											
45											

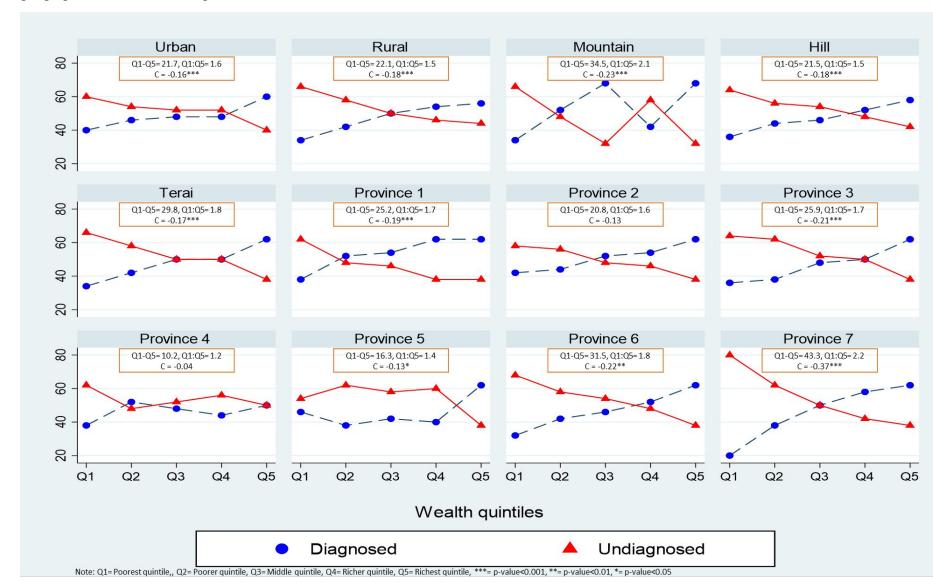


Figure 1: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 2: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Socioeconomic inequalities in the prevalence of undiagnosed hypertension among patients with hypertension across geographical locations in Nepal, 2016

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

95% CI Variables COR *p*-value Age 15-24 1 25-34 1.06 0.77-1.46 0.7090 35-44 1.00 0.75-1.34 0.9800 45-54 0.87 0.65-1.18 0.3760 55-64 0.72 0.52-0.98 0.0400 >=65 0.70 0.52-0.96 0.0250 Sex Male 1.32 1.14-1.53 0.0000 Female 1 **BMI** Normal 1 Thin 1.13 0.91-1.41 0.2610 Overweight/obese 0.70 0.6 - 0.80.0000 Education No education 1 Primary 1.08 0.9-1.31 0.4010 Secondary 1.07 0.88-1.3 0.4790 Higher 0.85 0.66-1.09 0.2070 Wealth Quintile Poorest 2.94 2.29-3.77 0.0000 Poorer 1.87 1.47-2.38 0.0000 Middle 1.57 1.23-1.99 0.0000 Richer 1.46 1.16-1.84 0.0010 Richest 1 **Place of residence** Urban 1 Rural 1.41 1.17-1.71 0.0000 **Ecological zone** Mountain 1 Hill 0.98 0.68-1.41 0.9100 Terai 0.78 0.53-1.12 0.1800 **Province** 1 Province 1 1.05 Province 2 0.77-1.44 0.7540 1.06 0.78-1.44 0.7220 Province 3 Province 4 1.32 1-1.74 0.0530 Province 5 1.40 1.01-1.92 0.0400 1.55 Province 6 1.09-2.2 0.0140

Supplementary Table 1: Unadjusted determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

55

Province 7	1.47	0.99-2.18	0.0550
Caffeine consumption			
No	1.00		
Yes	0.91	0.72-1.15	0.4400
Tobacco consumption			
No	1.00		
Yes	1.26	1.06-1.51	0.0100
Alcohol consumption			
No	1.00		
Yes	1.46	0.91-2.32	0.1140
Note: COP - Crude Odds Patio C	I– Confidenc	a Interval	

Note: COR= Crude Odds Ratio, CI= Confidence Interval

BMJ Open

Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037592.R1
Article Type:	Original research
Date Submitted by the Author:	14-Apr-2020
Complete List of Authors:	Hasan, Md. Mehedi ; The University of Queensland Institute for Social Science Research, Tasnim, Fariha; International Centre for Diarrhoeal Disease Research Bangladesh, Maternal and Child Health Division Tariqujjaman, Md.; International Centre for Diarrhoeal Disease Research Bangladesh, Nutrition and Clinical Services Division Ahmed, Sayem; Liverpool School of Tropical Medicine, Department of Tropical Biology; International Centre for Diarrhoeal Disease Research Bangladesh, Health Systems and Population Studies Division Mamun, Abdullah; University of Queensland, Institute for Social Science Research; University of Queensland, ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre)
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Hypertension < CARDIOLOGY, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Authors: Md. Mehedi Hasan^{1,2*}, Fariha Tasnim³, Md. Tariqujjaman⁴, Sayem Ahmed ⁵⁻⁷ and Abdullah A Mamun^{1,2}

Author affiliations

¹Institute for Social Science Research, The University of Queensland, Indooroopilly, Queensland 4068, Australia

² ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre), The University of Queensland, Indooroopilly, Queensland 4068, Australia

³ Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁴Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁵ Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

⁶Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁷Health Economics and Policy Research Group, Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden

* Correspondence:
Md. Mehedi Hasan
Institute for Social Science Research
ARC Centre of Excellence for Children and Families over the Life Course
The University of Queensland
80 Meiers Road, Long Pocket Precinct, Indooroopilly, Queensland 4068, Australia
Phone: +61 470 237 155
Fax: + 61 7 334 67646
E-mail: m.m.hasan@ugconnect.edu.au

ABSTRACT

Objective: To examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

Design: This study used cross-sectional 2016 Nepal Demographic and Health Survey (NDHS) data. We defined a hypertensive patient to remain undiagnosed if at the survey he/she was diagnosed as hypertensive (systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg) but never took any prescribed anti-hypertensive medicine to lower/control blood pressure and never told by health professionals to have hypertension prior the survey. Multiple binary logistic regression analysis was performed, and Concentration Index was measured.

Setting: Nepal

Participants: Adult patients with hypertension

Results: Among 3334 hypertensive patients, 50.4% remained undiagnosed during the survey in Nepal. Adjusted model reveals that patients who were male, belonged to households other than richest quintile, and lived in Province 4 and Province 5 were at higher risk and patients who were 65+ years of age and were overweight/obese were at lower risk of remaining undiagnosed for hypertension. The poor-rich gap was 24.6 percentage points (Q1= 64.1% vs Q5= 39.6%) and poor:rich ratio was 1.6 (Q1/Q5= 1.6) in the prevalence of undiagnosed hypertension. Undiagnosed hypertension was disproportionately distributed among socioeconomically worse-off Nepalese patients (Concentration Index, C= -0.18). Inequalities in the prevalence of undiagnosed hypertension further varied across other geographic locations including place of residence, ecological zones and administrative provinces.

Conclusions: Undiagnosed hypertension was highly prevalent in Nepal and there were substantial inequalities by socio-demographics and sub-national levels. Increasing awareness, strengthening

routine screening to diagnose hypertension at primary health service facilities and enactment of social health insurance policy may help Nepal to prevent and control this burden.

Keywords: Undiagnosed hypertension, Inequality, Demographic and Health Survey, Nepal

Strengths and limitations of this study

- This study determined the prevalence and correlates of undiagnosed hypertension in Nepal using the most updated population-based nationally representative data.
- This study measured both wealth-based absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces.
- The cross-sectional nature of the data limits us to measure causal association between undiagnosed hypertension and the explanatory variables studied.
- The association of some potential behavioral or lifestyle factors such as physical activity, dietary patterns and family history with undiagnosed hypertension remain unmeasured due to lack of information.

2/2

INTRODUCTION

Hypertension or raised blood pressure is recognized as a leading cause of mortality and disability [1], affecting more than one billion people every year worldwide [2]. Globally, hypertension is a directing factor for cardiovascular diseases (CVDs), specially heart diseases, myocardial infarctions, kidney failure, strokes, disability and premature deaths [2,3]. In South-East Asian countries including Nepal, hypertension affects one out of three adults, which accounts for nearly 1.5 million adult deaths annually; and 9.4% of the total deaths [4]. Studies identified, more than 50% people having hypertension remained undiagnosed in South-East Asian region [5]. Among South Asian countries, Nepal has one of the highest prevalence of hypertension [6].

Currently, Nepal is facing an epidemiological transition with increasing prevalence of hypertension [7]. Several studies reported the prevalence of hypertension in Nepal. A study based on the Nepal Demographic and Health Survey 2016 reported about 20% Nepalese adults (aged \geq 18 years) had hypertension [8]. Other studies reported the prevalence of hypertension ranges from 23% to 34% in Nepal [7,9–12]. However, some of these assessments were older and did not represent national scenario. In 2013, the national NCD risk factor survey showed about 25.7% adults aging 15-69 years had hypertension in Nepal [13]. This survey also found that a large number of (42.7%) adults had never measured their blood pressure. For prevention, control and proper treatment of hypertension, it is prior need to correctly diagnose this disease. In addition, failure to early diagnosis and treatment of hypertension may lead to serious health hazards, disability in the later life, or eventually deaths. Number of government, non-government and private health facilities are providing health services including diagnosis, medication and treatment for hypertension. However, the existing health systems of Nepal is not ready for diagnosis.

treatment and control of hypertension especially for the mass people at the community level indicating the challenges to tackle this burden [14].

To prevent hypertension, the disease needs to be diagnosed first before any related complications arise. However, there is lack of evidence about the prevalence of undiagnosed hypertension in Nepal at national and subnational levels. The estimates of undiagnosed hypertension, and its socio-demographic inequalities at national and subnational level may help the policy makers for formulating effective strategies for screening, treatment and control as well as prevention of such burden by identifying the most vulnerable groups. Therefore, given the importance of this burden, we aimed to examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

Tel.ez

METHODS

Data source

We used the most updated nationally representative cross-sectional data from Nepal Demographic and Health Survey (NDHS). Though the data of Demographic and Health Surveys is managed by Measure Evaluation, the NDHS was conducted from June 2016 to January 2017 by a private research organization named "NEW ERA" under the monitoring and supervision of the Ministry of Health, Nepal. To estimate the prevalence of hypertension nationally in Nepal, the NDHS 2016 obtained informed consent from the household head on behalf of all household members of each surveyed households [15]. For academic and scientific purposes, this anonymous dataset without any identifiers was made available by the ICF International, Maryland, United States [15]. We obtained approval with access to use the data to conduct this study.

BMJ Open

Survey procedure and participants

In 2015, Nepal declared some new places to fall under municipalities and some municipalities have been reformed [8]. After these changes, Nepal has been divided into seven administrative provinces comprising several districts under each province and urban-rural areas. These urban and rural areas were divided into small administrative units as wards. Because of having comparatively greater number of households in urban areas, the urban area was further divided into enumeration area (EA). The primary sampling unit (PSU) were wards for both urban and rural areas [15]. Because of some changes in administrative areas, Nepal revised the sampling frame of National Population and Housing Census (NPHC). The 2016 NDHS used this revised sampling frame and applied a multistage survey that respectively conducted in two and three stages in rural and urban areas. NDHS selected the PSUs proportionately to the size in the first stage and then the random selection of EAs from the systematic selection of households from each PSU in second stage. In third stage, the households were selected by using stratified cluster sampling technique in urban setting. A detailed description about the methodology is available elsewhere [15]. A total of 11490 households were selected from 383 wards, of which 5520 households from 184 wards were from urban settings and 5970 households from 199 wards were from rural settings. From these households, all the residents whose age 15 years or above were eligible for the measurement of blood pressure. With an overall 95% response rate, a total of 14823 individuals participated in the survey. The participants of this study were males and females with hypertension of ages 15 years or older. A total of 3334 patients of both sexes were included in this study. A step by step procedure of selecting study sample has shown in Figure 1.

{Figure 1 will be added here}

Outcome variable

To measure hypertension, the 2016 NDHS used the UA-767F/FAC (A&D Medical) automated device to record the blood pressure of the participants. With 5 minutes intervals between each measurement, the 2016 NDHS recorded the measurements of blood pressure for three times in a sitting position. NDHS considered the last two measures of blood pressure levels and used their mean to detect hypertension. The survey used the World Health Organization (WHO) guidelines to report a participant as hypertensive [15]. This guideline has integrated the 2017 guidelines of the American College of Cardiology/ American Society of Hypertension [16,17]. According to the guideline, a participant with systolic blood pressure (SBP) ≥140 mmHg or diastolic blood pressure $(DBP) \ge 90 \text{ mmHg}$ is diagnosed as a hypertension case. We also considered participants as patients of hypertension if s/he was previously told by health professional to have hypertension or taking medication to control hypertension. Our outcome variable is undiagnosed hypertension. A patient is considered as undiagnosed for hypertension if at the survey time he/she was diagnosed as hypertensive (SBP 140 mmHg or DBP 90 mmHg) but never took any prescribed antihypertensive medicine to lower/control blood pressure and never told by health professionals to have hypertension prior the survey [18,19].

Explanatory variables

This study considered a set of socio-demographic and behavioral characteristics as independent variables. Age (in years), sex, Body Mas Index (BMI) measured through dividing the weight by squared height (kg/m²), education level, household wealth status, place of residence, ecological zone, and provinces were considered as socio-demographic characteristics of the patients. Age was categorized as 15-24, 25-34, 35-44, 45-54,55-64 and \geq 65 years. Sex had two categories, male and female. The BMI was categorized as thin/underweight (BMI<18.5 kg/m²), normal (18.5 kg/m²)

BMJ Open

≤BMI<25 kg/m²) and overweight/obese (BMI≥25.0 kg/m²) [20]. Based on the highest class completed by the respondents, level of education was classified as no education, primary, secondary and higher. NDHS used principal component analysis [15] to construct the wealth index to desegregate the households into five socioeconomic quintiles (poorest, poorer, middle, richer and richest). The place of residence was stratified as urban and rural across all geographic location. Nepal was ecologically divided in Mountain, Hill and Terai. Using 2015 reformation, 7 administrative provinces were considered as Province 1, Province 2, Province 3, Province 4, Province 5, Province 6 and Province 7. Three behavioral characteristics of respondents, caffeine, tobacco and alcohol consumption were considered as independent variables each of which contained dichotomous response on whether respondent consume caffeine, tobacco or alcohol.

Statistical analyses

We described the prevalence of undiagnosed hypertension and background characteristics of the study patients by using univariate analysis technique. The estimates of each of the categorical variables included in this study were reported with numbers, weighted percentages and 95% confidence intervals (CIs) of estimates. The weighted prevalence of undiagnosed hypertension was determined across the background characteristics of the study patients from bivariate analysis. Statistical significance was detected by applying Chi-square test. Then, we conducted simple and multiple binary logistic regression analyses to examine the correlates of undiagnosed hypertension. The results of the regression analysis were presenterd in terms of odds ratio with respective 95% CI. Variables that were statistically significant in simple logistic regression analysis were entered in the multiple regression model to estimate the adjusted odds ratio (AOR). Notably, the statistical significance was defined at 5% level (p-value<0.05). Variance inflation factors to detect multicolleniarity among the independent vaiables were assessed before incorporating them into

the multiple regression model. Due to hierarchical structure of NDHS data, we considered the cluster sampling design of the 2016 NDHS to estimate the prevalence and determinants in this study [15]. We excluded cases with missing values for blood pressure measurements.

Proposed by Wagstaff [21] to measure the inequality, we estimated the concentration index (C), to show the degree and direction of wealth-based inequality in undiagnosed hypertension prevalence. For the purpose of calculating C, the households were ranked from the poorest to the richest according to their socioeconomic characteristics. We plotted a concentration curve to portray the distribution of undiagnosed hypertension. The Y-axis of the concentration curve representing the cumulative proportion of undiagnosed hypertension and the X-axis represents the cumulative proportions of the population across wealth quintiles. When the concentration curve coincide with the diagonal, the prevalence of undiagnosed hypertension is treated as equally distributed across socioeconomic groups. In contrast, the concentration curve typically deviate from the diagonal if there exist inequalities in the prevalence of undiagnosed hypertension. The C is defined as twice the area between the concentration curve and the diagonal [22–24]. The index value can range between -1 and +1, a positive value implies the prevalence of undiagnosed hypertension is more concentrated among the better-off socioeconomic group and a negative value implies the prevalence is more concentrated among less affluent group [23,25]. We repeat the estimation of C across other geographical locations such as place of residence, ecological zones and provinces to detect the group of patients with highest severity of socioeconomic inequalities in the prevalence of undiagnosed hypertension. STATA (version 13) was used to perform all the analyses [26].

Patient and public involvement

Patients and public were not involved in developing the research questions, measuring outcome and designing the study. Information of the participants were anonymous.

RESULTS

General Characteristics of the Study Participants

Table 1 shows the general characteristics of the study participants. Among the patients studied, the average age of patients was 49.8 years (95% CI 49.1, 50.5) with the lowest percentage of patients belonged to 15-24 years age group (6.6%) and highest percentage of patients belonged to 45-54 years age group (20.9%). Numbers of males (49.5%) and females (50.5%) in the sample were almost equal. Nearly half of the patients were normal in terms of their BMI while more than one third of the patients were overweight/obese. Though two-third of the patients resided in urban area (64.9%), the educational status of the patients were poor. Nearly half of the patients had no education while 24.1% and 11.5% had secondary and higher education respectively. The highest number of patients belonged to richest wealth quintile (28.3%) and the lowest number of patients were from province 3 (26.0%) followed by province 5 (17.8%) and province 1 (17.0%). However, only 5.6% of the patients were from mountain ecological zone.

{Table 1 will be added here}

Prevalence of Undiagnosed Hypertension

Among 3334 participants who had hypertension during the survey, more than half of them were detected as remaining undiagnosed (50.4%). The prevalence of undiagnosed hypertension among the patients varied across their age (*p-value* < 0.001), sex (*p-value* < 0.001), BMI (*p-value* < 0.001), wealth quintile (*p-value* < 0.001) and place of residence (*p-value* < 0.01). The prevalence of undiagnosed hypertension were higher among patients with 15-24 years age group and steadily decreasing with the increase of age. The prevalence of undiagnosed hypertension was higher among male patients (54.2%) than female (46.7%). Compare to patients with normal BMI, the prevalence of undiagnosed hypertension was higher among thin patients (57.8%) and lower among overweight/obese patients (44.4%). Compare to patients of the richest wealth quintile (39.6%), the prevalence of undiagnosed hypertension was higher among patients of the poorest (64.1%) and poorer (55.8%) quintiles. The rate of undiagnosed hypertension was higher among patients of the poorest (64.1%) and poorer (55.2%) compare to urban (47.8%). No educational, ecological and provincial variations in the prevalence of undiagnosed hypertension was observed (**Table 1**).

Correlates of Undiagnosed Hypertension

We found that patient's age, sex, BMI, wealth quintile, place of residence and province were significantly associated with the prevalence of undiagnosed hypertension among hypertensive patients in unadjusted logistic regression analysis (see **supplementary**).

Figure 2 represents the results of multiple logistic regression analysis. The multiple binary logistic regression model showed that patient's age, sex, BMI, wealth quintile and province had significant association with undiagnosed hypertension. Elderly patients ≥ 65 years of age had a lower

BMJ Open

likelihood of being undiagnosed for hypertension than patients with age 15-24 years (Adjusted Odds Ratio, AOR = 0.65; 95% CI 0.48, 0.91). Male patients were 1.29 times more likely than female patients to remain undiagnosed for hypertension (AOR = 1.29, 95% CI 1.11, 1.51). Compare to patients with normal BMI, overweight/obese patients (AOR = 0.80, 95% CI 0.69, 0.93) were less likely to have undiagnosed hypertension.

We found wealth quintiles as potential correlates of undiagnosed hypertension. The risk of remaining undiagnosed for hypertension was increasing with the decrease of patient's socioeconomic status. Patients with a poorer socioeconomic status had higher chance of having undiagnosed hypertension compared to higher socioeconomic quintiles. Patients of poorest and poorer wealth quintiles were 2.49 (AOR = 2.49; 95% CI 1.90, 3.30) and 1.67 (AOR = 1.67; 95% CI 1.29, 2.16) times more likely to have an undiagnosed hypertension condition than patients of richest wealth quintile.

Moreover, significant provincial variation was evident in the prevalence of undiagnosed hypertension among hypertensive patients. Patients of province 4 (AOR = 1.36,95% CI 1.04, 1.79) and province 5 (AOR = 1.43,95% CI 1.05, 1.95) were more likely to had undiagnosed hypertension than patients of province 1.

