
S1. Detailed description of network measures and algorithms 
 

Bipartite network 

Data collected with VERITAS-Social can be represented as a 

bipartite graph 𝐺 = (𝑉, 𝐸) with nodes separated in two disjoint 

and independent sets of nodes 𝑉𝑎 and 𝑉𝑙  and edges only 

connecting nodes of different sets. These sets contain the alters 

(𝑉𝑎) and the visited locations (𝑉𝑙), and the edges describe who are 

seen in each location. (Figure S1). 

 

Size, degree and density 

The size of the network 𝑛 =  |𝑉| refers to the number of nodes it 

contains. The number of alters and locations is denoted as 𝑝 =

 |𝑉𝑎| and 𝑞 =  |𝑉𝑙|. The number of edges in the networks is 

denoted by 𝑚 =  |𝐸|. The neighbourhood 𝑁𝑖  is the set of nodes 

directly connected to 𝑖. The degree of the node 𝑖 is the number 

of its neighbours 𝑘𝑖 =  |𝑁𝑖|. The average degree within 𝑉𝑎 and 𝑉𝑙 

can be calculated as �̅�(𝑉𝑎) = 𝑚
𝑝⁄   and  �̅�(𝑉𝑙) = 𝑚

𝑞⁄ . The graph 

density 𝑑 =  𝑚
𝑝𝑞⁄  is the ratio between the number of edges 

and the maximum possible numbers of edges in the network. 

 

 

 

  

Figure S1: Visual example of a bipartite 
network composed of two sets of nodes 
Va  and Vl, and a set of edges E between 
the nodes of different sets. The two sets 
of nodes represent locations and alters, 
and the edges represent who are seen in 
each location. The nodes are positioned 
in two vertical layers to easily distinguish 
the two sets. 

Figure S2: Visual example of size, degree and 
density in a hypothetical bipartite network of 
alters (blue nodes) and locations (green nodes). 
The total size of the network is 9, separated into 
3 alters and 6 locations. The degree of node k is 
5, which means that alter k is connected to 5 
locations. Node l is disconnected from the rest of 
the network, which means that it has a degree of 
0. There are 7 edges in the network, while the 
maximum possible total number is 27. Therefore, 
the network has a density of 7/27 = 0.26.  



Community structure 

Community structure is a concept that stems from the observation that real-world networks tend to be 

organized in groups of nodes with common properties. The problem is that this concept comes from an 

observation about regularities in empirical systems and there is no actual consensus on a formal 

definition. The most common understanding is that nodes are more likely to share edges within their own 

communities than with the rest of the network (Fortunato and Hric, 2016). But concretely, communities 

are mostly defined in an operational way, as they are the end product of community detection algorithms 

(Fortunato, 2010). In this paper, we used the LP&BRIM algorithm of Liu and Murata (2009), built on 

Barber’s modularity (2007)  and the label propagation algorithm (Raghavan et al., 2007), to identify non-

overlapping communities composed of alters and locations. This algorithm tries to find the maximum 

value of the network modularity (𝑄), a structural estimate of the network partition quality. In short, the 

modularity measures the difference between the actual and the expected number of edges within 

communities (see Newman and Girvan (2004) for a detailed description of modularity, and Barber (2007) 

for its calculation in bipartite network). An initial partition is first computed using an adaptation of the 

label propagation algorithm. Each node of a set (𝑉𝑎 or 𝑉𝑙) is labelled with its own community, producing 

as many communities as there are nodes. Then, recursively, each node of the other set is labelled by the 

community most shared among its neighbours. The algorithm stops when each node is labelled with the 

community that is shared by most of its neighbors. The initial partition is then further refined using the 

bipartite recursive induced module algorithm (BRIM). It uses the spectral properties of the network to 

recursively relabel nodes of each set 𝑉𝑎 and 𝑉𝑙, and it stops when a local maximum of 𝑄 is found (See 

Barber (2007) for a detailed description of this algorithm). For each network, the LP&BRIM algorithm was 

run 1000 times and the partition with the highest modularity value was retained.  

 

Two additional indicators were calculated to assess the position of the nodes relatively to the identified 

communities (Guimerà and Amaral, 2005). Within-module degree is a z-score that the connectivity of a 

node with the other nodes of its community, defined as 

 

𝑧𝑖 =
 𝑘𝑖  −  �̅�𝑠𝑖

𝜎𝑠𝑖

  

  

where  �̅�𝑠𝑖
 and 𝜎𝑠𝑖

 are the average and the standard deviation of degrees in the community 𝑠 of the node 

𝑖. Two nodes having the same z-score can have different positions in the whole network, since a node can 



also have connections with nodes of other communities. The participation index measures how nodes are 

located between the different communities in the network, defined as 

 

𝑝𝑖 = 1 −  ∑(
𝑘𝑖𝑠

𝑘𝑖
)2

𝑐

𝑠=1

 

 

where 𝑘𝑖𝑠 is the number of neighbors of node 𝑖 in community 𝑠. The participation index takes a value of 

0 if all edges of a node are within the same community and tend towards 1 if all edges are evenly 

distributed across all communities. The maximum value of the participation index depends on the number 

of communities, and equal to  1 −  
1

𝑐
  . In participants A and B bipartite networks, the maximum value is 

0.75 as both networks are divided into 4 communities. See (Guimerà and Amaral, 2005) for a detailed 

discussion on within-module degree and participation index. 