{Figure 2 will be added here}

Socioeconomic Inequalities in Undiagnosed Hypertension

Figure 3 depicts the inequalities in the prevalence of undiagnosed hypertension among hypertensive patients. The absolute poor (Q1) - rich (Q5) difference in the distribution of undiagnosed hypertension was 24.6% between poorest and richest, meaning that the prevalence of undiagnosed hypertension was greater by 24.6 percentage points among the poorest. The relative

measure of inequality in terms of poor (Q1): rich (Q5) ratio was 1.6 for the prevalence of undiagnosed hypertension among patients, depicting that the prevalence of undiagnosed hypertension was higher by 1.6 times among the poorest than richest. We found negative value of the Concentration Index (C = -0.18) which represents that the prevalence of undiagnosed hypertension among hypertensive patients was disproportionately distributed among worse-off socioeconomic groups.

{Figure 3 will be added here}

In addition, patients living in mountain and in province 7 had large gaps in the prevalence of undiagnosed hypertension (**Figure 4**). The higher Q1:Q5 ratio were observed among those who had large Q1-Q5 gaps in the prevalence of undiagnosed hypertension across different geographic locations. We found large negative values of C among those who had higher Q1-Q5 gaps and Q1:Q5 ratio for the prevalence of undiagnosed hypertension. See **Figure 4** for details.

{Figure 4 will be added here}

DISCUSSION

Globally few studies have been conducted on undiagnosed hypertension to date. Utilizing NDHS 2016 data, this study intended to estimate the prevalence of undiagnosed hypertension. In addition, the risk factors and inequalities associated with it among Nepalese hypertensive patients were identified. About half of the biomarker partakers were found hypertension positive who were not screened/diagnosed before the survey. Patients unwillingness for regular check-up before any health complication arises due to lack of awareness as well as inaccessibility to screening services may direct this high prevalence [27]. Gap in knowledge, attitude and practice of healthy lifestyle

Page 15 of 33

BMJ Open

as preventive measure to non-communicable diseases (NCDs) may also act as a driver of undiagnosed hypertension [27–29]. Community-based awareness on changing lifestyle to address the burden of NCDs from the society as a whole might be effective in reducing this gap [30].

Several studies reported higher risk of hypertension among people who were older in age, male, urban dwellers, had higher education level, regular consumer of tobacco and alcohol, and who are overweight [6,8,28,29]. In contrast, we found that patients aged 65+ years and who were overweight/obese were at lower risk of remaining undiagnosed from this disease. However, our findings depicted greater proportion of undiagnosed patients among those who were young and physically thin. Young or underweight people are less conscious about their health status as they might have the misconception that they are less likely to suffer from NCDs [31]. Nonetheless, richest are more aware than the poorest people about the health hazards, typically have greater access for screening diseases and can have the ability to afford treatment cost for the diseases in Nepal [28]. This could lead the poor than the rich to be more exposed to undiagnosed hypertension.

On the other hand, similar to risk factors of hypertension, undiagnosed hypertension were also more prevalent among males and tobacco users [6,29]. The higher rate of undiagnosed hypertension among male might be due to their lack of awareness and lower treatment rate than female [32]. Smoking, a main source of using tobacco, is well recognized to have association with increased risk of hypertension in many settings including Nepal [33,34]. However, there is lack of evidence in determining the extent of how tobacco use is affecting patients to remain undiagnosed for hypertension. Our finding demonstrates that in Nepal, factors other than tobacco use played independent role in increasing rate of undiagnosed hypertension. Although difference in lifestyle practices between male and female in Nepal may not be the key factors behind such exposure, research need to be done to identify the actual risk factors [29].

Undiagnosed hypertension may lead to adverse health consequences, including some organ damages [35]. The World Health Organization, mentioning hypertension as a silent killer, stated the prevalence of hypertension is higher in low- and middle-income countries than developed and high income countries [3]. Our results proves this claim and also aligns with findings from Bangladesh and Sub-Saharan Africa [19,36,37]. Although situated in closer geographic region, the prevalence of undiagnosed hypertension from this study differs from more developed and high income countries with up to date facility setup and health policies for their citizens. For example, the prevalence of undiagnosed hypertension was much lower in India and China than Nepal [38,39]. While half of the hypertensive patients remain undiagnosed in Nepal, the recent evidence shows that the prevalence of undiagnosed hypertension was 28.8% in China [40]. The reason behind this difference might be due to the differences in age of study participants. Nepal assessed participants of age 15 years or older while China included older participants (over 45 years) who assumed more aware, because of their ages, about health conditions and were more likely to visit doctors for regular health check-up. Similarly, findings from studies conducted in countries with more developed health facilities and advanced screening system such as Japan, Korea, England, Ireland, Egypt, Brazil and USA were also found to have lower level of undiagnosed hypertension than Nepal as found in this study [41-47]. Being a neibouring country, the prevalence of undiagnosed hypertension of Nepal is relatively closer with that in Bangladesh [19].

In Nepal, despite the detection of risk factors [6,8,29] and inequalities [28], the prevalence of hypertension was well investigated nationally which lead policy makers to successfully steer away it's progression [48]. However, this effort will be meaningless unless all patients at risk of hypertension are accurately diagnosed and detected. It is necessary to identify whether unequal distribution of undiagnosed hypertension exists among patients with hypertension across different

Page 17 of 33

BMJ Open

socioeconomic groups. It will aid in setting priorities and proper allocation of resources. Our study reveals existence of inequalities in the distribution of undiagnosed hypertension due to economic status, with poorest had higher prevalence of undiagnosed hypertension than richest and showed greater degree of wealth-based inequality concentrated among the poorest. These inequalities were more prevalent among patients living in different geographical locations including place of residence, ecological zones and administrative provinces. Such disparity may ascribe to greater awareness and more utilization of healthcare benefits by the people who are rich [28]. Such inequality might increase the catastrophic health spending given the rise of catastrophic household expenditure due to NCDs in Nepal [14,49]. Public health strategies might reduce this gap by concentrating more on implementing social health insurance policies which has to be equitable for all [41,49]. In this aspect, policy makers could take into consideration the disparities in the distribution of undiagnosed hypertension found in this study.

Several initiatives have been taken to control hypertension in Nepal. To address the burden of cardiovascular diseases (CVD), the WHO and partners launched an initiative called "Global Hearts" in 2016 [50]. This initiative took a comprehensive approach to help countries in scalingup of affordable and adaptable measures to make their health services better able to detect and treat people at risk or suffering from CVD. This initiative comprises of three packages: SHAKE, HEARTS and MPOWER. The package "HEARTS" provides tools to incorporate CVD management best practices at the primary health care level to reduce CVD risk factors such as hypertension and high blood cholesterol. Like many LMICs, Nepal has been under this initiative to tackle the CVD. In addition, the Community-based Management of Hypertension in Nepal (COBIN) is a community-based cost-effective intervention that showed success in reducing hypertension in Nepal [51,52]. However, for designing further programs or interventions, our

findings further provide insights in considering the hypertensive cases that remained undiagnosed and their uneven distributions across a spectrum of sociodemographic characteristics for the prevention of hypertension in Nepal.

Ignoring the population at risk of hypertention may become a major threat to health outcomes to any nation. This study bestows an immense opportunity to estimate the prevalence of undiagnosed hypertension which had not yet been studied nationally in Nepal. NDHS 2016 through incorporation of biomarker test bears evidence that a substantial proportion of individuals are suffering from blood pressure abnormalities. This in fact emphasise the need of conducting routine screening for hypertension widened with the greatest possible coverage in the population. A routine surveillance system with technology-based screening can aid in tracing disease incidence as well as people at risk of being undiagnosed [53]. Our study findings will be helpful to initiate policies and programs in capturing the highest domain of underprivileged population and bring them under routine surveillance at community level with optimum cost.

Strengths and limitations

We used most updated nationally representative cross-sectional data to determine the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal. We considered complex survey design to capture variations due to designing. However, there may have residuals and unmeasured potential behavioral or lifestyle factors such as physical activity, dietary patterns and family history of hypertension that remain unmeasured in relating to undiagnosed hypertension due to lack of information. Since our data was corss-sectional, the relationship between undiagnosed hypertension and confounders were probabilistic rather than causal. However, identification of potential correlates through using odds ratio is widely acceptable. This study measured both absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level

BMJ Open

as well as across place of residence, ecological zones and administrative provinces to further guide policy/decision makers for better allocation of resources to reduce the burden.

CONCLUSIONS

This study manifests, in Nepal huge number of respondents with hypertension remained undiagnosed. Initiative for NCDs diagnoses prioritizing those who are down and out requires to be implemented. Community-based awareness should be raised to improve knowledge, attitude and practice of the people particularly those who are young, slender, poor and male given their higher risk of being undiagnosed. Routine screening and strengthening diagnosis of hypertension in the primary level of health care service facilities may help Nepal in reducing cases with undiagnosed hypertension. Moreover, identification of inequalities among different risk groups will be beneficial in achieving universal health coverage of sustainable development goal (Goal 3.8.1). Social health insurance policies under integrated national NCD policy should be properly enacted to ensure socioeconomically disadvantaged populations covered under the scheme for prevention and control of hypertension from them.

Acknowledgments

We acknowledge the MEASURE DHS for providing access to NDHS 2016 datasets.

Contributors

MMH, SA and AAM conceptualized the study. MMH performed the data analysis and interpretation of the findings. MMH, FT and MT contributed to writing. AAM and SA critically

reviewed the analysis and final version of the manuscript. All authors made a through review of the final draft and approved it for submission.

Funding

This research received no external funding.

Competing interests

None declared.

Ethical approval

The NDHS survey methodology and questionnaire was reviewed and approved by the ethical review board of Nepal Research Council and ICF Institutional. NDHS obtained informed consent from the respondents before conducting the survey. Therefore, separate ethical approval was not required for this study and we are using publicly available de-identified data.

Data sharing statement

Data are available in a public, open access repository. All data related to study are included in the manuscript.

REFEENCES

- 1 Forouzanfar MH, Afshin A, Alexander LT, *et al.* Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 2016;**388**:1659–724. doi:10.1016/S0140-6736(16)31679-8
- 2 Fisher N, Curfman G. Hypertension-A public health challenge of global proportions. *JAMA* 2018;**320**:1757–1759.
- 3 Day WH. World Health Organisation. A global brief on Hypertension. Published Online First: 2013. doi:10.1136/bmj.1.4815.882-a

Page 21 of 33

1 2		
2 3 4	4	Region SA. Noncommunicable Diseases in the South-East Asia Region. 2011.
5 6 7 8 9	5	Mohan V, Seedat YK, Pradeepa R. The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings. <i>Int J Hypertens</i> 2013; 2013 :1–14. doi:10.1155/2013/409083
10 11 12 13	6	Agho KE, Osuagwu UL, Ezeh OK, <i>et al.</i> Gender differences in factors associated with prehypertension and hypertension in Nepal: A nationwide survey. <i>PLoS One</i> 2018; 13 :1–18. doi:10.1371/journal.pone.0203278
14 15 16 17	7	Vaidya A, Pathak RP, Pandey MR. Prevalence of hypertension in Nepalese community triples in 25 years: A repeat cross-sectional study in rural Kathmandu. <i>Indian Heart J</i> 2012; 64 :128–31. doi:10.1016/S0019-4832(12)60045-5
18 19 20 21	8	Hasan M, Sutradhar I, Akter T, <i>et al.</i> Prevalence and determinants of hypertension among adult population in Nepal: Data from Nepal demographic and health survey 2016. <i>PLoS One</i> 2018; 13 :1–14. doi:10.1371/journal.pone.0198028
22 23 24 25	9	Ghimire A, Shrestha NR, Thapa L, <i>et al.</i> Prevalence of Hypertension, Obesity, Diabetes, and Metabolic Syndrome in Nepal. <i>Int J Hypertens</i> 2011; 2011 :1–9. doi:10.4061/2011/821971
26 27 28 29	10	Shrestha UK, Singh DL, Bhattarai MD. The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal. <i>Diabet Med</i> 2006; 23 :1130–5. doi:10.1111/j.1464-5491.2006.01953.x
30 31 32 33 34	11	Mehta KD, Karki P, Lamsal M, Paudel IS, Majhi S, Das BK, Sharma S, Jha N BN. Hyperglycemia, glucose intolerance, hypertension and socioeconomic position in eastern Nepal. <i>Southeast Asian J Trop Med Public Heal</i> 2011; 42 :197–207.
35 36 37 38	12	McLachlan CS, Sharma R, Khanal V, <i>et al.</i> Prevalence of Hypertension in Member Countries of South Asian Association for Regional Cooperation (SAARC). <i>Medicine</i> <i>(Baltimore)</i> 2014; 93 :e74. doi:10.1097/md.000000000000074
39 40	13	Habits D. Non Communicable Diseases Risk Factors : STEPS Survey Nepal 2013. 2013.
40 41 42 43	14	Dhital SM, Karki A. Dealing with the burden of hypertension in Nepal : current status, challenges and health system issues. <i>Reg Heal Forum</i> 2013;17:44–52.
44 45 46	15	MOHP New ERA and ICF DHS Program. Nepal Demographic and Health Survey 2016. 2017;:636.
40 47 48 49 50 51 52	16	Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American college of cardiology/American Heart Association task. 2018. doi:10.1161/HYP.0000000000000066
53 54 55 56	17	Chalmers J. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. <i>Clin Exp Hypertens</i> 1999; 21 :1009–60. doi:10.3109/10641969909061028
57 58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hou X. Urban – Rural Disparity of and Untreated Hypertension in China. Asia Pac J Public Heal 2008;20:159-69. Ahmed S, Tariquijaman M, Rahman MA, et al. Inequalities in the prevalence of undiagnosed hypertension among Bangladeshi adults: Evidence from a nationwide survey. Int J Equity Health 2019;18:1–12. doi:10.1186/s12939-019-0930-5 World Health Organization. Nutrition Landacape Information System: Country Profile Indicators. 2010. doi:10.1159/000362780.Interpretation Wagstaff A. The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. *Health Econ* 2005;14:429–32. doi:10.1002/hec.953 Wagstaff A, Doorslaer E van, Paci P. On the measurement of horizontal inequity in the delivery of health care. J Health Econ 1991;10:169-205. Kakwani N, Wagstaff A, Doorslaer E van. Socioeconomic inequalities in health: measurement, computation and statistical inference. J Econom 1997;77:87–103. O'Donnell O, Doorslaer E Van. Analyzing Health Equity Using Household Survey Data,. Washington. 2008. doi:10.2471/BLT.08.052357 Koolman X, Doorslaer E van. On the interpretation of a concentration index of inequality. Health Econ 2004;13:649–56. StataCorp. Stata Statistical Software: Release 13. 2013. Shrestha S, Shrestha A, Koju RP, et al. Barriers and facilitators to treatment among patients with newly diagnosed hypertension in Nepal. *Heart Asia* 2018;10:1-7. doi:10.1136/heartasia-2018-011047 Mishra SR, Ghimire S, Shrestha N, et al. Socio-economic inequalities in hypertension burden and cascade of services: nationwide cross-sectional study in Nepal. J Hum Hypertens 2019;33:613-25. doi:10.1038/s41371-019-0165-3 Chataut J, Adhikari R, Sinha N. The prevalence of and risk factors for hypertension in adults living in central development region of Nepal. Kathmandu Univ Med J 2011;9:13-8. Kim Y, Kong KA. Do hypertensive individuals who are aware of their disease follow Lifestyle recommendations better than those who are not aware? *PLoS One* 2015;10:1–13. doi:10.1371/journal.pone.0136858 Karmacharya BM, Koju RP, LoGerfo JP, et al. Awareness, treatment and control of hypertension in Nepal: Findings from the Dhulikhel Heart Study. *Heart Asia* 2017;9:1–8. doi:10.1136/heartasia-2016-010766 Mehata S, Shrestha N, Mehta R, et al. Prevalence, awareness, treatment and control of hypertension in Nepal: Data from nationally representative population-based crosssectional study. J Hypertens 2018;36:1680-8. doi:10.1097/HJH.00000000001745 Singh R, Fedacko J, Pella D, et al. Prevalence and risk factors for prehypertension and For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4		hypertension in five Indian cities. Acta Cardiol 2011;66.
5 6 7 8	34	Dhungana RR, Pandey AR, Bista B, <i>et al.</i> Prevalence and Associated Factors of Hypertension: A Community-Based Cross-Sectional Study in Municipalities of Kathmandu, Nepal. <i>Int J Hypertens</i> 2016; 2016 . doi:10.1155/2016/1656938
9 10 11	35	Schmieder RE. Hypertoniebedingte endorganschäden. <i>Dtsch Arztebl</i> 2010; 107 :866–73. doi:10.3238/arztebl.2010.0866
12 13 14 15	36	Islam FM a, Bhuiyan a, Chakrabarti R, <i>et al.</i> Undiagnosed hypertension in a rural district in Bangladesh: The Bangladesh Population-based Diabetes and Eye Study (BPDES). <i>J Hum Hypertens</i> 2016; 30 :252–9. doi:10.1038/jhh.2015.65
16 17 18 19	37	Ataklte F, Erqou S, Kaptoge S, <i>et al.</i> Burden of undiagnosed hypertension in sub-saharan africa: A systematic review and meta-analysis. <i>Hypertension</i> 2015; 65 :291–8. doi:10.1161/HYPERTENSIONAHA.114.04394
20 21 22 23	38	Joshi SR, Saboo B, Vadivale M, <i>et al.</i> Prevalence of diagnosed and undiagnosed diabetes and hypertension in India-results from the screening India's twin epidemic (SITE) study. <i>Diabetes Technol Ther</i> 2012; 14 :8–15. doi:10.1089/dia.2011.0243
24 25 26 27	39	Li X, Xu J, Yao H, <i>et al.</i> Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: A cross-sectional population-based survey. <i>Front Med China</i> 2012; 6 :322–8. doi:10.1007/s11684-012-0204-8
28 29 30 31	40	Zhou J, Fang S. Association between undiagnosed hypertension and health factors among middle-aged and elderly chinese population. <i>Int J Environ Res Public Health</i> 2019; 16 . doi:10.3390/ijerph16071214
32 33 34 35	41	Zallman L, Himmelstein D, Woolhandler S, <i>et al.</i> Undiagnosed and Uncontrolled Hypertension and Hyperlipidemia among Immigrants in the US. <i>J Immigr Minor Heal</i> 2013; 15 :858–65. doi:10.1007/s10903-012-9695-2.Undiagnosed
36 37 38	42	Choo EH, Ihm SH, Lim S, <i>et al.</i> A simple screening score for undiagnosed hypertension. <i>Int J Cardiol</i> 2014; 172 :e465–7. doi:10.1016/j.ijcard.2014.01.040
39 40 41 42 43	43	Abd Elaziz KM, Dewedar SA, Sabbour S, <i>et al.</i> Screening for hypertension among adults: Community outreach in Cairo, Egypt. <i>J Public Heal (United Kingdom)</i> 2015; 37 :701–6. doi:10.1093/pubmed/fdu085
43 44 45 46 47	44	Chor D, Pinho Ribeiro AL, Sá Carvalho M, <i>et al.</i> Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: Results of the ELSA-Brasil study. <i>PLoS One</i> 2015; 10 :1–14. doi:10.1371/journal.pone.0127382
47 48 49 50 51	45	Mosca I, Kenny RA. Exploring differences in prevalence of diagnosed, measured and undiagnosed hypertension: the case of Ireland and the United States of America. <i>Int J Public Health</i> 2014; 59 :759–67. doi:10.1007/s00038-014-0573-7
52 53 54 55	46	Saito Y, Davarian S, Takahashi A, <i>et al.</i> Diagnosis and Control of Hypertension in the Elderly Populations of Japan and the United States. <i>Int J Popul Stud</i> 2015; 1 :19–28. doi:10.1016/j.physbeh.2017.03.040
56 57		
58 59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Marshall A, Nazroo J, Feeney K, et al. Comparison of hypertension healthcare outcomes

World Health Organization. Multisectoral Action Plan on the Prevention and Control of

among older people in the USA and England. J Epidemiol Community Health

2016;70:264-70. doi:10.1136/jech-2014-205336

1 2 3

4

5

6 7

8

9

10 11

12

13

14 15

16

17 18

19

20

21 22

23

24

25 26

27

28 29

30

31 32 33

34 35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50 51

52

53

54

55 56

57 58

59

60

47

48

18.35

NCD (2014-2020). 2014. https://extranet.who.int/nutrition/gina/sites/default/files/NPL 2014 NCD Multisectoral Action Plan.pdf 49 E. S. S. G. M.M. R, et al. Catastrophic household expenditure on health in Nepal: A crosssectional survey. Bull World Health Organ 2014;92:760-7. doi:http://dx.doi.org/10.2471/BLT.13.126615 50 World Health Organization. Cardiovascular disease. https://www.who.int/cardiovascular diseases/global-hearts/Global hearts initiative/en/ 51 Neupane D, McLachlan CS, Christensen B, et al. Community-based intervention for blood pressure reduction in Nepal (COBIN trial): Study protocol for a cluster-randomized controlled trial. Trials 2016;17:1-7. doi:10.1186/s13063-016-1412-3 52 Krishnan A, Finkelstein EA, Kallestrup P, et al. Cost-effectiveness and budget impact of the community-based management of hypertension in Nepal study (COBIN): a retrospective analysis. Lancet Glob Heal 2019;7:e1367-74. doi:10.1016/S2214-109X(19)30338-9 53 Rakotz MK, Ewigman BG, Sarav M, et al. A technology-based quality innovation to identify undiagnosed hypertension among active primary care patients. Ann Fam Med 2014;12:352-8. doi:10.1370/afm.1665
Table 1: Characteristics of the study participants
 Chi-Total **Diagnosed hypertension Undiagnosed hypertension** Square Variables Statistic % % 95% CI % 95% CI 95% CI n n n (pvalue) Overall 3334 ---___ 1634 49.6 47.1-52.1 1700 50.4 47.9-52.9 29.6317 Age 15-24 237 6.6 5.6-7.8 107 43.1 36.1-50.4 130 56.9 49.6-63.9 0.0008 25-34 449 13.2 11.9-14.5 196 43.8 38.4-49.3 253 56.2 50.7-61.6 35-44 637 19.6 18-21.3 287 45.2 40.1-50.3 350 54.8 49.7-59.9 45-54 687 20.9 19.2-22.8 333 49.4 45-53.8 354 50.6 46.2-55 55-64 643 18.9 17.4-20.5 344 54.7 49.8-59.5 299 45.3 40.5-50.2 >=65 681 20.8 19-22.7 367 55.1 50.3-59.8 314 44.9 40.2-49.7 Sex Male 894 0.0003 1640 49.5 47.7-51.3 746 45.8 42.6-49.1 54.2 50.9-57.4 Female 1694 50.5 48.7-52.3 888 53.3 50.1-56.4 806 46.7 43.6-49.9 BMI 29.2511 Normal 841 975 0.0001 1816 53.6 51.2-56.1 47.1 44.3-50 52.9 50-55.7

23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1											
2											
3	Thin	361	11.1	9.9-12.5	156	42.2	35.7-49	205	57.8	51-64.3	
4 5	Overweight/obese	1120	35.2	32.5-38	620	55.6	51.7-59.5	500	44.4	40.5-48.3	
6	Education										
7	No education	1576	46.5	44.1-48.9	778	50.9	47.5-54.4	798	49.1	45.6-52.5	
8 9	Primary	602	17.8	16.2-19.5	285	46.1	41.1-51.1	317	53.9	48.9-58.9	
9 10	Secondary	804	24.1	22.5-25.9	383	48	43.6-52.4	421	52	47.6-56.4	
11	Higher	350	11.5	9.9-13.5	187	53	46.9-58.9	163	47	41.1-53.1	
12	Wealth Quintile										
13 14	Poorest	610	15.5	13.3-18	211	35.9	31.9-40	399	64.1	60-68.1	
15	Poorer	689	19.2	16.9-21.7	313	44.2	39.8-48.7	376	55.8	51.3-60.2	
16	Middle	604	17.3	15.2-19.6	301	49.5	44.5-54.5	303	50.5	45.5-55.5	
17	Richer	667	19.7	17.1-22.6	344	50.2	44.9-55.5	323	49.8	44.5-55.1	
18 19	Richest	764	28.3	24-33	465	60.4	55.4-65.2	299	39.6	34.8-44.6	
20	Place of residence										

482

92

788

754

265

243

303

273

253

148

149

1434

200

1410

224

1600

34

52.2

44.8

47.1

48.3

51.4

53

53.1

52.7

46.9

45.4

39.8

41.9

49.4

50.8

50.4

44.8

49.8

40.6

49-55.4

40.7-48.9

39.4-54.8

45.1-51.5

47.1-55.6

47.7-58.3

46.5-59.6

46.8-58.5

42-51.7

39-51.9

32.9-47.1

33.8-50.5

46.9-52.0

44.1-57.4

47.8-53.1

40.0-49.8

47.2-52.8

29.4-52.9

1069

631

108

906

686

225

217

272

305

300

195

186

1508

192

1416

284

1649

51

47.8

55.2

52.9

51.7

48.6

47

46.9

47.3

53.1

54.6

60.2

58.1

50.6

49.2

49.6

55.1

50.2

59.4

44.6-51

51.1-59.3

45.2-60.6

48.5-54.9

44.4-52.9

41.7-52.3

40.4-53.5

41.5-53.2

48.3-58

48.1-61

52.9-67.1

49.5-66.2

48.0-53.1

42.6-55.8

46.9-52.2

50.2-60.0

47.6-52.8

47.1-70.6

BMJ Open

6.5852

0.2125

90.7085

0.0000

16.691

0.0057

3.43

0.3721

23.7869

0.0511

0.2587

0.6895

5.3524

0.0338

2.4122

0.1505

21

22

23

24

25 26

27

28

29

30 31

32

33

34

35 36

37

38

39

40

41

42 43

44

45

46

47

48

49

Urban

Rural

Hill

Terai

Mountain

Province

Province 1

Province 2

Province 3

Province 4

Province 5

Province 6

Province 7

consumption

Tobacco use

consumption

Caffeine

No

Yes

No

Yes

No

Yes

Alcohol

Ecological zone

2221

1113

200

1694

1440

490

460

575

578

553

343

335

2942

392

2826

508

3249

85

64.9

35.1

5.6

49.9

44.5

17

26

16.2

13.2

17.8

3.9

88.4

11.6

84.9

15.1

97.8

2.2

Note: n = Number of sample, CI = Confidence interval

6

59.9-69.6

30.4-40.1

3.6-8.6

44.2-55.6

39.2-49.9

15.2-19

14.2-18.3

21.8-30.6

11.5-15.1

15.4-20.4

86.7-89.9

10.1-13.3

83.2-86.6

13.5-16.8

97.1-98.4

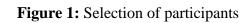
1.6-2.9

3.3-4.6

5-7.2

- 54
- 55 56
- 57

58


Figure 1: Selection of participants

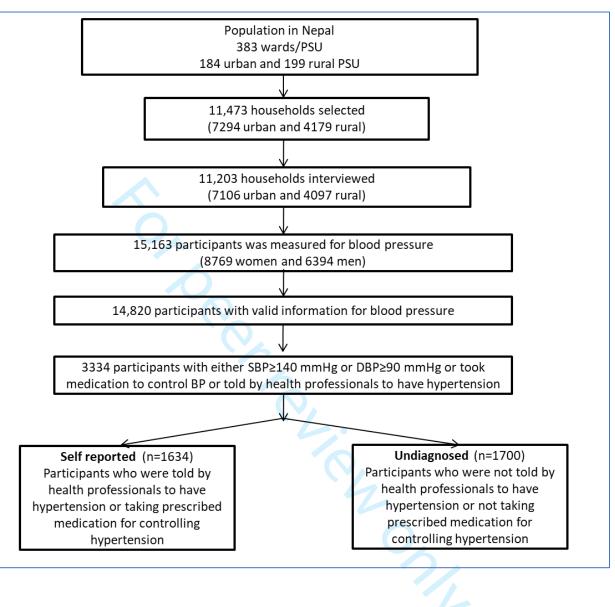
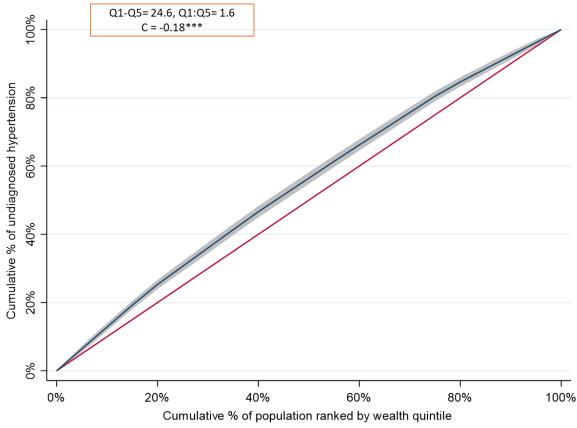

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 4: Socioeconomic inequalities in the prevalence of undiagnosed hypertension among patients with hypertension across geographical locations in Nepal, 2016

to occurrence on the second



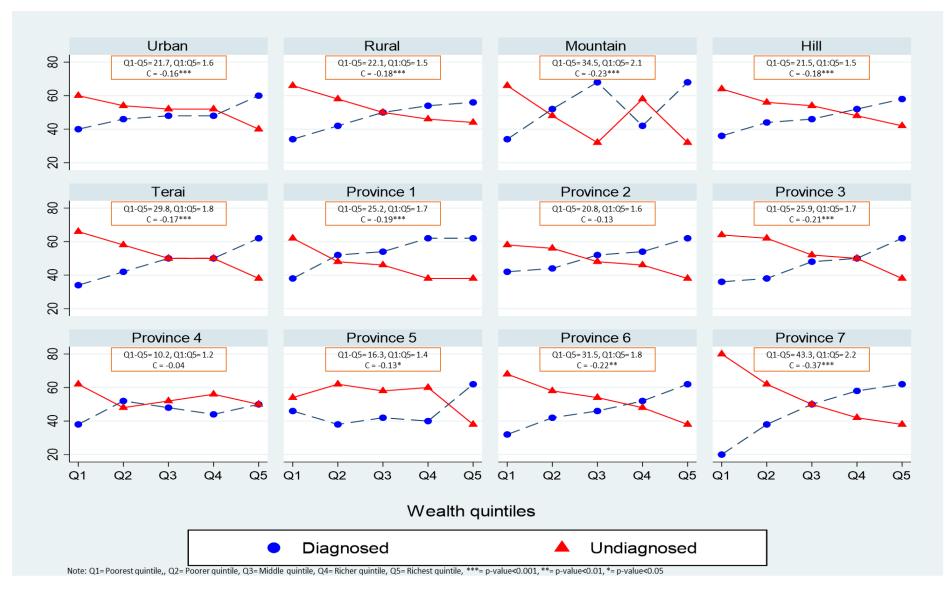

Adjus	ted odds ratio of undiagnosed hypertension
Age (in years)	
15-24 -	1
25-34 -	• 1.12
35-44 -	1.16
45-54 -	0.96
55-64 -	0.72
>=65 -	0.65*
-00	
Sex	
Female –	1
Male -	<u>⊢ • 1.2</u> 9**
Body mass index	1
Normal –	1.22
Thin –	L=0.80**
Overweight/Obese -	
Wealth quintile	
Richest –	1
Richer –	1.34*
Middle –	1.43**
Poorer –	1.67***
Poorest -	<u>+</u> 2.49***
Place of residence	1
Urban –	1.14
Rural -	
Province	
Province 1 –	1
Province 2 –	1.12
Province 2	1.19
Province 3 –	1.36*
	1.43*
Province 5 –	1.25
Province 6 -	1.31
Province 7 –	
Tobacco use	
No -	1
Yes –	⊢ <mark>_</mark> 1.04
0	1 2 3 4 Adjusted odds ratio with 95% Cl
	-
Note: CI= Confide	nce interval, ***= p-value<0.001, **= p-value<0.01, *= p-value<0.05

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Note: Q1= Poorest quintile, Q2= Poorer quintile, Q3= Middle quintile, Q4= Richer quintile, Q5= Richest quintile, ***=p-value<0.001

Supplementary Table 1: Unadjusted determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Variables	COR	95% CI	p-value
Age			
15-24	1		
25-34	1.06	0.77-1.46	0.7090
35-44	1.00	0.75-1.34	0.9800
45-54	0.87	0.65-1.18	0.3760
55-64	0.72	0.52-0.98	0.0400
>=65	0.70	0.52-0.96	0.0250
Sex			
Male	1.32	1.14-1.53	0.0000
Female	1		
BMI			
Normal	1		
Thin	1.13	0.91-1.41	0.2610
Overweight/obese	0.70	0.6-0.8	0.0000
Education			
No education	1		
Primary	1.08	0.9-1.31	0.4010
Secondary	1.07	0.88-1.3	0.4790
Higher	0.85	0.66-1.09	0.2070
Wealth Quintile			
Poorest	2.94	2.29-3.77	0.0000
Poorer	1.87	1.47-2.38	0.0000
Middle	1.57	1.23-1.99	0.0000
Richer	1.46	1.16-1.84	0.0010
Richest	1		
Place of residence			
Urban	1		
Rural	1.41	1.17-1.71	0.0000
Ecological zone			
Mountain	1		
Hill	0.98	0.68-1.41	0.9100
Terai	0.78	0.53-1.12	0.1800
Province			
Province 1	1		
Province 2	1.05	0.77-1.44	0.7540
Province 3	1.06	0.78-1.44	0.7220
Province 4	1.32	1-1.74	0.0530
Province 5	1.40	1.01-1.92	0.0400
	1.10		5.5 100

Province 7	1.47	0.99-2.18	0.055
Caffeine consumption			
No	1.00		
Yes	0.91	0.72-1.15	0.440
Tobacco consumption			
No	1.00		
Yes	1.26	1.06-1.51	0.010
Alcohol consumption			
No	1.00		
Yes	1.46	0.91-2.32	0.114

Note: COR= Crude Odds Ratio, CI= Confidence Interval

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Page No	Item No	Recommendation
Title and abstract	1	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
	2-3		(b) Provide in the abstract an informative and balanced summary of what
			was done and what was found
	Introdu	ction	
Background/rationale	4-5	2	Explain the scientific background and rationale for the investigation being reported
Objectives	5	3	State specific objectives, including any prespecified hypotheses
	Method	s	
Study design	5	4	Present key elements of study design early in the paper
Setting	5	5	Describe the setting, locations, and relevant dates, including periods of
C			recruitment, exposure, follow-up, and data collection
Participants	6	6	(a) Give the eligibility criteria, and the sources and methods of selection of
			participants
Variables	7-8	7	Clearly define all outcomes, exposures, predictors, potential confounders,
			and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	5	8*	For each variable of interest, give sources of data and details of methods of
measurement			assessment (measurement). Describe comparability of assessment methods
			if there is more than one group
Bias	10	9	Describe any efforts to address potential sources of bias
Study size	6	10	Explain how the study size was arrived at
Quantitative variables	7-8	11	Explain how quantitative variables were handled in the analyses. If
			applicable, describe which groupings were chosen and why
Statistical methods	8-9	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
	"'n/a"		(b) Describe any methods used to examine subgroups and interactions
	"'n/a"		(c) Explain how missing data were addressed
	<u>"'n/a"</u>		(d) If applicable, describe analytical methods taking account of sampling
	11/ a		strategy
	"'n/a"		(e) Describe any sensitivity analyses
			(c) Describe any sensitivity analyses
Participants	Results 10	13*	(a) Report numbers of individuals at each stage of study—eg numbers
1 articipants	10	15	potentially eligible, examined for eligibility, confirmed eligible, included ir
			the study, completing follow-up, and analysed
	"'n/a"		
	<u>"n/a</u> "		(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram
Descriptive data	10	14*	(a) Give characteristics of study participants (eg demographic, clinical,
Descriptive data	10	14'	social) and information on exposures and potential confounders
	"'n/a"		(b) Indicate number of participants with missing data for each variable of
	11/ đ		(b) indicate number of participants with missing data for each variable of interest
Outcome data	11	15*	Report numbers of outcome events or summary measures
Main results	11-13	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted
	11 13	10	estimates and their precision (eg, 95% confidence interval). Make clear
			which confounders were adjusted for and why they were included

			(b) Report category boundaries when continuous variables were categorized
			(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Other analyses	"n/a"	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
	Discussi	on	
Key results	13-14	18	Summarise key results with reference to study objectives
Limitations	17-18	19	Discuss limitations of the study, taking into account sources of potential
			bias or imprecision. Discuss both direction and magnitude of any potential
			bias
Interpretation	14-17	20	Give a cautious overall interpretation of results considering objectives,
			limitations, multiplicity of analyses, results from similar studies, and other
			relevant evidence
Generalisability	18	21	Discuss the generalisability (external validity) of the study results
	Other in	forma	tion
Funding	19	22	Give the source of funding and the role of the funders for the present study
			and, if applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037592.R2
Article Type:	Original research
Date Submitted by the Author:	15-Jun-2020
Complete List of Authors:	Hasan, Md. Mehedi ; The University of Queensland Institute for Social Science Research, Tasnim, Fariha; International Centre for Diarrhoeal Disease Research Bangladesh, Maternal and Child Health Division Tariqujjaman, Md.; International Centre for Diarrhoeal Disease Research Bangladesh, Nutrition and Clinical Services Division Ahmed, Sayem; Liverpool School of Tropical Medicine, Department of Tropical Biology; International Centre for Diarrhoeal Disease Research Bangladesh, Health Systems and Population Studies Division Cleary, Anne; The University of Queensland, Institute for Social Science Research Mamun, Abdullah; University of Queensland, Institute for Social Science Research; University of Queensland, ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre)
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Hypertension < CARDIOLOGY, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Authors: Md. Mehedi Hasan^{1,2*}, Fariha Tasnim³, Md. Tariqujjaman⁴, Sayem Ahmed ⁵⁻⁷, Anne Cleary¹ and Abdullah A Mamun^{1,2}

Author affiliations

¹Institute for Social Science Research, The University of Queensland, Indooroopilly, Queensland 4068, Australia

² ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre), The University of Queensland, Indooroopilly, Queensland 4068, Australia

³ Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁴Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁵ Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

⁶Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁷Health Economics and Policy Research Group, Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden

* Correspondence:
Md. Mehedi Hasan
Institute for Social Science Research
ARC Centre of Excellence for Children and Families over the Life Course
The University of Queensland
80 Meiers Road, Long Pocket Precinct, Indooroopilly, Queensland 4068, Australia
Phone: +61 470 237 155
Fax: + 61 7 334 67646
E-mail: m.m.hasan@ugconnect.edu.au

ABSTRACT

Objective: To examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

Design: This study used cross-sectional 2016 Nepal Demographic and Health Survey (NDHS) data. Undiagnosed hypertensive patients were defined as a NDHS respondent who was diagnosed as hypertensive (systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg) during the survey, but never took any prescribed anti-hypertensive medicine to lower/control blood pressure and was never identified as having hypertension by a health professional prior the survey. Multiple binary logistic regression analysis was performed, and Concentration Index was measured.

Setting: Nepal

Participants: Adult patients with hypertension

Results: Among 3334 hypertensive patients, 50.4% remained undiagnosed during the survey in Nepal. Adjusted model reveals that patients who were male, belonged to households other than the highest wealth quintile, and lived in Province 4 and Province 5 were at higher risk of remaining undiagnosed for hypertension. Patients who were 65+ years of age and were overweight/obese were at lower risk of remaining undiagnosed for hypertension. The poor-rich gap was 24.6 percentage points (Q1= 64.1% vs Q5= 39.6%) and poor:rich ratio was 1.6 (Q1/Q5= 1.6) in the prevalence of undiagnosed hypertension. Undiagnosed hypertension was disproportionately higher among lower socioeconomic status groups (Concentration Index, C= -0.18). Inequalities in the prevalence of undiagnosed hypertension further varied across other geographic locations including place of residence, ecological zones and administrative provinces.

Conclusions: Undiagnosed hypertension was highly prevalent in Nepal and there were substantial inequalities by socio-demographics and sub-national levels. Increasing awareness, strengthening routine screening to diagnose hypertension at primary health service facilities and enactment of social health insurance policy may help Nepal to prevent and control this burden.

Keywords: Undiagnosed hypertension, Inequality, Demographic and Health Survey, Nepal

Strengths and limitations of this study

- This study determined the prevalence and correlates of undiagnosed hypertension in Nepal using the most updated, population-based, nationally representative data.
- This study measured both wealth-based absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces.
- The cross-sectional nature of the data limits us to measure causal association between undiagnosed hypertension and the explanatory variables studied.
- The association of some potential behavioral or lifestyle factors such as physical activity, dietary patterns and family history with undiagnosed hypertension remain unmeasured due to lack of available data.

INTRODUCTION

Hypertension, or raised blood pressure, is a leading cause of global mortality and disability [1], affecting over one billion people annually [2]. Hypertension is a directing factor for cardiovascular diseases (CVDs), in particular heart diseases, myocardial infarctions, kidney failure, strokes, disability and premature deaths [2,3]. In South-East Asian countries, hypertension affects approximately one in three adults, accounting for nearly 1.5 million deaths annually and contributing to 9.4% of total deaths [4]. In South-East Asian countries, more than 50% of people with hypertension remain undiagnosed [5]. Nepal has one of the highest prevalence rates of hypertension among South-East Asian countries [6].

Currently, Nepal is facing an epidemiological transition with increasing prevalence of hypertension [7]. A study based on the Nepal Demographic and Health Survey 2016 reported about 20% of Nepalese adults (aged \geq 18 years) had hypertension [8]. However, other studies have reported that the prevalence of hypertension ranges from 23% to 34% in Nepal [7,9–12], although not all of these studies are representative of the present day Nepalese population. In 2013, the national NCD risk factor survey showed that while 25.7% of adults aged 15-69 years had hypertension in Nepal, a further 42.7% of adults had never measured their blood pressure [13]. Correct diagnoses of hypertension is prerequisite to the prevention, control and proper treatment of this disease. In addition, failure to diagnose and treat hypertension early may lead to serious health hazards, disability in later life, or eventually death. In Nepal, a number of government, non-government and private health facilities are providing health services such as diagnosis, medication and treatment for hypertension. However, owing to challenges with workforce capacity, resourcing of health-care facilities, and out-of-pocket costs incurred by patients, the

> current health care system in Nepal is not adequately prepared to support the diagnosis, treatment and control of hypertension [14].

> To prevent hypertension, the disease first needs to be diagnosed before any related complications arise. However, there is a lack of evidence about the prevalence of undiagnosed hypertension in Nepal at national and subnational levels. Information on the estimates of undiagnosed hypertension, and its related socio-demographic inequalities, at national and subnational level may assist policy makers in formulating effective strategies for screening, treatment and control as well as prevention of hypertension and associated burdens of disease, particularly among vulnerable groups. As such, we aimed to examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

> > EL.C.

METHODS

Data source

We used the most updated nationally representative cross-sectional data from Nepal Demographic and Health Survey (NDHS). While the data of Demographic and Health Surveys is managed by Measure Evaluation, the NDHS was conducted from June 2016 to January 2017 by a private research organization named "NEW ERA" under the monitoring and supervision of the Ministry of Health, Nepal. To estimate the prevalence of hypertension nationally in Nepal, the NDHS 2016 obtained informed consent from the household head on behalf of all household members of each surveyed household [15]. For academic and scientific purposes, this anonymous dataset without any identifiers was made available by the ICF International, Maryland, United States [15]. We obtained approval to access and use these data to conduct this study.

BMJ Open

Survey procedure and participants

In 2015, Nepal reformed and restructured municipality boundaries resulting in seven administrative provinces comprising several districts and urban-rural areas with smaller administrative units known as wards [8]. With comparatively greater household numbers, urban areas were further divided into enumeration areas (EA). The primary sampling unit (PSU) were wards, for both urban and rural areas [15]. Because of some changes in administrative areas, Nepal revised the sampling frame of National Population and Housing Census (NPHC). The 2016 NDHS used this revised sampling frame and applied a multistage survey which was conducted in two and three stages across rural and urban areas respectively. NDHS selected the PSUs proportionately to the size in the first stage and then the random selection of EAs from the systematic selection of households from each PSU in the second stage. In the third stage, the households were selected by using a stratified cluster sampling technique in urban areas. A detailed description of the methodology is available elsewhere [15]. A total of 11490 households were selected from 383 wards, of which 5520 households from 184 wards were from urban settings and 5970 households from 199 wards were from rural settings. From these households, all the residents aged 15 years or above were eligible for blood pressure measurement. With an overall response rate of 95%, a total of 14823 individuals participated in the survey. This study uses an analytical sample of adults (> 15 years) with hypertension (n = 3334). Figure 1 illustrates the procedure for selecting the study sample.

{Figure 1 will be added here}

Outcome variable

To measure hypertension, the 2016 NDHS used the UA-767F/FAC (A&D Medical) automated device to record the blood pressure of the participants. With 5 minutes intervals between each measurement, the 2016 NDHS recorded the measurements of blood pressure three times in a sitting position. NDHS considered the last two measures of blood pressure levels and used their mean to detect hypertension. The survey used the World Health Organization (WHO) guidelines to report a participant as hypertensive [15]. The WHO guideline has integrated the 2017 guidelines of the American College of Cardiology/ American Society of Hypertension [16,17]. According to the WHO guideline, a participant with systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) \geq 90 mmHg is diagnosed as a hypertension case. We also considered participants as hypertension patients if s/he was previously told by a health professional that they have hypertension or if they were already taking medication to control hypertension. Our outcome variable is undiagnosed hypertension. A patient is considered as undiagnosed for hypertension if, at the time of the survey, s/he was diagnosed as hypertensive (SBP > 140 mmHg or DBP > 90 mmHg) but never took any prescribed anti-hypertensive medicine to lower/control blood pressure and was never told by a health professional that they have hypertension prior the survey [18,19].

Explanatory variables

This study considered a set of socio-demographic and behavioral characteristics as independent variables. Age (in years), sex, Body Mass Index (BMI) measured through dividing the weight by squared height (kg/m²), education level, household wealth status, place of residence, ecological zone, and provinces were considered as socio-demographic characteristics of the respondents. Age was categorized as 15-24, 25-34, 35-44, 45-54, 55-64 and \geq 65 years. Sex had two categories, male and female. The BMI was categorized as thin/underweight (BMI<18.5 kg/m²), normal (18.5 kg/m²) and overweight/obese (BMI \geq 25.0 kg/m²) [20]. Based on the highest class

BMJ Open

completed by the respondents, level of education was classified as no education, primary, secondary and higher. NDHS used principal component analysis [15] to construct the wealth index and order households into five socioeconomic quintiles (poorest, poorer, middle, richer and richest). The place of residence was stratified as urban and rural across all geographic locations. Nepal was ecologically divided in Mountain, Hill and Terai. The seven administrative provinces were identified as Province 1, Province 2, Province 3, Province 4, Province 5, Province 6 and Province 7. Three behavioral characteristics of respondents, caffeine, tobacco and alcohol consumption, were considered as independent variables each of which contained dichotomous response of whether or not the respondent consumed caffeine, tobacco or alcohol.

Statistical analyses

Using univariate analysis we described the prevalence of undiagnosed hypertension and background characteristics of the study patients. The estimates of each of the categorical variables included in this study were reported with numbers, weighted percentages and 95% confidence intervals (CIs) of estimates. The weighted prevalence of undiagnosed hypertension was determined across the background characteristics of the study patients from bivariate analysis. Statistical significance was detected by applying Chi-square test. Then, we conducted simple and multiple binary logistic regression analyses to examine the correlates of undiagnosed hypertension. The results of the regression analysis were presented in terms of odds ratio with respective 95% CIs. Variables that were statistically significant in simple logistic regression analysis were entered in the multiple regression model to estimate the adjusted odds ratio (AOR). Notably, the statistical significance was defined at 5% level (p-value < 0.05). Variance inflation factors to detect multicollinearity among the independent variables were assessed before incorporating them into the multiple regression model. Due to hierarchical structure of NDHS data, we considered the

cluster sampling design of the 2016 NDHS to estimate the prevalence and determinants in this study [15]. We excluded cases with missing values for blood pressure measurements.

Proposed by Wagstaff [21] to measure the inequality, we estimated the concentration index (C), to show the degree and direction of wealth-based inequality in undiagnosed hypertension prevalence. For the purpose of calculating C, the households were ranked from the poorest to the richest according to their socioeconomic characteristics. We plotted a concentration curve to portray the distribution of undiagnosed hypertension. The Y-axis of the concentration curve representing the cumulative proportion of undiagnosed hypertension and the X-axis represents the cumulative proportions of the population across wealth quintiles. When the concentration curve coincides with the diagonal, the prevalence of undiagnosed hypertension is treated as equally distributed across socioeconomic groups. In contrast, the concentration curve typically deviates from the diagonal if there exists inequalities in the prevalence of undiagnosed hypertension. The C is defined as twice the area between the concentration curve and the diagonal [22-24]. The index value can range between -1 and +1, a positive value implies the prevalence of undiagnosed hypertension is more concentrated among higher socioeconomic status groups and a negative value implies the prevalence is more concentrated among lower socioeconomic status groups [23,25]. We repeated the estimation of C across other geographical locations such as place of residence, ecological zones and provinces to detect the group of patients with highest severity of socioeconomic inequalities in the prevalence of undiagnosed hypertension. STATA (version 13) was used to perform all the analyses [26].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Patient and public involvement

Patients and public were not involved in developing the research questions, measuring outcome and designing the study. Information of the participants was anonymous.

RESULTS

General Characteristics of the Study Participants

Table 1 shows the general characteristics of the study participants. Among the patients studied, the average age of patients was 49.8 years (95% CI 49.1, 50.5) with the lowest percentage of patients in the 15-24 years age group (6.6%) and highest percentage of patients in the 45-54 years age group (20.9%). The sample was balanced among male (49.5%) and female (50.5%) participant. Nearly half of the patients were normal in terms of their BMI while more than one third of the patients were overweight/obese. Two-thirds of the patients resided in urban area (64.9%). The educational status of the patients were poor with nearly half of the patients having no education while 24.1% and 11.5% had secondary and higher education respectively. The highest number of patients belonged to richest wealth quintile (28.3%) and the lowest number of patients were from province 3 (26.0%) followed by province 5 (17.8%) and province 1 (17.0%). Only 5.6% of patients were from the mountain ecological zone.

{Table 1 will be added here}

Prevalence of Undiagnosed Hypertension

Of the 3334 participants who had hypertension during the survey, more than half of them were detected as remaining undiagnosed (50.4%). The prevalence of undiagnosed hypertension among the patients varied across their age (*p*-value < 0.001), sex (*p*-value < 0.001), BMI (*p*-value < 0.001), wealth quintile (*p*-value < 0.001) and place of residence (*p*-value < 0.01). The prevalence of undiagnosed hypertension was higher among younger patients (15-24 years age group) and steadily decreased with the increase of age. The prevalence of undiagnosed hypertension was higher among male patients (54.2%) compared to female patients (46.7%). Compared to patients with normal BMI, the prevalence of undiagnosed hypertension was higher among overweight/obese patients (44.4%). Compared to patients of the richest wealth quintile (39.6%), the prevalence of undiagnosed hypertension was higher among patients of the poorest (64.1%) and poorer (55.2%) compared to urban (47.8%). No educational, ecological and provincial variations in the prevalence of undiagnosed hypertension was observed (**Table 1**).

Correlates of Undiagnosed Hypertension

We found that age, sex, BMI, wealth quintile, place of residence and province were significantly associated with the prevalence of undiagnosed hypertension among hypertensive patients in unadjusted logistic regression analysis (see **supplementary table 1**).

Figure 2 represents the results of multiple logistic regression analysis. The multiple binary logistic regression model showed that age, sex, BMI, wealth quintile and province had significant

BMJ Open

association with undiagnosed hypertension. Elderly patients (≥ 65 years of age) had a lower likelihood of being undiagnosed for hypertension than patients aged 15-24 years (AOR = 0.65, 95% CI 0.48, 0.91). Male patients were 1.29 times more likely than female patients to remain undiagnosed for hypertension (AOR = 1.29, 95% CI 1.11, 1.51). Compared to patients with normal BMI, overweight/obese patients (AOR = 0.80, 95% CI 0.69, 0.93) were less likely to have undiagnosed hypertension.

We found wealth quintiles as potential correlates of undiagnosed hypertension. The risk of remaining undiagnosed for hypertension increased with decreasing socioeconomic status. Likelihood of having undiagnosed hypertension was greater among poorer socioeconomic status patients compared to higher socioeconomic quintiles. Patients of poorest and poorer wealth quintiles were 2.49 (AOR = 2.49; 95% CI 1.90, 3.30) and 1.67 (AOR = 1.67; 95% CI 1.29, 2.16) times more likely to have an undiagnosed hypertension condition than patients of the wealthiest quintile.

Moreover, significant provincial variation was evident in the prevalence of undiagnosed hypertension among hypertensive patients. Patients of province 4 (AOR = 1.36, 95% CI 1.04, 1.79) and province 5 (AOR = 1.43, 95% CI 1.05, 1.95) were more likely to have undiagnosed hypertension than patients of province 1.

{Figure 2 will be added here}

Socioeconomic Inequalities in Undiagnosed Hypertension

Figure 3 depicts the inequalities in the prevalence of undiagnosed hypertension among hypertensive patients. The difference in the distribution of undiagnosed hypertension was 24.6% between the lowest wealth quintile (Q1) and highest wealth quintile (Q5), meaning that the

prevalence of undiagnosed hypertension was greater by 24.6 percentage points among the poorest patients. The relative measure of inequality in terms of poor (Q1): rich (Q5) ratio was 1.6 for the prevalence of undiagnosed hypertension among patients, depicting that the prevalence of undiagnosed hypertension was 1.6 times higher among the poorest than the richest patients. We found negative value of the Concentration Index (C = -0.18) which suggests that the prevalence of undiagnosed hypertension among hypertensive patients was disproportionately distributed among lower socioeconomic status groups.

{Figure 3 will be added here}

In addition, patients living in mountain areas and in province 7 had large gaps in the prevalence of undiagnosed hypertension (**Figure 4**). The higher Q1:Q5 ratio were observed among those who had large Q1-Q5 gaps in the prevalence of undiagnosed hypertension across different geographic locations. We found large negative values of C among those who had higher Q1-Q5 gaps and Q1:Q5 ratio for the prevalence of undiagnosed hypertension. See **Figure 4** for details.

{Figure 4 will be added here}

DISCUSSION

Globally, to date few studies have been conducted on undiagnosed hypertension. For the first time, this study estimated the prevalence of undiagnosed hypertension in Nepal as 50.4% of respondents who tested positive for hypertension in the 2016 NDHS. In addition, this study identified the risk factors and inequalities associated with undiagnosed hypertension in Nepal. The high prevalence of undiagnosed hypertension identified in this study may be due to people's lack of awareness and willingness to partake in regular health check-ups in the absence of health issues, coupled with

Page 15 of 33

BMJ Open

accessibility barriers to screening services [27]. Lack of knowledge, attitudes and behaviours that promote healthy lifestyles as preventive measures to non-communicable diseases (NCDs) may also act as a driver of undiagnosed hypertension [27–29]. Community-based awareness raising of changing lifestyles to address the burden of NCDs might be effective in reducing this gap [30].

Several studies have reported higher risks of hypertension among people who are older in age, male, urban dwellers, have higher education level, regularly consume tobacco and/or alcohol, or are overweight [6,8,28,29]. We found that patients aged 65+ years and who were overweight/obese were at lower risk of remaining undiagnosed from hypertension. Our findings depicted a greater proportion of undiagnosed hypertensive patients among those who were young and those with lower BMI. Young or underweight people may be less conscious about their health status as they might have the misconception that they are less likely to suffer from NCDs [31]. In addition, people from lower socioeconomic status groups in Nepal tend to have less knowledge and awareness about health hazards, typically have poorer access to services for screening diseases and lack the capacity to afford treatment costs for diseases [28]. This may contribute to the disproportionate occurrence of undiagnosed hypertension among lower socioeconomic status groups in Nepal.

Similar to risk factors of hypertension, undiagnosed hypertension was also more prevalent among males and tobacco users [6,29]. The higher rate of undiagnosed hypertension among males might be due to their lack of awareness and lower treatment rates than females [32]. Smoking, a main source of using tobacco, is well recognized to be associated with increased risk of hypertension in many settings, including Nepal [33,34]. However, there is lack of evidence to determine the extent to which tobacco use is related to patients remaining undiagnosed for hypertension. Our findings demonstrate that, in Nepal, factors other than tobacco use played independent roles in predicting the rate of undiagnosed hypertension. While differences in lifestyle practices between males and

females in Nepal may be a key factor behind different exposures, further research is needed to identify the actual risk factors [29].

Undiagnosed hypertension may lead to adverse health consequences, including organ damage [35]. The WHO, denoting hypertension as a silent killer, stated that the prevalence of hypertension is higher in low- and middle-income countries compared to developed and high income countries [3]. Our results support this claim and also align with findings from Bangladesh and Sub-Saharan Africa [19,36,37]. Despite being neighbouring countries, the prevalence of undiagnosed hypertension from this study (approximately 50%) is much higher than that of China[38]. For example, recent evidence shows that the prevalence of undiagnosed hypertension in China is 28.8% [39]. The reason behind this difference might be due to the differences in age of study participants. Our study assessed participants of age 15 years or older in Nepal, while the Chinese study included older participants (over 45 years) who may be more aware of health conditions and more likely to visit doctors for regular health check-ups. Findings from studies conducted in countries with more developed health care systems and advanced screening processes such as Japan, Korea, England, Ireland, Egypt, Brazil and USA were also found to have lower levels of undiagnosed hypertension than Nepal as found in this study [40-46]. The prevalence of undiagnosed hypertension in Nepal is relatively closer with that of Bangladesh [19]. This might be due to the less advanced health care systems of these two countries with both countries displaying lowHealth Care Index values [38].

In Nepal, despite the detection of risk factors [6,8,29] and inequalities [28], the prevalence of hypertension has been well investigated nationally, resulting in the implementation of new polices to mitigate the rising number of hypertension patients [47]. However, these policy reform efforts will fail to effectively achieve intended hypertension reduction targets if patients remain

Page 17 of 33

BMJ Open

undiagnosed, undetected and untreated. It is necessary to identify whether unequal distribution of undiagnosed hypertension exists among patients with hypertension across different socioeconomic groups. Such information will aid in setting priorities and effective allocation of resources. Our study reveals existence of inequalities in the distribution of undiagnosed hypertension due to economic status. Lower socioeconomic status groups experienced a higher prevalence of undiagnosed hypertension compared to higher socioeconomic groups and a greater degree of wealth-based inequality was concentrated among the poorest. These inequalities were more prevalent among patients living in different geographical locations including place of residence, ecological zones and administrative provinces. Such disparities may be owing to greater awareness of health issues and more utilization of health care services among higher socioeconomic groups [28]. Such inequality might increase the catastrophic health spending given the rise of catastrophic household expenditure due to NCDs in Nepal [14,48]. Public health strategies might reduce this gap by concentrating more on implementing social health insurance policies which are equitable for all [40,48]. In this respect, policy makers could take into consideration the disparities in the distribution of undiagnosed hypertension found in this study.

Several initiatives have been taken to control hypertension in Nepal. To address the burden of cardiovascular diseases (CVD), the WHO and partners launched an initiative called "Global Hearts" in 2016 [49]. This initiative took a comprehensive approach to help countries in scaling-up affordable and adaptable measures to improve capacity of health care services to better detect and treat people at risk of or suffering from CVD. This initiative comprises three packages: SHAKE, HEARTS and MPOWER. The package "HEARTS" provides tools to incorporate CVD management best practices at the primary healthcare level to reduce CVD risk factors such as hypertension and high blood cholesterol. Like many low to middle incomes countries, Nepal has

adapted the Global Hearts initiative to address CVD. In addition, the Community-based Management of Hypertension in Nepal (COBIN) is a community-based cost-effective intervention with demonstrated success in reducing hypertension in Nepal [50,51]. However, for designing future programs or interventions for the prevention of hypertension in Nepal, our findings highlight the importance of considering undiagnosed hypertensive cases and the uneven distribution of such cases across a spectrum of socio-demographic characteristics.

Failing to diagnose and detect hypertension among vulnerable populations will have detrimental health outcomes for any nation. This study, for the first time at a national level, sheds light on the prevalence of undiagnosed hypertension in Nepal. The NDHS 2016, through incorporation of biomarker tests, bears evidence that a substantial proportion of individuals are suffering from blood pressure abnormalities. This emphasises the need for conducting routine screening for hypertension that ensures access by lower socioeconomic groups and at risk populations. A routine surveillance system with technology-based screening can aid in tracing disease incidence including among people at risk of being undiagnosed [52]. Our study findings will help inform and initiate policies and programs that capture the highest domain of vulnerable populations and bring them うん under routine surveillance at community level with optimal cost.

Strengths and limitations

We used the most updated, nationally representative, cross-sectional data to determine the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal. We considered the complex survey design in our methods and captured variations. However, there may be residuals and unmeasured behavioral or lifestyle factors potentially relevant to undiagnosed hypertension, for example, physical activity, dietary patterns and family history of hypertension, that were not explored in this study. Since our data was cross-sectional, the relationship between undiagnosed

BMJ Open

hypertension and confounders were probabilistic rather than causal. However, identification of potential correlates through using odds ratio is widely acceptable. This study measured both absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces to further guide policy/decision makers for better allocation of resources to reduce hypertension rates.

CONCLUSIONS

For the first time on a national level in Nepal, this study estimates the prevalence of undiagnosed hypertension as 50.4% of respondents who tested positive for hypertension in the Nepal Demographic and Health Survey. Furthermore, our results show that prevalence of undiagnosed hypertension is disproportionately higher among lower socioeconomic status groups in Nepal. Our results suggest that efforts should be made to improve the knowledge, attitudes and practices of people around hypertension, particularly among those who are young, slender, poor and male, given their higher risk of being undiagnosed. Routine screening and strengthening diagnosis of hypertension in the primary level of healthcare service facilities may help Nepal in reducing cases with undiagnosed hypertension. Moreover, identification of inequalities among different risk groups will be beneficial in achieving the universal health coverage target of UN Sustainable Development Goals (Goal 3.8.1). Social health insurance policies under an integrated national NCD policy should be properly enacted to ensure socioeconomically disadvantaged populations are adequately covered under the scheme for the prevention and control of hypertension.

Acknowledgments

We acknowledge the MEASURE DHS for providing access to NDHS 2016 datasets.

Contributors

MMH, SA and AAM conceptualized the study. MMH performed the data analysis and interpretation of the findings. MMH, FT, MT and AC contributed to writing. AAM and SA critically reviewed the analysis and final version of the manuscript. All authors made a thorough review of the final draft and approved it for submission.

Funding

This research received no external funding.

Competing interests

None declared.

Ethical approval

The NDHS survey methodology and questionnaire was reviewed and approved by the ethical review board of Nepal Research Council and ICF Institutional. NDHS obtained informed consent from the respondents before conducting the survey. Therefore, separate ethical approval was not required for this study and we are using publicly available de-identified data.

Data sharing statement

Data are available in a public, open access repository. All data related to study are included in the manuscript.

REFEENCES

1 Forouzanfar MH, Afshin A, Alexander LT, *et al.* Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and

1 ว		
2 3 4 5 6		metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. <i>Lancet</i> 2016; 388 :1659–724. doi:10.1016/S0140-6736(16)31679-8
7 8 9	2	Fisher N, Curfman G. Hypertension-A public health challenge of global proportions. <i>JAMA</i> 2018; 320 :1757–1759.
10 11 12	3	Day WH. World Health Organisation. A global brief on Hypertension. Published Online First: 2013. doi:10.1136/bmj.1.4815.882-a
13 14 15 16	4	WHO Regional Office for South-East Asia. <i>Noncommunicable diseases in the South-East Asia Region, 2011: situation and response.</i> 2011. https://apps.who.int/iris/handle/10665/205578
17 18 19 20 21	5	Mohan V, Seedat YK, Pradeepa R. The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings. <i>Int J Hypertens</i> 2013; 2013 :1–14. doi:10.1155/2013/409083
22 23 24 25	6	Agho KE, Osuagwu UL, Ezeh OK, <i>et al.</i> Gender differences in factors associated with prehypertension and hypertension in Nepal: A nationwide survey. <i>PLoS One</i> 2018; 13 :1–18. doi:10.1371/journal.pone.0203278
26 27 28 29	7	Vaidya A, Pathak RP, Pandey MR. Prevalence of hypertension in Nepalese community triples in 25 years: A repeat cross-sectional study in rural Kathmandu. <i>Indian Heart J</i> 2012; 64 :128–31. doi:10.1016/S0019-4832(12)60045-5
30 31 32 33 34	8	Hasan M, Sutradhar I, Akter T, <i>et al.</i> Prevalence and determinants of hypertension among adult population in Nepal: Data from Nepal demographic and health survey 2016. <i>PLoS One</i> 2018; 13 :1–14. doi:10.1371/journal.pone.0198028
34 35 36 37 38	9	Ghimire A, Shrestha NR, Thapa L, <i>et al.</i> Prevalence of Hypertension, Obesity, Diabetes, and Metabolic Syndrome in Nepal. <i>Int J Hypertens</i> 2011; 2011 :1–9. doi:10.4061/2011/821971
39 40 41 42	10	Shrestha UK, Singh DL, Bhattarai MD. The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal. <i>Diabet Med</i> 2006; 23 :1130–5. doi:10.1111/j.1464-5491.2006.01953.x
43 44 45 46	11	Mehta KD, Karki P, Lamsal M, Paudel IS, Majhi S, Das BK, Sharma S, Jha N BN. Hyperglycemia, glucose intolerance, hypertension and socioeconomic position in eastern Nepal. <i>Southeast Asian J Trop Med Public Heal</i> 2011; 42 :197–207.
47 48 49 50	12	McLachlan CS, Sharma R, Khanal V, <i>et al.</i> Prevalence of Hypertension in Member Countries of South Asian Association for Regional Cooperation (SAARC). <i>Medicine</i> <i>(Baltimore)</i> 2014; 93 :e74. doi:10.1097/md.000000000000074
51 52	13	Habits D. Non Communicable Diseases Risk Factors : STEPS Survey Nepal 2013. 2013.
53 54 55 56	14	Dhital SM, Karki A. Dealing with the burden of hypertension in Nepal : current status, challenges and health system issues. <i>Reg Heal Forum</i> 2013; 17 :44–52.
57 58		20
59 60		20 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

MOHP New ERA and ICF DHS Program. Nepal Demographic and Health Survey 2016. 2017;:636. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American college of cardiology/American Heart Association task . 2018. doi:10.1161/HYP.000000000000066 Chalmers J. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. Clin Exp Hypertens 1999;21:1009-60. doi:10.3109/10641969909061028 Hou X. Urban – Rural Disparity of and Untreated Hypertension in China. Asia Pac J Public Heal 2008;20:159–69. Ahmed S, Tariquijaman M, Rahman MA, et al. Inequalities in the prevalence of undiagnosed hypertension among Bangladeshi adults: Evidence from a nationwide survey. Int J Equity Health 2019;18:1–12. doi:10.1186/s12939-019-0930-5 World Health Organization. Nutrition Landacape Information System: Country Profile Indicators. 2010. doi:10.1159/000362780.Interpretation Wagstaff A. The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. *Health Econ* 2005;14:429–32. doi:10.1002/hec.953 Wagstaff A, Doorslaer E van, Paci P. On the measurement of horizontal inequity in the delivery of health care. J Health Econ 1991;10:169-205. Kakwani N, Wagstaff A, Doorslaer E van. Socioeconomic inequalities in health: measurement, computation and statistical inference. J Econom 1997;77:87–103. O'Donnell O, Doorslaer E Van. Analyzing Health Equity Using Household Survey Data,. Washington. 2008. doi:10.2471/BLT.08.052357 Koolman X, Doorslaer E van. On the interpretation of a concentration index of inequality. *Health Econ* 2004;**13**:649–56. StataCorp. Stata Statistical Software: Release 13. 2013. Shrestha S, Shrestha A, Koju RP, et al. Barriers and facilitators to treatment among patients with newly diagnosed hypertension in Nepal. *Heart Asia* 2018;10:1-7. doi:10.1136/heartasia-2018-011047 Mishra SR, Ghimire S, Shrestha N, et al. Socio-economic inequalities in hypertension burden and cascade of services: nationwide cross-sectional study in Nepal. J Hum Hypertens 2019;33:613-25. doi:10.1038/s41371-019-0165-3 Chataut J, Adhikari R, Sinha N. The prevalence of and risk factors for hypertension in adults living in central development region of Nepal. Kathmandu Univ Med J 2011;9:13-8.

1 2		
2 3 4 5 6	30	Kim Y, Kong KA. Do hypertensive individuals who are aware of their disease follow Lifestyle recommendations better than those who are not aware? <i>PLoS One</i> 2015; 10 :1–13. doi:10.1371/journal.pone.0136858
7 8 9 10	31	Karmacharya BM, Koju RP, LoGerfo JP, <i>et al.</i> Awareness, treatment and control of hypertension in Nepal: Findings from the Dhulikhel Heart Study. <i>Heart Asia</i> 2017; 9 :1–8. doi:10.1136/heartasia-2016-010766
11 12 13 14	32	Mehata S, Shrestha N, Mehta R, <i>et al.</i> Prevalence, awareness, treatment and control of hypertension in Nepal: Data from nationally representative population-based cross-sectional study. <i>J Hypertens</i> 2018; 36 :1680–8. doi:10.1097/HJH.000000000001745
15 16 17	33	Singh R, Fedacko J, Pella D, <i>et al.</i> Prevalence and risk factors for prehypertension and hypertension in five Indian cities. <i>Acta Cardiol</i> 2011; 66 .
18 19 20 21	34	Dhungana RR, Pandey AR, Bista B, <i>et al.</i> Prevalence and Associated Factors of Hypertension: A Community-Based Cross-Sectional Study in Municipalities of Kathmandu, Nepal. <i>Int J Hypertens</i> 2016; 2016 . doi:10.1155/2016/1656938
22 23 24	35	Schmieder RE. Hypertoniebedingte endorganschäden. <i>Dtsch Arztebl</i> 2010; 107 :866–73. doi:10.3238/arztebl.2010.0866
25 26 27 28	36	Islam FM a, Bhuiyan a, Chakrabarti R, <i>et al.</i> Undiagnosed hypertension in a rural district in Bangladesh: The Bangladesh Population-based Diabetes and Eye Study (BPDES). <i>J Hum Hypertens</i> 2016; 30 :252–9. doi:10.1038/jhh.2015.65
29 30 31 32	37	Ataklte F, Erqou S, Kaptoge S, <i>et al.</i> Burden of undiagnosed hypertension in sub-saharan africa: A systematic review and meta-analysis. <i>Hypertension</i> 2015; 65 :291–8. doi:10.1161/HYPERTENSIONAHA.114.04394
33 34 35	38	NUMBEO. Health Care Index by Country 2020. 2020.https://www.numbeo.com/health- care/rankings_by_country.jsp (accessed 11 Jun 2020).
36 37 38 39 40	39	Zhou J, Fang S. Association between undiagnosed hypertension and health factors among middle-aged and elderly chinese population. <i>Int J Environ Res Public Health</i> 2019; 16 . doi:10.3390/ijerph16071214
40 41 42 43 44	40	Zallman L, Himmelstein D, Woolhandler S, <i>et al.</i> Undiagnosed and Uncontrolled Hypertension and Hyperlipidemia among Immigrants in the US. <i>J Immigr Minor Heal</i> 2013; 15 :858–65. doi:10.1007/s10903-012-9695-2.Undiagnosed
45 46 47	41	Choo EH, Ihm SH, Lim S, <i>et al.</i> A simple screening score for undiagnosed hypertension. <i>Int J Cardiol</i> 2014; 172 :e465–7. doi:10.1016/j.ijcard.2014.01.040
47 48 49 50 51	42	Abd Elaziz KM, Dewedar SA, Sabbour S, <i>et al.</i> Screening for hypertension among adults: Community outreach in Cairo, Egypt. <i>J Public Heal (United Kingdom)</i> 2015; 37 :701–6. doi:10.1093/pubmed/fdu085
52 53 54 55 56	43	Chor D, Pinho Ribeiro AL, Sá Carvalho M, <i>et al.</i> Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: Results of the ELSA-Brasil study. <i>PLoS One</i> 2015; 10 :1–14. doi:10.1371/journal.pone.0127382
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Chi-

(p-

Square

Statistic

value)

29.6317

0.0008

44	undiagno	osed h	yperte	nsion: the o	case of Ire	eland a	revalence of nd the Unite 0038-014-05	ed States of			
45	Elderly I	Y, Davarian S, Takahashi A, <i>et al.</i> Diagnosis and Control of Hypertension in the y Populations of Japan and the United States. <i>Int J Popul Stud</i> 2015; 1 :19–281016/j.physbeh.2017.03.040									
46	among o	all A, Nazroo J, Feeney K, <i>et al.</i> Comparison of hypertension healthcare outcomes older people in the USA and England. <i>J Epidemiol Community Health</i> 0 :264–70. doi:10.1136/jech-2014-205336									
47	NCD (20	rld Health Organization. Multisectoral Action Plan on the Prevention and Control of D (2014-2020). 2014. https://extranet.who.int/nutrition/gina/sites/default/files/NPL 4 NCD Multisectoral Action Plan.pdf									
48	sectional	l surve	ey. Bul		alth Orgo	an 201-	ld expenditu 4; 92 :760–7.		lth in 1	Nepal: A cross-	
49	World Health Organization. Cardiovascular disease. https://www.who.int/cardiovascular_diseases/global-hearts/Global_hearts_initiative/en/										
50	Neupane D, McLachlan CS, Christensen B, <i>et al.</i> Community-based intervention for blood pressure reduction in Nepal (COBIN trial): Study protocol for a cluster-randomized controlled trial. <i>Trials</i> 2016; 17 :1–7. doi:10.1186/s13063-016-1412-3										
51	Krishnan A, Finkelstein EA, Kallestrup P, <i>et al.</i> Cost-effectiveness and budget impact of the community-based management of hypertension in Nepal study (COBIN): a retrospective analysis. <i>Lancet Glob Heal</i> 2019;7:e1367–74. doi:10.1016/S2214-109X(19)30338-9										
52	identify	undiag	gnosed	· · · ·	ion amon		chnology-ba e primary ca	-	2		
Table	e 1: Chara	cterist	tics of	the study p	articipan	ts					
	1	otal			Diagno	osed hyp	oertension	Undiag	gnosed	hypertension	
Variables	n	l	%	95% CI	n	%	95% CI	n	%	95% CI	
Overall		3334			1634	49.6	47.1-52.1	1700	50.4	47.9-52.9	
Age 15-24		237	6.6	5.6-7.8	107	43.1	36.1-50.4	130	56.9	49.6-63.9	

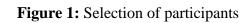
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1											
2											
3 4	25-34	449	13.2	11.9-14.5	196	43.8	38.4-49.3	253	56.2	50.7-61.6	
5	35-44	637	19.6	18-21.3	287	45.2	40.1-50.3	350	54.8	49.7-59.9	
6	45-54	687	20.9	19.2-22.8	333	49.4	45-53.8	354	50.6	46.2-55	
7	55-64	643	18.9	17.4-20.5	344	54.7	49.8-59.5	299	45.3	40.5-50.2	
8 9	>=65	681	20.8	19-22.7	367	55.1	50.3-59.8	314	44.9	40.2-49.7	
9 10	Sex										18.35
11	Male	1640	49.5	47.7-51.3	746	45.8	42.6-49.1	894	54.2	50.9-57.4	0.0003
12	Female	1694	50.5	48.7-52.3	888	53.3	50.1-56.4	806	46.7	43.6-49.9	
13	BMI										29.2511
14 15	Normal	1816	53.6	51.2-56.1	841	47.1	44.3-50	975	52.9	50-55.7	0.0001
16	Thin	361		9.9-12.5	156	42.2	35.7-49	205	57.8	51-64.3	
17	Overweight/obese	1120		32.5-38	620	55.6	51.7-59.5	500	44.4	40.5-48.3	
18	Education	1120	55.2	52.5 50	020	22.0	01.7 09.0	200		10.5 10.5	6.5852
19 20	No education	1576	46.5	44.1-48.9	778	50.9	47.5-54.4	798	49.1	45.6-52.5	0.2125
20 21	Primary	602	17.8	16.2-19.5	285	46.1	41.1-51.1	317	53.9	48.9-58.9	0.2120
22	Secondary	804	24.1	22.5-25.9	383	48	43.6-52.4	421	52	47.6-56.4	
23	Higher	350	11.5	9.9-13.5	187	53	46.9-58.9	163	32 47	41.1-53.1	
24	•	350	11.5	9.9-13.5	107	55	40.9-30.9	105	4/	41.1-55.1	90.7085
25 26	Wealth Quintile	(10	155	12 2 10	211	25.0	21.0.40	200	64.1	(0 (9 1	
26 27	Poorest	610	15.5	13.3-18	211	35.9	31.9-40	399 276	64.1	60-68.1	0.0000
28	Poorer	689	19.2	16.9-21.7	313	44.2	39.8-48.7	376	55.8	51.3-60.2	
29	Middle	604	17.3	15.2-19.6	301	49.5	44.5-54.5	303	50.5	45.5-55.5	
30	Richer	667	19.7	17.1-22.6	344	50.2	44.9-55.5	323	49.8	44.5-55.1	
31 32	Richest	764	28.3	24-33	465	60.4	55.4-65.2	299	39.6	34.8-44.6	16 601
33	Place of residence										16.691
34	Urban	2221	64.9	59.9-69.6	1152	52.2	49-55.4	1069	47.8	44.6-51	0.0057
35	Rural	1113	35.1	30.4-40.1	482	44.8	40.7-48.9	631	55.2	51.1-59.3	
36	Ecological zone										3.43
37 38	Mountain	200	5.6	3.6-8.6	92	47.1	39.4-54.8	108	52.9	45.2-60.6	0.3721
39	Hill	1694	49.9	44.2-55.6	788	48.3	45.1-51.5	906	51.7	48.5-54.9	
40	Terai	1440	44.5	39.2-49.9	754	51.4	47.1-55.6	686	48.6	44.4-52.9	
41	Province										23.7869
42 43	Province 1	490	17	15.2-19	265	53	47.7-58.3	225	47	41.7-52.3	0.0511
43 44	Province 2	460	16.2	14.2-18.3	243	53.1	46.5-59.6	217	46.9	40.4-53.5	
45	Province 3	575	26	21.8-30.6	303	52.7	46.8-58.5	272	47.3	41.5-53.2	
46	Province 4	578	13.2	11.5-15.1	273	46.9	42-51.7	305	53.1	48.3-58	
47	Province 5	553	17.8	15.4-20.4	253	45.4	39-51.9	300	54.6	48.1-61	
48 49	Province 6	343	3.9	3.3-4.6	148	39.8	32.9-47.1	195	60.2	52.9-67.1	
50	Province 7	335	6	5-7.2	149	41.9	33.8-50.5	186	58.1	49.5-66.2	
51	Caffeine										0.0507
52	consumption	20.42	00.4	0(7.000	1 4 2 4	10.4	160 50 0	1,500	50 5	40.0.72.1	0.2587
53 54	No	2942	88.4		1434	49.4	46.9-52.0	1508	50.6	48.0-53.1	0.6895
54 55	Yes	392	11.6	10.1-13.3	200	50.8	44.1-57.4	192	49.2	42.6-55.8	/
56	Tobacco use										5.3524
57											
58 59					2	24					
72											

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

1											
2											
3 4	No	2826	84.9	83.2-86.6	1410	50.4	47.8-53.1	1416	49.6	46.9-52.2	0.0338
5	Yes Alcohol	508	15.1	13.5-16.8	224	44.8	40.0-49.8	284	55.1	50.2-60.0	
6 7	consumption										2.4122
8	No	3249	97.8	97.1-98.4	1600	49.8	47.2-52.8	1649	50.2	47.6-52.8	0.1505
9	Yes	85	2.2	1.6-2.9	34	40.6	29.4-52.9	51	59.4	47.1-70.6	
10	Note: $n = N$	umber of sam	nle CI	= Confidence	interval						


Note: n = Number of sample, CI = Confidence interval

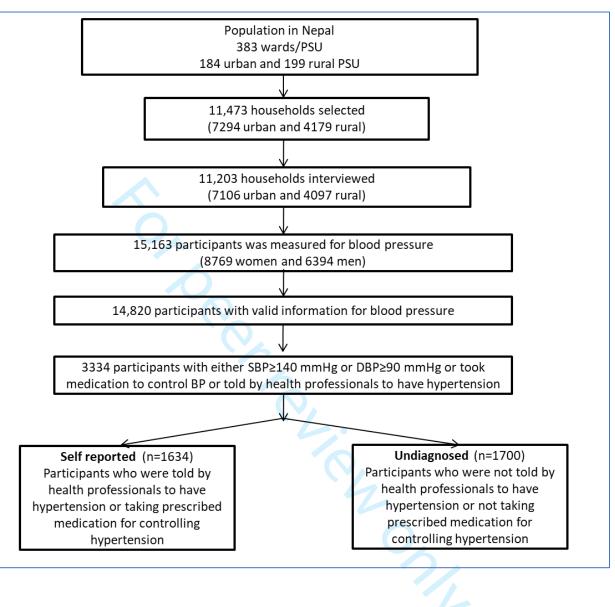
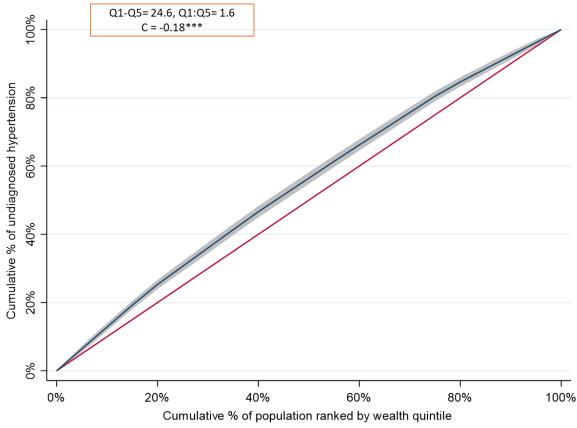

Figure 1: Selection of participants

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 4: Socioeconomic inequalities in the prevalence of undiagnosed hypertension among patients with hypertension across geographical locations in Nepal, 2016



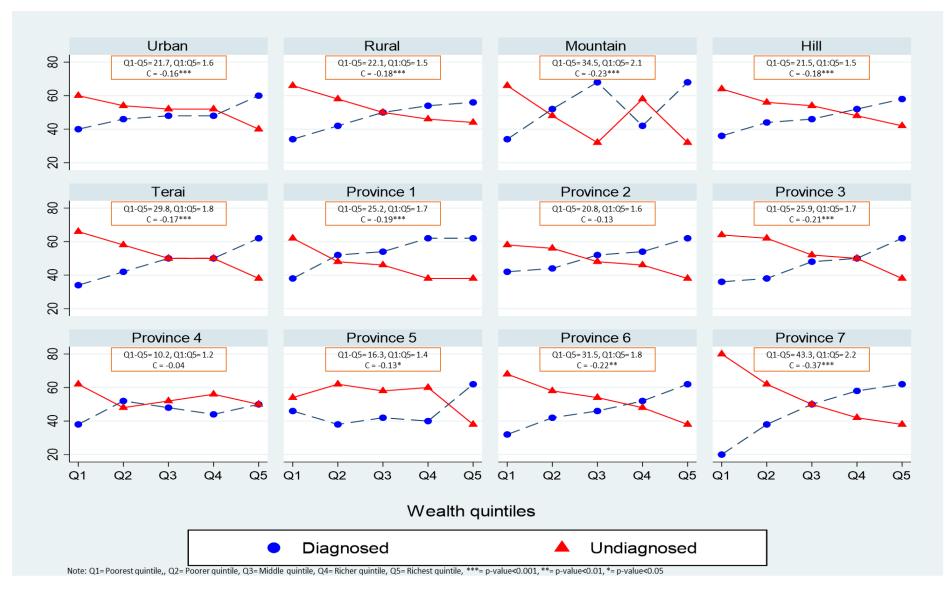

Adjus	ted odds ratio of undiagnosed hypertension
Age (in years)	
15-24 -	1
25-34 -	• 1.12
35-44 -	1.16
45-54 -	0.96
55-64 -	0.72
>=65 -	0.65*
-00	
Sex	
Female –	1
Male -	<u>⊢ • 1.2</u> 9**
Body mass index	1
Normal –	1.22
Thin –	L=0.80**
Overweight/Obese -	
Wealth quintile	
Richest –	1
Richer –	1.34*
Middle –	1.43**
Poorer –	1.67***
Poorest -	<u>+</u> 2.49***
Place of residence	1
Urban –	1.14
Rural -	
Province	
Province 1 –	1
Province 2 –	1.12
Province 2	1.19
Province 3 –	1.36*
	1.43*
Province 5 –	1.25
Province 6 -	1.31
Province 7 –	
Tobacco use	
No -	1
Yes –	⊢ <mark>_</mark> 1.04
0	1 2 3 4 Adjusted odds ratio with 95% Cl
	-
Note: CI= Confide	nce interval, ***= p-value<0.001, **= p-value<0.01, *= p-value<0.05

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Note: Q1= Poorest quintile, Q2= Poorer quintile, Q3= Middle quintile, Q4= Richer quintile, Q5= Richest quintile, ***=p-value<0.001

Supplementary Table 1: Unadjusted determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Variables	COR	95% CI	p-value
Age			
15-24	1		
25-34	1.06	0.77-1.46	0.7090
35-44	1.00	0.75-1.34	0.9800
45-54	0.87	0.65-1.18	0.3760
55-64	0.72	0.52-0.98	0.0400
>=65	0.70	0.52-0.96	0.0250
Sex			
Male	1.32	1.14-1.53	0.0000
Female	1		
BMI			
Normal	1		
Thin	1.13	0.91-1.41	0.2610
Overweight/obese	0.70	0.6-0.8	0.0000
Education			
No education	1		
Primary	1.08	0.9-1.31	0.4010
Secondary	1.07	0.88-1.3	0.4790
Higher	0.85	0.66-1.09	0.2070
Wealth Quintile			
Poorest	2.94	2.29-3.77	0.0000
Poorer	1.87	1.47-2.38	0.0000
Middle	1.57	1.23-1.99	0.0000
Richer	1.46	1.16-1.84	0.0010
Richest	1		
Place of residence			
Urban	1		
Rural	1.41	1.17-1.71	0.0000
Ecological zone			
Mountain	1		
Hill	0.98	0.68-1.41	0.9100
Terai	0.78	0.53-1.12	0.1800
Province			
Province 1	1		
Province 2	1.05	0.77-1.44	0.7540
Province 3	1.06	0.78-1.44	0.7220
Province 4	1.32	1-1.74	0.0530
Province 5	1.40	1.01-1.92	0.0400
	1.10		0.0100

Province 7	1.47	0.99-2.18	0.055
Caffeine consumption			
No	1.00		
Yes	0.91	0.72-1.15	0.440
Tobacco consumption			
No	1.00		
Yes	1.26	1.06-1.51	0.010
Alcohol consumption			
No	1.00		
Yes	1.46	0.91-2.32	0.114

Note: COR= Crude Odds Ratio, CI= Confidence Interval

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Page No	Item No	Recommendation
Title and abstract	1	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
	2-3		(b) Provide in the abstract an informative and balanced summary of what
			was done and what was found
	Introdu	ction	
Background/rationale	4-5	2	Explain the scientific background and rationale for the investigation being reported
Objectives	5	3	State specific objectives, including any prespecified hypotheses
	Method	s	
Study design	5	4	Present key elements of study design early in the paper
Setting	5	5	Describe the setting, locations, and relevant dates, including periods of
C			recruitment, exposure, follow-up, and data collection
Participants	6	6	(a) Give the eligibility criteria, and the sources and methods of selection of
			participants
Variables	7-8	7	Clearly define all outcomes, exposures, predictors, potential confounders,
			and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	5	8*	For each variable of interest, give sources of data and details of methods of
measurement			assessment (measurement). Describe comparability of assessment methods
			if there is more than one group
Bias	10	9	Describe any efforts to address potential sources of bias
Study size	6	10	Explain how the study size was arrived at
Quantitative variables	7-8	11	Explain how quantitative variables were handled in the analyses. If
			applicable, describe which groupings were chosen and why
Statistical methods	8-9	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
	"'n/a"		(b) Describe any methods used to examine subgroups and interactions
	"'n/a"		(c) Explain how missing data were addressed
	<u>"'n/a"</u>		(d) If applicable, describe analytical methods taking account of sampling
	11/ a		strategy
	"'n/a"		(e) Describe any sensitivity analyses
			(c) Describe any sensitivity analyses
Participants	Results 10	13*	(a) Report numbers of individuals at each stage of study—eg numbers
1 articipants	10	15	potentially eligible, examined for eligibility, confirmed eligible, included ir
			the study, completing follow-up, and analysed
	"'n/a"		
	<u>"n/a</u> "		(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram
Descriptive data	10	14*	(a) Give characteristics of study participants (eg demographic, clinical,
Descriptive data	10	14'	social) and information on exposures and potential confounders
	"'n/a"		(b) Indicate number of participants with missing data for each variable of
	11/ đ		(b) indicate number of participants with missing data for each variable of interest
Outcome data	11	15*	Report numbers of outcome events or summary measures
Main results	11-13	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted
	11 13	10	estimates and their precision (eg, 95% confidence interval). Make clear
			which confounders were adjusted for and why they were included

			(b) Report category boundaries when continuous variables were categorized
			(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Other analyses	"n/a"	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
	Discussi	on	
Key results	13-14	18	Summarise key results with reference to study objectives
Limitations	17-18	19	Discuss limitations of the study, taking into account sources of potential
			bias or imprecision. Discuss both direction and magnitude of any potential
			bias
Interpretation	14-17	20	Give a cautious overall interpretation of results considering objectives,
			limitations, multiplicity of analyses, results from similar studies, and other
			relevant evidence
Generalisability	18	21	Discuss the generalisability (external validity) of the study results
	Other in	forma	tion
Funding	19	22	Give the source of funding and the role of the funders for the present study
			and, if applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037592.R3
Article Type:	Original research
Date Submitted by the Author:	22-Jun-2020
Complete List of Authors:	Hasan, Md. Mehedi ; The University of Queensland Institute for Social Science Research, Tasnim, Fariha; International Centre for Diarrhoeal Disease Research Bangladesh, Maternal and Child Health Division Tariqujjaman, Md.; International Centre for Diarrhoeal Disease Research Bangladesh, Nutrition and Clinical Services Division Ahmed, Sayem; Liverpool School of Tropical Medicine, Department of Tropical Biology; International Centre for Diarrhoeal Disease Research Bangladesh, Health Systems and Population Studies Division Cleary, Anne; The University of Queensland, Institute for Social Science Research Mamun, Abdullah; University of Queensland, Institute for Social Science Research; University of Queensland, ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre)
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Hypertension < CARDIOLOGY, Public health < INFECTIOUS DISEASES, EPIDEMIOLOGY

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title: Examining the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal: a population-based cross-sectional study

Authors: Md. Mehedi Hasan^{1,2*}, Fariha Tasnim³, Md. Tariqujjaman⁴, Sayem Ahmed ⁵⁻⁷, Anne Cleary¹ and Abdullah A Mamun^{1,2}

Author affiliations

¹Institute for Social Science Research, The University of Queensland, Indooroopilly, Queensland 4068, Australia

² ARC Centre of Excellence for Children and Families over the Life Course (The Life Course Centre), The University of Queensland, Indooroopilly, Queensland 4068, Australia

³ Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁴Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁵ Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

⁶Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

⁷Health Economics and Policy Research Group, Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden

* Correspondence:
Md. Mehedi Hasan
Institute for Social Science Research
ARC Centre of Excellence for Children and Families over the Life Course
The University of Queensland
80 Meiers Road, Long Pocket Precinct, Indooroopilly, Queensland 4068, Australia
Phone: +61 470 237 155
Fax: + 61 7 334 67646
E-mail: m.m.hasan@ugconnect.edu.au

ABSTRACT

Objective: To examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

Design: This study used cross-sectional 2016 Nepal Demographic and Health Survey (NDHS) data. Undiagnosed hypertensive patients were defined as a NDHS respondent who was diagnosed as hypertensive (systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg) during the survey, but never took any prescribed anti-hypertensive medicine to lower/control blood pressure and was never identified as having hypertension by a health professional prior the survey. Multiple binary logistic regression analysis was performed, and Concentration Index was measured.

Setting: Nepal

Participants: Adult patients with hypertension

Results: Among 3334 hypertensive patients, 50.4% remained undiagnosed during the survey in Nepal. Adjusted model reveals that patients who were male, belonged to households other than the highest wealth quintile, and lived in Province 4 and Province 5 were at higher risk of remaining undiagnosed for hypertension. Patients who were 65+ years of age and were overweight/obese were at lower risk of remaining undiagnosed for hypertension. The poor-rich gap was 24.6 percentage points (Q1= 64.1% vs Q5= 39.6%) and poor:rich ratio was 1.6 (Q1/Q5= 1.6) in the prevalence of undiagnosed hypertension. Undiagnosed hypertension was disproportionately higher among lower socioeconomic status groups (Concentration Index, C= -0.18). Inequalities in the prevalence of undiagnosed hypertension further varied across other geographic locations including place of residence, ecological zones and administrative provinces.

Conclusions: Undiagnosed hypertension was highly prevalent in Nepal and there were substantial inequalities by socio-demographics and sub-national levels. Increasing awareness, strengthening routine screening to diagnose hypertension at primary health service facilities and enactment of social health insurance policy may help Nepal to prevent and control this burden.

Keywords: Undiagnosed hypertension, Inequality, Demographic and Health Survey, Nepal

Strengths and limitations of this study

- This study determined the prevalence and correlates of undiagnosed hypertension in Nepal using the most updated, population-based, nationally representative data.
- This study measured both wealth-based absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces.
- The cross-sectional nature of the data limits us to measure causal association between undiagnosed hypertension and the explanatory variables studied.
- The association of some potential behavioral or lifestyle factors such as physical activity, dietary patterns and family history with undiagnosed hypertension remain unmeasured due to lack of available data.

INTRODUCTION

Hypertension, or raised blood pressure, is a leading cause of global mortality and disability [1], affecting over one billion people annually [2]. Hypertension is a directing factor for cardiovascular diseases (CVDs), in particular heart diseases, myocardial infarctions, kidney failure, strokes, disability and premature deaths [2,3]. In South-East Asian countries, hypertension affects approximately one in three adults, accounting for nearly 1.5 million deaths annually and contributing to 9.4% of total deaths [4]. In South-East Asian countries, more than 50% of people with hypertension remain undiagnosed [5]. Nepal has one of the highest prevalence rates of hypertension among South-East Asian countries [6].

Currently, Nepal is facing an epidemiological transition with increasing prevalence of hypertension [7]. A study based on the Nepal Demographic and Health Survey 2016 reported about 20% of Nepalese adults (aged \geq 18 years) had hypertension [8]. However, other studies have reported that the prevalence of hypertension ranges from 23% to 34% in Nepal [7,9–12], although not all of these studies are representative of the present day Nepalese population. In 2013, the national NCD risk factor survey showed that while 25.7% of adults aged 15-69 years had hypertension in Nepal, a further 42.7% of adults had never measured their blood pressure [13]. Correct diagnoses of hypertension is prerequisite to the prevention, control and proper treatment of this disease. In addition, failure to diagnose and treat hypertension early may lead to serious health hazards, disability in later life, or eventually death. In Nepal, a number of government, non-government and private health facilities are providing health services such as diagnosis, medication and treatment for hypertension. However, owing to challenges with workforce capacity, resourcing of health-care facilities, and out-of-pocket costs incurred by patients, the

> current health care system in Nepal is not adequately prepared to support the diagnosis, treatment and control of hypertension [14].

> To prevent hypertension, the disease first needs to be diagnosed before any related complications arise. However, there is a lack of evidence about the prevalence of undiagnosed hypertension in Nepal at national and subnational levels. Information on the estimates of undiagnosed hypertension, and its related socio-demographic inequalities, at national and subnational level may assist policy makers in formulating effective strategies for screening, treatment and control as well as prevention of hypertension and associated burdens of disease, particularly among vulnerable groups. As such, we aimed to examine the prevalence, correlates and socio-demographic inequalities of undiagnosed hypertension in Nepal.

> > íez.e.

METHODS

Data source

We used the most updated nationally representative cross-sectional data from Nepal Demographic and Health Survey (NDHS). While the data of Demographic and Health Surveys is managed by Measure Evaluation, the NDHS was conducted from June 2016 to January 2017 by a private research organization named "NEW ERA" under the monitoring and supervision of the Ministry of Health, Nepal. To estimate the prevalence of hypertension nationally in Nepal, the NDHS 2016 obtained informed consent from the household head on behalf of all household members of each surveyed household [15]. For academic and scientific purposes, this anonymous dataset without any identifiers was made available by the ICF International, Maryland, United States [15]. We obtained approval to access and use these data to conduct this study.

BMJ Open

Survey procedure and participants

In 2015, Nepal reformed and restructured municipality boundaries resulting in seven administrative provinces comprising several districts and urban-rural areas with smaller administrative units known as wards [8]. With comparatively greater household numbers, urban areas were further divided into enumeration areas (EA). The primary sampling unit (PSU) were wards, for both urban and rural areas [15]. Because of some changes in administrative areas, Nepal revised the sampling frame of National Population and Housing Census (NPHC). The 2016 NDHS used this revised sampling frame and applied a multistage survey which was conducted in two and three stages across rural and urban areas respectively. NDHS selected the PSUs proportionately to the size in the first stage and then the random selection of EAs from the systematic selection of households from each PSU in the second stage. In the third stage, the households were selected by using a stratified cluster sampling technique in urban areas. A detailed description of the methodology is available elsewhere [15]. A total of 11490 households were selected from 383 wards, of which 5520 households from 184 wards were from urban settings and 5970 households from 199 wards were from rural settings. From these households, all the residents aged 15 years or above were eligible for blood pressure measurement. With an overall response rate of 95%, a total of 14823 individuals participated in the survey. This study uses an analytical sample of adults (> 15 years) with hypertension (n = 3334). Figure 1 illustrates the procedure for selecting the study sample.

{Figure 1 will be added here}

Outcome variable

BMJ Open

To measure hypertension, the 2016 NDHS used the UA-767F/FAC (A&D Medical) automated device to record the blood pressure of the participants. With 5 minutes intervals between each measurement, the 2016 NDHS recorded the measurements of blood pressure three times in a sitting position. NDHS considered the last two measures of blood pressure levels and used their mean to detect hypertension. The survey used the World Health Organization (WHO) guidelines to report a participant as hypertensive [15]. The WHO guideline has integrated the 2017 guidelines of the American College of Cardiology/ American Society of Hypertension [16,17]. According to the WHO guideline, a participant with systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) \geq 90 mmHg is diagnosed as a hypertension case. We also considered participants as hypertension patients if s/he was previously told by a health professional that they have hypertension or if they were already taking medication to control hypertension. Our outcome variable is undiagnosed hypertension. A patient is considered as undiagnosed for hypertension if, at the time of the survey, s/he was diagnosed as hypertensive (SBP > 140 mmHg or DBP > 90 mmHg) but never took any prescribed anti-hypertensive medicine to lower/control blood pressure and was never told by a health professional that they have hypertension prior the survey [18,19].

Explanatory variables

This study considered a set of socio-demographic and behavioral characteristics as independent variables. Age (in years), sex, Body Mass Index (BMI) measured through dividing the weight by squared height (kg/m²), education level, household wealth status, place of residence, ecological zone, and provinces were considered as socio-demographic characteristics of the respondents. Age was categorized as 15-24, 25-34, 35-44, 45-54, 55-64 and \geq 65 years. Sex had two categories, male and female. The BMI was categorized as thin/underweight (BMI<18.5 kg/m²), normal (18.5 kg/m²) and overweight/obese (BMI \geq 25.0 kg/m²) [20]. Based on the highest class

BMJ Open

completed by the respondents, level of education was classified as no education, primary, secondary and higher. NDHS used principal component analysis [15] to construct the wealth index and order households into five socioeconomic quintiles (poorest, poorer, middle, richer and richest). The place of residence was stratified as urban and rural across all geographic locations. Nepal was ecologically divided in Mountain, Hill and Terai. The seven administrative provinces were identified as Province 1, Province 2, Province 3, Province 4, Province 5, Province 6 and Province 7. Three behavioral characteristics of respondents, caffeine, tobacco and alcohol consumption, were considered as independent variables each of which contained dichotomous response of whether or not the respondent consumed caffeine, tobacco or alcohol.

Statistical analyses

Using univariate analysis we described the prevalence of undiagnosed hypertension and background characteristics of the study patients. The estimates of each of the categorical variables included in this study were reported with numbers, weighted percentages and 95% confidence intervals (CIs) of estimates. The weighted prevalence of undiagnosed hypertension was determined across the background characteristics of the study patients from bivariate analysis. Statistical significance was detected by applying Chi-square test. Then, we conducted simple and multiple binary logistic regression analyses to examine the correlates of undiagnosed hypertension. The results of the regression analysis were presented in terms of odds ratio with respective 95% CIs. Variables that were statistically significant in simple logistic regression analysis were entered in the multiple regression model to estimate the adjusted odds ratio (AOR). Notably, the statistical significance was defined at 5% level (p-value < 0.05). Variance inflation factors to detect multicollinearity among the independent variables were assessed before incorporating them into the multiple regression model. Due to hierarchical structure of NDHS data, we considered the

BMJ Open

cluster sampling design of the 2016 NDHS to estimate the prevalence and determinants in this study [15]. We excluded cases with missing values for blood pressure measurements.

Proposed by Wagstaff [21] to measure the inequality, we estimated the concentration index (C), to show the degree and direction of wealth-based inequality in undiagnosed hypertension prevalence. For the purpose of calculating C, the households were ranked from the poorest to the richest according to their socioeconomic characteristics. We plotted a concentration curve to portray the distribution of undiagnosed hypertension. The Y-axis of the concentration curve representing the cumulative proportion of undiagnosed hypertension and the X-axis represents the cumulative proportions of the population across wealth quintiles. When the concentration curve coincides with the diagonal, the prevalence of undiagnosed hypertension is treated as equally distributed across socioeconomic groups. In contrast, the concentration curve typically deviates from the diagonal if there exists inequalities in the prevalence of undiagnosed hypertension. The C is defined as twice the area between the concentration curve and the diagonal [22-24]. The index value can range between -1 and +1, a positive value implies the prevalence of undiagnosed hypertension is more concentrated among higher socioeconomic status groups and a negative value implies the prevalence is more concentrated among lower socioeconomic status groups [23,25]. We repeated the estimation of C across other geographical locations such as place of residence, ecological zones and provinces to detect the group of patients with highest severity of socioeconomic inequalities in the prevalence of undiagnosed hypertension. STATA (version 13) was used to perform all the analyses [26].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Patient and public involvement

Patients and public were not involved in developing the research questions, measuring outcome and designing the study. Information of the participants was anonymous.

RESULTS

General Characteristics of the Study Participants

Table 1 shows the general characteristics of the study participants. Among the patients studied, the average age of patients was 49.8 years (95% CI 49.1, 50.5) with the lowest percentage of patients in the 15-24 years age group (6.6%) and highest percentage of patients in the 45-54 years age group (20.9%). The sample was balanced among male (49.5%) and female (50.5%) participant. Nearly half of the patients were normal in terms of their BMI while more than one third of the patients were overweight/obese. Two-thirds of the patients resided in urban area (64.9%). The educational status of the patients were poor with nearly half of the patients having no education while 24.1% and 11.5% had secondary and higher education respectively. The highest number of patients belonged to richest wealth quintile (28.3%) and the lowest number of patients were from province 3 (26.0%) followed by province 5 (17.8%) and province 1 (17.0%). Only 5.6% of patients were from the mountain ecological zone.

{Table 1 will be added here}

Prevalence of Undiagnosed Hypertension

Of the 3334 participants who had hypertension during the survey, more than half of them were detected as remaining undiagnosed (50.4%). The prevalence of undiagnosed hypertension among the patients varied across their age (*p*-value < 0.001), sex (*p*-value < 0.001), BMI (*p*-value < 0.001), wealth quintile (*p*-value < 0.001) and place of residence (*p*-value < 0.01). The prevalence of undiagnosed hypertension was higher among younger patients (15-24 years age group) and steadily decreased with the increase of age. The prevalence of undiagnosed hypertension was higher among male patients (54.2%) compared to female patients (46.7%). Compared to patients with normal BMI, the prevalence of undiagnosed hypertension was higher among overweight/obese patients (44.4%). Compared to patients of the richest wealth quintile (39.6%), the prevalence of undiagnosed hypertension was higher among patients of the poorest (64.1%) and poorer (55.2%) compared to urban (47.8%). No educational, ecological and provincial variations in the prevalence of undiagnosed hypertension was observed (**Table 1**).

Correlates of Undiagnosed Hypertension

We found that age, sex, BMI, wealth quintile, place of residence and province were significantly associated with the prevalence of undiagnosed hypertension among hypertensive patients in unadjusted logistic regression analysis (see **supplementary table 1**).

Figure 2 represents the results of multiple logistic regression analysis. The multiple binary logistic regression model showed that age, sex, BMI, wealth quintile and province had significant

BMJ Open

association with undiagnosed hypertension. Elderly patients (≥ 65 years of age) had a lower likelihood of being undiagnosed for hypertension than patients aged 15-24 years (AOR = 0.65, 95% CI 0.48, 0.91). Male patients were 1.29 times more likely than female patients to remain undiagnosed for hypertension (AOR = 1.29, 95% CI 1.11, 1.51). Compared to patients with normal BMI, overweight/obese patients (AOR = 0.80, 95% CI 0.69, 0.93) were less likely to have undiagnosed hypertension.

We found wealth quintiles as potential correlates of undiagnosed hypertension. The risk of remaining undiagnosed for hypertension increased with decreasing socioeconomic status. Likelihood of having undiagnosed hypertension was greater among poorer socioeconomic status patients compared to higher socioeconomic quintiles. Patients of poorest and poorer wealth quintiles were 2.49 (AOR = 2.49; 95% CI 1.90, 3.30) and 1.67 (AOR = 1.67; 95% CI 1.29, 2.16) times more likely to have an undiagnosed hypertension condition than patients of the wealthiest quintile.

Moreover, significant provincial variation was evident in the prevalence of undiagnosed hypertension among hypertensive patients. Patients of province 4 (AOR = 1.36, 95% CI 1.04, 1.79) and province 5 (AOR = 1.43, 95% CI 1.05, 1.95) were more likely to have undiagnosed hypertension than patients of province 1.

{Figure 2 will be added here}

Socioeconomic Inequalities in Undiagnosed Hypertension

Figure 3 depicts the inequalities in the prevalence of undiagnosed hypertension among hypertensive patients. The difference in the distribution of undiagnosed hypertension was 24.6% between the lowest wealth quintile (Q1) and highest wealth quintile (Q5), meaning that the

BMJ Open

prevalence of undiagnosed hypertension was greater by 24.6 percentage points among the poorest patients. The relative measure of inequality in terms of poor (Q1): rich (Q5) ratio was 1.6 for the prevalence of undiagnosed hypertension among patients, depicting that the prevalence of undiagnosed hypertension was 1.6 times higher among the poorest than the richest patients. We found negative value of the Concentration Index (C = -0.18) which suggests that the prevalence of undiagnosed hypertension among hypertensive patients was disproportionately distributed among lower socioeconomic status groups.

{Figure 3 will be added here}

In addition, patients living in mountain areas and in province 7 had large gaps in the prevalence of undiagnosed hypertension (**Figure 4**). The higher Q1:Q5 ratio were observed among those who had large Q1-Q5 gaps in the prevalence of undiagnosed hypertension across different geographic locations. We found large negative values of C among those who had higher Q1-Q5 gaps and Q1:Q5 ratio for the prevalence of undiagnosed hypertension. See **Figure 4** for details.

{Figure 4 will be added here}

DISCUSSION

Globally, to date few studies have been conducted on undiagnosed hypertension. For the first time, this study estimated the prevalence of undiagnosed hypertension in Nepal as 50.4% of respondents who tested positive for hypertension in the 2016 NDHS. In addition, this study identified the risk factors and inequalities associated with undiagnosed hypertension in Nepal. The high prevalence of undiagnosed hypertension identified in this study may be due to people's lack of awareness and willingness to partake in regular health check-ups in the absence of health issues, coupled with

Page 15 of 33

BMJ Open

accessibility barriers to screening services [27]. Lack of knowledge, attitudes and behaviours that promote healthy lifestyles as preventive measures to non-communicable diseases (NCDs) may also act as a driver of undiagnosed hypertension [27–29]. Community-based awareness raising of changing lifestyles to address the burden of NCDs might be effective in reducing this gap [30].

Several studies have reported higher risks of hypertension among people who are older in age, male, urban dwellers, have higher education level, regularly consume tobacco and/or alcohol, or are overweight [6,8,28,29]. We found that patients aged 65+ years and who were overweight/obese were at lower risk of remaining undiagnosed from hypertension. Our findings depicted a greater proportion of undiagnosed hypertensive patients among those who were young and those with lower BMI. Young or underweight people may be less conscious about their health status as they might have the misconception that they are less likely to suffer from NCDs [31]. In addition, people from lower socioeconomic status groups in Nepal tend to have less knowledge and awareness about health hazards, typically have poorer access to services for screening diseases and lack the capacity to afford treatment costs for diseases [28]. This may contribute to the disproportionate occurrence of undiagnosed hypertension among lower socioeconomic status groups in Nepal.

Similar to risk factors of hypertension, undiagnosed hypertension was also more prevalent among males and tobacco users [6,29]. The higher rate of undiagnosed hypertension among males might be due to their lack of awareness and lower treatment rates than females [32]. Smoking, a main source of using tobacco, is well recognized to be associated with increased risk of hypertension in many settings, including Nepal [33,34]. However, there is lack of evidence to determine the extent to which tobacco use is related to patients remaining undiagnosed for hypertension. Our findings demonstrate that, in Nepal, factors other than tobacco use played independent roles in predicting the rate of undiagnosed hypertension. While differences in lifestyle practices between males and

females in Nepal may be a key factor behind different exposures, further research is needed to identify the actual risk factors [29].

Undiagnosed hypertension may lead to adverse health consequences, including organ damage [35]. The WHO, denoting hypertension as a silent killer, stated that the prevalence of hypertension is higher in low- and middle-income countries compared to developed and high income countries [3]. Our results support this claim and also align with findings from Bangladesh and Sub-Saharan Africa [19,36,37]. Despite being neighbouring countries, the prevalence of undiagnosed hypertension from this study (approximately 50%) is much higher than that of China[38]. For example, recent evidence shows that the prevalence of undiagnosed hypertension in China is 28.8% [39]. The reason behind this difference might be due to the differences in age of study participants. Our study assessed participants of age 15 years or older in Nepal, while the Chinese study included older participants (over 45 years) who may be more aware of health conditions and more likely to visit doctors for regular health check-ups. Findings from studies conducted in countries with more developed health care systems and advanced screening processes such as Japan, Korea, England, Ireland, Egypt, Brazil and USA were also found to have lower levels of undiagnosed hypertension than Nepal as found in this study [40-46]. The prevalence of undiagnosed hypertension in Nepal is relatively closer with that of Bangladesh [19]. This might be due to the less advanced health care systems of these two countries with both countries displaying lowHealth Care Index values [38].

In Nepal, despite the detection of risk factors [6,8,29] and inequalities [28], the prevalence of hypertension has been well investigated nationally, resulting in the implementation of new polices to mitigate the rising number of hypertension patients [47]. However, these policy reform efforts will fail to effectively achieve intended hypertension reduction targets if patients remain

Page 17 of 33

BMJ Open

undiagnosed, undetected and untreated. It is necessary to identify whether unequal distribution of undiagnosed hypertension exists among patients with hypertension across different socioeconomic groups. Such information will aid in setting priorities and effective allocation of resources. Our study reveals existence of inequalities in the distribution of undiagnosed hypertension due to economic status. Lower socioeconomic status groups experienced a higher prevalence of undiagnosed hypertension compared to higher socioeconomic groups and a greater degree of wealth-based inequality was concentrated among the poorest. These inequalities were more prevalent among patients living in different geographical locations including place of residence, ecological zones and administrative provinces. Such disparities may be owing to greater awareness of health issues and more utilization of health care services among higher socioeconomic groups [28]. Such inequality might increase the catastrophic health spending given the rise of catastrophic household expenditure due to NCDs in Nepal [14,48]. Public health strategies might reduce this gap by concentrating more on implementing social health insurance policies which are equitable for all [40,48]. In this respect, policy makers could take into consideration the disparities in the distribution of undiagnosed hypertension found in this study.

Several initiatives have been taken to control hypertension in Nepal. To address the burden of cardiovascular diseases (CVD), the WHO and partners launched an initiative called "Global Hearts" in 2016 [49]. This initiative took a comprehensive approach to help countries in scaling-up affordable and adaptable measures to improve capacity of health care services to better detect and treat people at risk of or suffering from CVD. This initiative comprises three packages: SHAKE, HEARTS and MPOWER. The package "HEARTS" provides tools to incorporate CVD management best practices at the primary healthcare level to reduce CVD risk factors such as hypertension and high blood cholesterol. Like many low to middle incomes countries, Nepal has

BMJ Open

adapted the Global Hearts initiative to address CVD. In addition, the Community-based Management of Hypertension in Nepal (COBIN) is a community-based cost-effective intervention with demonstrated success in reducing hypertension in Nepal [50,51]. However, for designing future programs or interventions for the prevention of hypertension in Nepal, our findings highlight the importance of considering undiagnosed hypertensive cases and the uneven distribution of such cases across a spectrum of socio-demographic characteristics.

Failing to diagnose and detect hypertension among vulnerable populations will have detrimental health outcomes for any nation. This study, for the first time at a national level, sheds light on the prevalence of undiagnosed hypertension in Nepal. The NDHS 2016, through incorporation of biomarker tests, bears evidence that a substantial proportion of individuals are suffering from blood pressure abnormalities. This emphasises the need for conducting routine screening for hypertension that ensures access by lower socioeconomic groups and at risk populations. A routine surveillance system with technology-based screening can aid in tracing disease incidence including among people at risk of being undiagnosed [52]. Our study findings will help inform and initiate policies and programs that capture the highest domain of vulnerable populations and bring them うん under routine surveillance at community level with optimal cost.

Strengths and limitations

We used the most updated, nationally representative, cross-sectional data to determine the prevalence, correlates and inequalities of undiagnosed hypertension in Nepal. We considered the complex survey design in our methods and captured variations. However, there may be residuals and unmeasured behavioral or lifestyle factors potentially relevant to undiagnosed hypertension, for example, physical activity, dietary patterns and family history of hypertension, that were not explored in this study. Since our data was cross-sectional, the relationship between undiagnosed

BMJ Open

hypertension and confounders were probabilistic rather than causal. However, identification of potential correlates through using odds ratio is widely acceptable. This study measured both absolute and relative inequalities in the prevalence of undiagnosed hypertension at national level as well as across place of residence, ecological zones and administrative provinces to further guide policy/decision makers for better allocation of resources to reduce hypertension rates.

CONCLUSIONS

For the first time on a national level in Nepal, this study estimates the prevalence of undiagnosed hypertension as 50.4% of respondents who tested positive for hypertension in the Nepal Demographic and Health Survey. Furthermore, our results show that prevalence of undiagnosed hypertension is disproportionately higher among lower socioeconomic status groups in Nepal. Our results suggest that efforts should be made to improve the knowledge, attitudes and practices of people around hypertension, particularly among those who are young, slender, poor and male, given their higher risk of being undiagnosed. Routine screening and strengthening diagnosis of hypertension in the primary level of healthcare service facilities may help Nepal in reducing cases with undiagnosed hypertension. Moreover, identification of inequalities among different risk groups will be beneficial in achieving the universal health coverage target of UN Sustainable Development Goals (Goal 3.8.1). Social health insurance policies under an integrated national NCD policy should be properly enacted to ensure socioeconomically disadvantaged populations are adequately covered under the scheme for the prevention and control of hypertension.

Acknowledgments

We acknowledge the MEASURE DHS for providing access to NDHS 2016 datasets.

Contributors

MMH, SA and AAM conceptualized the study. MMH contributed to data acquisition, data analysis, interpretation of the findings and drafting the manuscript. FT, MT and AC helped interpreting the results and contributed to drafting the manuscript. AAM, AC and SA critically reviewed the analysis and final version of the manuscript. All authors made a thorough review of the final draft. All authors read and approved the final manuscript for publication.

Funding

This research received no external funding.

Competing interests

None declared.

Ethical approval

The NDHS survey methodology and questionnaire was reviewed and approved by the ethical review board of Nepal Research Council and ICF Institutional. NDHS obtained informed consent from the respondents before conducting the survey. Therefore, separate ethical approval was not required for this study and we are using publicly available de-identified data.

Data sharing statement

Data are available in a public, open access repository. All data related to study are included in the manuscript.

REFEENCES

1	Forouzanfar MH, Afshin A, Alexander LT, <i>et al.</i> Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. <i>Lancet</i> 2016; 388 :1659–724. doi:10.1016/S0140-6736(16)31679-8
2	Fisher N, Curfman G. Hypertension-A public health challenge of global proportions. <i>JAMA</i> 2018; 320 :1757–1759.
3	Day WH. World Health Organisation. A global brief on Hypertension. Published Online First: 2013. doi:10.1136/bmj.1.4815.882-a
4	WHO Regional Office for South-East Asia. <i>Noncommunicable diseases in the South-East Asia Region, 2011: situation and response.</i> 2011. https://apps.who.int/iris/handle/10665/205578
5	Mohan V, Seedat YK, Pradeepa R. The Rising Burden of Diabetes and Hypertension in Southeast Asian and African Regions: Need for Effective Strategies for Prevention and Control in Primary Health Care Settings. <i>Int J Hypertens</i> 2013; 2013 :1–14. doi:10.1155/2013/409083
6	Agho KE, Osuagwu UL, Ezeh OK, <i>et al.</i> Gender differences in factors associated with prehypertension and hypertension in Nepal: A nationwide survey. <i>PLoS One</i> 2018; 13 :1–18. doi:10.1371/journal.pone.0203278
7	Vaidya A, Pathak RP, Pandey MR. Prevalence of hypertension in Nepalese community triples in 25 years: A repeat cross-sectional study in rural Kathmandu. <i>Indian Heart J</i> 2012; 64 :128–31. doi:10.1016/S0019-4832(12)60045-5
8	Hasan M, Sutradhar I, Akter T, <i>et al.</i> Prevalence and determinants of hypertension among adult population in Nepal: Data from Nepal demographic and health survey 2016. <i>PLoS One</i> 2018; 13 :1–14. doi:10.1371/journal.pone.0198028
9	Ghimire A, Shrestha NR, Thapa L, <i>et al.</i> Prevalence of Hypertension, Obesity, Diabetes, and Metabolic Syndrome in Nepal. <i>Int J Hypertens</i> 2011; 2011 :1–9. doi:10.4061/2011/821971
10	Shrestha UK, Singh DL, Bhattarai MD. The prevalence of hypertension and diabetes defined by fasting and 2-h plasma glucose criteria in urban Nepal. <i>Diabet Med</i> 2006; 23 :1130–5. doi:10.1111/j.1464-5491.2006.01953.x
11	Mehta KD, Karki P, Lamsal M, Paudel IS, Majhi S, Das BK, Sharma S, Jha N BN. Hyperglycemia, glucose intolerance, hypertension and socioeconomic position in eastern Nepal. <i>Southeast Asian J Trop Med Public Heal</i> 2011; 42 :197–207.
12	McLachlan CS, Sharma R, Khanal V, <i>et al.</i> Prevalence of Hypertension in Member Countries of South Asian Association for Regional Cooperation (SAARC). <i>Medicine</i> <i>(Baltimore)</i> 2014; 93 :e74. doi:10.1097/md.000000000000074
13	Habits D. Non Communicable Diseases Risk Factors : STEPS Survey Nepal 2013. 2013.
14	Dhital SM, Karki A. Dealing with the burden of hypertension in Nepal : current status,
	20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	2 3 4 5 6 7 8 9 10 11 12 13

	challenges and health system issues. Reg Heal Forum 2013;17:44-52.
15	MOHP New ERA and ICF DHS Program. Nepal Demographic and Health Survey 2016. 2017;:636.
16	Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American college of cardiology/American Heart Association task. 2018. doi:10.1161/HYP.000000000000066
17	Chalmers J. 1999 World Health Organization-International Society of Hypertension guidelines for the management of hypertension. <i>Clin Exp Hypertens</i> 1999; 21 :1009–60. doi:10.3109/10641969909061028
18	Hou X. Urban – Rural Disparity of and Untreated Hypertension in China. <i>Asia Pac J Public Heal</i> 2008; 20 :159–69.
19	Ahmed S, Tariqujjaman M, Rahman MA, <i>et al.</i> Inequalities in the prevalence of undiagnosed hypertension among Bangladeshi adults: Evidence from a nationwide survey. <i>Int J Equity Health</i> 2019; 18 :1–12. doi:10.1186/s12939-019-0930-5
20	World Health Organization. Nutrition Landacape Information System: Country Profile Indicators. 2010. doi:10.1159/000362780.Interpretation
21	Wagstaff A. The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. <i>Health Econ</i> 2005; 14 :429–32. doi:10.1002/hec.953
22	Wagstaff A, Doorslaer E van, Paci P. On the measurement of horizontal inequity in the delivery of health care. <i>J Health Econ</i> 1991; 10 :169–205.
23	Kakwani N, Wagstaff A, Doorslaer E van. Socioeconomic inequalities in health: measurement, computation and statistical inference. <i>J Econom</i> 1997;77:87–103.
24	O'Donnell O, Doorslaer E Van. Analyzing Health Equity Using Household Survey Data,. Washington. 2008. doi:10.2471/BLT.08.052357
25	Koolman X, Doorslaer E van. On the interpretation of a concentration index of inequality. <i>Health Econ</i> 2004; 13 :649–56.
26	StataCorp. Stata Statistical Software: Release 13. 2013.
27	Shrestha S, Shrestha A, Koju RP, <i>et al.</i> Barriers and facilitators to treatment among patients with newly diagnosed hypertension in Nepal. <i>Heart Asia</i> 2018; 10 :1–7. doi:10.1136/heartasia-2018-011047
28	Mishra SR, Ghimire S, Shrestha N, <i>et al.</i> Socio-economic inequalities in hypertension burden and cascade of services: nationwide cross-sectional study in Nepal. <i>J Hum Hypertens</i> 2019; 33 :613–25. doi:10.1038/s41371-019-0165-3
29	Chataut J, Adhikari R, Sinha N. The prevalence of and risk factors for hypertension in adults living in central development region of Nepal. <i>Kathmandu Univ Med J</i> 2011;9:13–
	21
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		8.
4 5 6 7 8	30	Kim Y, Kong KA. Do hypertensive individuals who are aware of their disease follow Lifestyle recommendations better than those who are not aware? <i>PLoS One</i> 2015; 10 :1–13. doi:10.1371/journal.pone.0136858
9 10 11 12	31	Karmacharya BM, Koju RP, LoGerfo JP, <i>et al.</i> Awareness, treatment and control of hypertension in Nepal: Findings from the Dhulikhel Heart Study. <i>Heart Asia</i> 2017; 9 :1–8. doi:10.1136/heartasia-2016-010766
13 14 15 16	32	Mehata S, Shrestha N, Mehta R, <i>et al.</i> Prevalence, awareness, treatment and control of hypertension in Nepal: Data from nationally representative population-based cross-sectional study. <i>J Hypertens</i> 2018; 36 :1680–8. doi:10.1097/HJH.000000000001745
17 18 19	33	Singh R, Fedacko J, Pella D, <i>et al.</i> Prevalence and risk factors for prehypertension and hypertension in five Indian cities. <i>Acta Cardiol</i> 2011;66.
20 21 22 23	34	Dhungana RR, Pandey AR, Bista B, <i>et al.</i> Prevalence and Associated Factors of Hypertension: A Community-Based Cross-Sectional Study in Municipalities of Kathmandu, Nepal. <i>Int J Hypertens</i> 2016; 2016 . doi:10.1155/2016/1656938
24 25 26	35	Schmieder RE. Hypertoniebedingte endorganschäden. <i>Dtsch Arztebl</i> 2010; 107 :866–73. doi:10.3238/arztebl.2010.0866
27 28 29 30	36	Islam FM a, Bhuiyan a, Chakrabarti R, <i>et al.</i> Undiagnosed hypertension in a rural district in Bangladesh: The Bangladesh Population-based Diabetes and Eye Study (BPDES). <i>J Hum Hypertens</i> 2016; 30 :252–9. doi:10.1038/jhh.2015.65
31 32 33 34	37	Ataklte F, Erqou S, Kaptoge S, <i>et al.</i> Burden of undiagnosed hypertension in sub-saharan africa: A systematic review and meta-analysis. <i>Hypertension</i> 2015; 65 :291–8. doi:10.1161/HYPERTENSIONAHA.114.04394
35 36 37	38	NUMBEO. Health Care Index by Country 2020. 2020.https://www.numbeo.com/health- care/rankings_by_country.jsp (accessed 11 Jun 2020).
38 39 40 41	39	Zhou J, Fang S. Association between undiagnosed hypertension and health factors among middle-aged and elderly chinese population. <i>Int J Environ Res Public Health</i> 2019; 16 . doi:10.3390/ijerph16071214
42 43 44 45	40	Zallman L, Himmelstein D, Woolhandler S, <i>et al.</i> Undiagnosed and Uncontrolled Hypertension and Hyperlipidemia among Immigrants in the US. <i>J Immigr Minor Heal</i> 2013; 15 :858–65. doi:10.1007/s10903-012-9695-2.Undiagnosed
46 47 48	41	Choo EH, Ihm SH, Lim S, <i>et al.</i> A simple screening score for undiagnosed hypertension. <i>Int J Cardiol</i> 2014; 172 :e465–7. doi:10.1016/j.ijcard.2014.01.040
49 50 51 52 53	42	Abd Elaziz KM, Dewedar SA, Sabbour S, <i>et al.</i> Screening for hypertension among adults: Community outreach in Cairo, Egypt. <i>J Public Heal (United Kingdom)</i> 2015; 37 :701–6. doi:10.1093/pubmed/fdu085
54 55 56	43	Chor D, Pinho Ribeiro AL, Sá Carvalho M, <i>et al.</i> Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: Results of the
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ELSA-Brasil study. PLoS One 2015;10:1-14. doi:10.1371/journal.pone.0127382

erall	3334 1634 49.6 47.1-52.1 1700 50.4 47.9-52.9	 29.631							
riables	n % 95% CI n % 95% CI n % 95% CI	Squar Statis (<i>p</i> - <i>value</i>)							
	Total Diagnosed hypertension Undiagnosed hypertension	Chi-							
Tab	le 1: Characteristics of the study participants								
	2014; 12 :352–8. doi:10.1370/afm.1665								
52	Rakotz MK, Ewigman BG, Sarav M, <i>et al.</i> A technology-based quality innovation to identify undiagnosed hypertension among active primary care patients. <i>Ann Fam Med</i>								
51	Krishnan A, Finkelstein EA, Kallestrup P, <i>et al.</i> Cost-effectiveness and budget impact of the community-based management of hypertension in Nepal study (COBIN): a retrospective analysis. <i>Lancet Glob Heal</i> 2019;7:e1367–74. doi:10.1016/S2214-109X(19)30338-9								
50	Neupane D, McLachlan CS, Christensen B, <i>et al.</i> Community-based intervention for blood pressure reduction in Nepal (COBIN trial): Study protocol for a cluster-randomized controlled trial. <i>Trials</i> 2016; 17 :1–7. doi:10.1186/s13063-016-1412-3	ood pressure reduction in Nepal (COBIN trial): Study protocol for a cluster-randomized							
49	World Health Organization. Cardiovascular disease. https://www.who.int/cardiovascular_diseases/global-hearts/Global_hearts_initiative/en/								
48	E. S, S. G, M.M. R, <i>et al.</i> Catastrophic household expenditure on health in Nepal: A cross- sectional survey. <i>Bull World Health Organ</i> 2014; 92 :760–7. doi:http://dx.doi.org/10.2471/BLT.13.126615	ional survey. Bull World Health Organ 2014;92:760–7.							
47	World Health Organization. Multisectoral Action Plan on the Prevention and Control of NCD (2014-2020). 2014. https://extranet.who.int/nutrition/gina/sites/default/files/NPL 2014 NCD Multisectoral Action Plan.pdf								
46	Marshall A, Nazroo J, Feeney K, <i>et al.</i> Comparison of hypertension healthcare outcomes among older people in the USA and England. <i>J Epidemiol Community Health</i> 2016; 70 :264–70. doi:10.1136/jech-2014-205336								
45	Saito Y, Davarian S, Takahashi A, <i>et al.</i> Diagnosis and Control of Hypertension in the Elderly Populations of Japan and the United States. <i>Int J Popul Stud</i> 2015;1:19–28. doi:10.1016/j.physbeh.2017.03.040								
	undiagnosed hypertension: the case of Ireland and the United States of America. <i>Int J Public Health</i> 2014; 59 :759–67. doi:10.1007/s00038-014-0573-7								

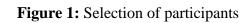
1											
1 2											
3	15-24	237	6.6	5.6-7.8	107	43.1	36.1-50.4	130	56.9	49.6-63.9	0.0008
4	25-34	449	13.2	11.9-14.5	107	43.1	38.4-49.3	253	56.2	49.0-03.9 50.7-61.6	0.0008
5 6	35-44	637	19.2	18-21.3	287	45.2	40.1-50.3	350	54.8	49.7-59.9	
7	45-54	687	20.9	19.2-22.8	333	43.2 49.4	40.1-30.3	350	54.8 50.6	49.7-39.9	
8										40.2-33	
9	55-64	643	18.9	17.4-20.5	344	54.7	49.8-59.5	299	45.3		
10	>=65	681	20.8	19-22.7	367	55.1	50.3-59.8	314	44.9	40.2-49.7	10.25
11 12	Sex	1640	10.5	47 7 51 0	746	45.0	10 (10 1	004	54.0	50.0.57.4	18.35
13	Male	1640	49.5	47.7-51.3	746	45.8	42.6-49.1	894	54.2	50.9-57.4	0.0003
14	Female	1694	50.5	48.7-52.3	888	53.3	50.1-56.4	806	46.7	43.6-49.9	• • • • • • •
15	BMI										29.2511
16 17	Normal	1816		51.2-56.1	841	47.1	44.3-50	975	52.9	50-55.7	0.0001
17 18	Thin	361	11.1	9.9-12.5	156	42.2	35.7-49	205	57.8	51-64.3	
19	Overweight/obese	1120	35.2	32.5-38	620	55.6	51.7-59.5	500	44.4	40.5-48.3	
20	Education										6.5852
21	No education	1576	46.5	44.1 - 48.9	778	50.9	47.5-54.4	798	49.1	45.6-52.5	0.2125
22 23	Primary	602	17.8	16.2-19.5	285	46.1	41.1-51.1	317	53.9	48.9-58.9	
25 24	Secondary	804	24.1	22.5-25.9	383	48	43.6-52.4	421	52	47.6-56.4	
25	Higher	350	11.5	9.9-13.5	187	53	46.9-58.9	163	47	41.1-53.1	
26	Wealth Quintile										90.7085
27	Poorest	610	15.5	13.3-18	211	35.9	31.9-40	399	64.1	60-68.1	0.0000
28 29	Poorer	689	19.2	16.9-21.7	313	44.2	39.8-48.7	376	55.8	51.3-60.2	
30	Middle	604	17.3	15.2-19.6	301	49.5	44.5-54.5	303	50.5	45.5-55.5	
31	Richer	667	19.7	17.1-22.6	344	50.2	44.9-55.5	323	49.8	44.5-55.1	
32	Richest	764	28.3	24-33	465	60.4	55.4-65.2	299	39.6	34.8-44.6	
33 34	Place of residence										16.691
34 35	Urban	2221	64.9	59.9-69.6	1152	52.2	49-55.4	1069	47.8	44.6-51	0.0057
36	Rural	1113	35.1	30.4-40.1	482	44.8	40.7-48.9	631	55.2	51.1-59.3	
37	Ecological zone										3.43
38	Mountain	200	5.6	3.6-8.6	92	47.1	39.4-54.8	108	52.9	45.2-60.6	0.3721
39 40	Hill	1694	49.9	44.2-55.6	788	48.3	45.1-51.5	906	51.7	48.5-54.9	
41	Terai	1440	44.5	39.2-49.9	754	51.4	47.1-55.6	686	48.6	44.4-52.9	
42	Province										23.7869
43	Province 1	490	17	15.2-19	265	53	47.7-58.3	225	47	41.7-52.3	0.0511
44 45	Province 2	460	16.2	14.2-18.3	243	53.1	46.5-59.6	217	46.9	40.4-53.5	0.0011
45 46	Province 3	575	26	21.8-30.6	303	52.7	46.8-58.5	272	47.3	41.5-53.2	
47	Province 4	578	13.2	11.5-15.1	273	46.9	42-51.7	305	53.1	48.3-58	
48	Province 5	553	17.8	15.4-20.4			42-51.7 39-51.9		54.6	48.1-61	
49					253	45.4		300			
50	Province 6	343	3.9	3.3-4.6	148	39.8	32.9-47.1	195	60.2	52.9-67.1	
51 52	Province 7 Caffeine	335	6	5-7.2	149	41.9	33.8-50.5	186	58.1	49.5-66.2	
53	consumption										0.2587
54	No	2942	88.4	86.7-89.9	1434	49.4	46.9-52.0	1508	50.6	48.0-53.1	0.6895
55	Yes	392	11.6	10.1-13.3	200	50.8	44.1-57.4	192	49.2	42.6-55.8	
56 57		-						-			
57											

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58

59

Tobacco use										5.3524
No	2826	84.9	83.2-86.6	1410	50.4	47.8-53.1	1416	49.6	46.9-52.2	0.0338
Yes Alcohol	508	15.1	13.5-16.8	224	44.8	40.0-49.8	284	55.1	50.2-60.0	
consumption										2.4122
No	3249	97.8	97.1-98.4	1600	49.8	47.2-52.8	1649	50.2	47.6-52.8	0.1505
Yes	85	2.2	1.6-2.9	34	40.6	29.4-52.9	51	59.4	47.1-70.6	


Note: n = Number of sample, CI = Confidence interval

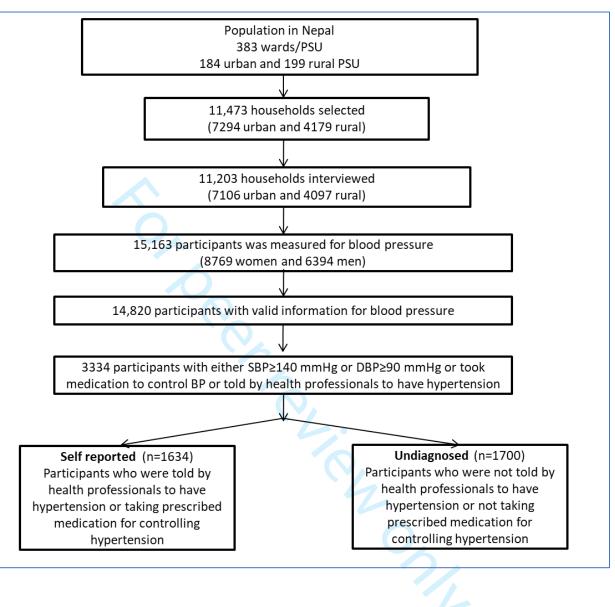
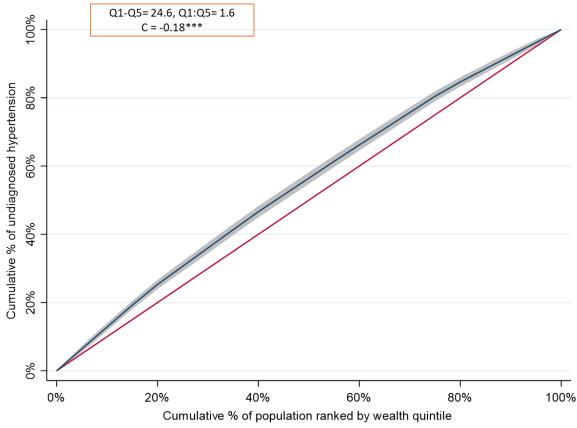

Figure 1: Selection of participants

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 4: Socioeconomic inequalities in the prevalence of undiagnosed hypertension among patients with hypertension across geographical locations in Nepal, 2016



Adjus	ted odds ratio of undiagnosed hypertension
Age (in years)	
15-24 -	1
25-34 -	• 1.12
35-44 -	1.16
45-54 -	0.96
55-64 -	0.72
>=65 -	0.65*
-00	
Sex	
Female –	1
Male -	<u>⊢ • 1.2</u> 9**
Body mass index	1
Normal –	1.22
Thin –	L=0.80**
Overweight/Obese -	
Wealth quintile	
Richest –	1
Richer –	1.34*
Middle –	1.43**
Poorer –	1.67***
Poorest -	●2.49***
Place of residence	1
Urban –	1.14
Rural -	
Province	
Province 1 –	1
Province 2 –	1.12
Province 2	1.19
Province 3 –	1.36*
	1.43*
Province 5 –	1.25
Province 6 -	1.31
Province 7 –	
Tobacco use	
No -	1
Yes –	⊢ <mark>_</mark> 1.04
0	1 2 3 4 Adjusted odds ratio with 95% Cl
	-
Note: CI= Confide	nce interval, ***= p-value<0.001, **= p-value<0.01, *= p-value<0.05

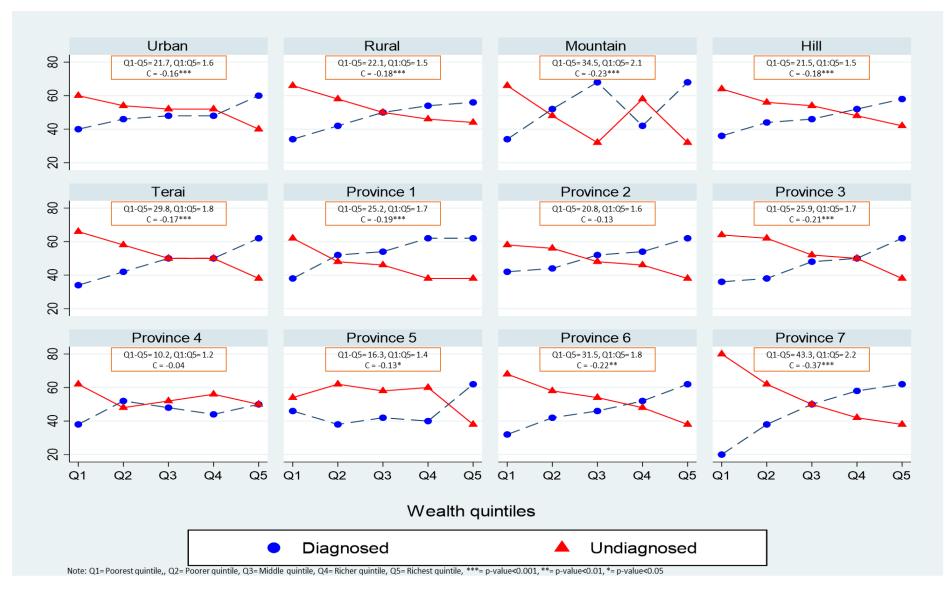

Figure 2: Determinants of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Figure 3: Concentration curve to measure the wealth-based inequality in the prevalence of undiagnosed hypertension among patients with hypertension in Nepal, 2016

Note: Q1= Poorest quintile, Q2= Poorer quintile, Q3= Middle quintile, Q4= Richer quintile, Q5= Richest quintile, ***=p-value<0.001

BMJ Open

with hypertension in Nepal, 2016

Variables

BMJ Open

Supplementary Table 1: Unadjusted determinants of undiagnosed hypertension among patients

p-value

95% CI

COR

59

60

/				<u>r</u>
8	Age			
9	15-24	1		
10	25-34	1.06	0.77-1.46	0.7090
11 12	35-44	1.00	0.75-1.34	
12	45-54	0.87	0.65-1.18	
14	55-64	0.72	0.52-0.98	
15	>=65	0.72	0.52-0.96	
16		0.70	0.32-0.96	0.0250
17	Sex			
18	Male	1.32	1.14-1.53	0.0000
19 20	Female	1		
20 21	BMI			
22	Normal	1		
23	Thin	1.13	0.91-1.41	0.2610
24	Overweight/obese	0.70	0.6-0.8	0.0000
25	Education	0.70	0.0 0.0	0.0000
26		1		
27	No education	1	0.0.1.01	0 4040
28	Primary	1.08	0.9-1.31	0.4010
29	Secondary	1.07	0.88-1.3	0.4790
30 31	Higher	0.85	0.66-1.09	0.2070
32	Wealth Quintile			
33	Poorest	2.94	2.29-3.77	0.0000
34	Poorer	1.87	1.47-2.38	0.0000
35	Middle	1.57	1.23-1.99	
36	Richer			
37		1.46	1.16-1.84	0.0010
38	Richest	1		
39 40	Place of residence			
40	Urban	1		
42	Rural	1.41	1.17-1.71	0.0000
43	Ecological zone			
44	Mountain	1		
45	Hill	0.98	0.68-1.41	0.9100
46	Terai	0.78	0.53-1.12	
47 48		0.70	0.55-1.12	0.1000
48 49	Province	1		
50	Province 1	1		
51	Province 2	1.05	0.77-1.44	0.7540
52	Province 3	1.06	0.78-1.44	0.7220
53	Province 4	1.32	1-1.74	0.0530
54	Province 5	1.40	1.01-1.92	0.0400
55	Province 6	1.55	1.09-2.2	0.0140
56		2.00		0.0110
57 58				
20				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Province 7	1.47	0.99-2.18	0.055
Caffeine consumption			
No	1.00		
Yes	0.91	0.72-1.15	0.440
Tobacco consumption			
No	1.00		
Yes	1.26	1.06-1.51	0.010
Alcohol consumption			
No	1.00		
Yes	1.46	0.91-2.32	0.114

Note: COR= Crude Odds Ratio, CI= Confidence Interval

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Page No	Item No	Recommendation
Title and abstract	1	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract
	2-3		(b) Provide in the abstract an informative and balanced summary of what
			was done and what was found
	Introdu	ction	
Background/rationale	4-5	2	Explain the scientific background and rationale for the investigation being reported
Objectives	5	3	State specific objectives, including any prespecified hypotheses
	Method	s	
Study design	5	4	Present key elements of study design early in the paper
Setting	5	5	Describe the setting, locations, and relevant dates, including periods of
C			recruitment, exposure, follow-up, and data collection
Participants	6	6	(a) Give the eligibility criteria, and the sources and methods of selection of
			participants
Variables	7-8	7	Clearly define all outcomes, exposures, predictors, potential confounders,
			and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	5	8*	For each variable of interest, give sources of data and details of methods of
measurement			assessment (measurement). Describe comparability of assessment methods
			if there is more than one group
Bias	10	9	Describe any efforts to address potential sources of bias
Study size	6	10	Explain how the study size was arrived at
Quantitative variables	7-8	11	Explain how quantitative variables were handled in the analyses. If
			applicable, describe which groupings were chosen and why
Statistical methods	8-9	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding
	"'n/a"		(b) Describe any methods used to examine subgroups and interactions
	"'n/a"		(c) Explain how missing data were addressed
	<u>"'n/a"</u>		(d) If applicable, describe analytical methods taking account of sampling
	11/ a		strategy
	"'n/a"		(e) Describe any sensitivity analyses
			(c) Describe any sensitivity analyses
Participants	Results 10	13*	(a) Report numbers of individuals at each stage of study—eg numbers
1 articipants	10	15	potentially eligible, examined for eligibility, confirmed eligible, included ir
			the study, completing follow-up, and analysed
	"'n/a"		
	<u>"n/a</u> "		(b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram
Descriptive data	10	14*	(a) Give characteristics of study participants (eg demographic, clinical,
Descriptive data	10	14'	social) and information on exposures and potential confounders
	"'n/a"		(b) Indicate number of participants with missing data for each variable of
	11/ đ		(b) indicate number of participants with missing data for each variable of interest
Outcome data	11	15*	Report numbers of outcome events or summary measures
Main results	11-13	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted
	11 13	10	estimates and their precision (eg, 95% confidence interval). Make clear
			which confounders were adjusted for and why they were included

			(b) Report category boundaries when continuous variables were categorized
			(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Other analyses	"n/a"	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
	Discussi	on	
Key results	13-14	18	Summarise key results with reference to study objectives
Limitations	17-18	19	Discuss limitations of the study, taking into account sources of potential
			bias or imprecision. Discuss both direction and magnitude of any potential
			bias
Interpretation	14-17	20	Give a cautious overall interpretation of results considering objectives,
			limitations, multiplicity of analyses, results from similar studies, and other
			relevant evidence
Generalisability	18	21	Discuss the generalisability (external validity) of the study results
	Other in	forma	tion
Funding	19	22	Give the source of funding and the role of the funders for the present study
			and, if applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.