 

interconnected networks  

VERITAS-Social data can also be represented as 

interconnected networks – a social network 𝐺𝑎 = (𝑉𝑎 , 𝐸𝑎𝑎) 

and a spatial network 𝐺𝑙 = (𝑉𝑙 , 𝐸𝑙𝑙) connected by a set of 

edges 𝐸𝑎𝑙. The social network contains the alters 𝑉𝑎 

connected by interpersonal relationships 𝐸𝑎𝑎 (i.e., who know 

whom). The spatial network contains the visited locations 𝑉𝑙 

connected by spatial relationships 𝐸𝑙𝑙. The latter was not 

defined in this paper. The connections between alters and 

visited locations 𝐸𝑎𝑙  are defined by who is seen in each 

location (Figure S1). 

  

Figure S3: Visual representation of a system of 
interconnected networks composed of two 
sub-networks Gl = (Vl, Ell) and Ga = (Va, Eaa), 
representing a spatial and a social network, 
and a set of edges Ela between the sub-
networks. Nodes are positioned in two 
horizontal layers to easily distinguished the 
two sub-networks. 



 

Cross-clustering coefficient 

The cross-degree is, for a node 𝑖 from a sub-network, the number of its neighbours in the other sub-

network.  The cross degree for alters 𝑘𝑖
𝑎𝑙 and locations 𝑘𝑗

𝑙𝑎 are defined as follow 

 

𝑘𝑖
𝑎𝑙 =  |𝑁𝑖

𝑎𝑙| ∶ 𝑖 ∈  𝑉𝑎 

𝑘𝑗
𝑙𝑎 =  |𝑁𝑗

𝑙𝑎| ∶ 𝑗 ∈  𝑉𝑙 

 

where 𝑁𝑖
𝑎𝑙  and 𝑁𝑗

𝑙𝑎 are the neighbours in the other sub-network. It is equivalent to the degree 

calculated in a bipartite network (their can be no connections between two neighbours of a same set).  

 

The cross-clustering coefficient is the probability that two neighbours in the other sub-network are also 

connected to each other. Since edges between locations 𝐸𝑙𝑙 have not been defined in this paper, the 

cross-clustering coefficient has only been calculated for locations, defined as 

 

𝑐𝑐𝑗
𝑙𝑎 =  

2|𝐸(𝑁𝑗
𝑙𝑎)|

𝑘𝑗
𝑙𝑎(𝑘𝑗

𝑙𝑎 − 1)
  

 

where 𝐸(𝑁𝑗
𝑙𝑎) is the set of edges between neighbours of location 𝑗 in the social network 𝐺𝑎 (Donges et 

al., 2011). This cross clustering coefficient is equivalent to the clustering coefficient calculated in a 

unipartite network (Watts and Strogatz, 1998). See Figure S2 for a visual illustration of the cross-clustering 

coefficient. 

 

  

Figure S4: Visual illustration of 
the cross-clustering 
coefficient. For the node 𝑗 
within subnetwork 𝐺𝑙,  

 𝑐𝑐𝑗
𝑙𝑎 =

2∗1

3(3−1)
=

2

6
= 0.33   

 



S2. Node-level network measures 
 

  Bipartite   Interconnected 

Node Degree Clusters 
Within z-

score 

Participation 

index 
 

Cross-clustering 

coefficient 

A1 5  1.79 0.32  NA 

A2 1  -0.87 0  NA 

A3 3  0.87 0.44  NA 

A4 1  NA 0  NA 

A5 1  -0.33 0  NA 

A6 1  -0.33 0  NA 

A7 1  -0.33 0  NA 

A8 1  -0.33 0  NA 

A9 1  -0.33 0  NA 

A10 1  -0.33 0  NA 

A11 1  -0.33 0  NA 

A12 1  -0.33 0  NA 

L1 1  -0.45 0   NA 

L2 1  -0.45 0  NA 

L3 1  -0.45 0   NA 

L4 1  -0.45 0  NA 

L5 1  -0.45 0  NA 

L6 3  0.87 0.44  0.67 

L7 1  -0.87 0  NA 

L8 1  NA 0  NA 

L9 9  2.67 0.2  NA 

L10 0  NA NA  NA 

L11 0  NA NA  NA 

L12 0  NA NA  NA 

Table S1: Node-level measures for participant A’s bipartite and interconnected networks. Alters and locations are 

labelled Ax and Lx respectively. 

 

 



  Bipartite   Interconnected 

Node Degree 
Clustering 

Coefficient 
Dependency 

Within z-

score 

Participation 

index 
 

Cross clustering 

coefficient 

A13 2 0.42 0 NA 0  NA 

A14 3 0.36 0 NA 0.44  NA 

A15 1 0.58 0 -0.45 0  NA 

A16 1 0.58 0 -0.45 0  NA 

A17 1 0.58 0 -0.45 0  NA 

A18 2 0.42 0 -0.45 0.5  NA 

A19 11 0.14 5 2.04 0.68  NA 

A20 2 0.47 0 -0.06 0  NA 

A21 2 0.47 0 -0.06 0  NA 

A22 1 0.69 0 -0.48 0  NA 

A23 1 0.69 0 -0.48 0   NA 

A24 1 0.69 0 -0.48 0  NA 

A25 1 0.69 0 -0.48 0  NA 

A26 1 0.69 0 -0.48 0  NA 

A27 1 0.69 0 -0.48 0  NA 

A28 2 0.47 0 -0.06 0  NA 

A29 2 0.47 0 -0.06 0  NA 

A30 0 NA 0 NA NA  NA 

A31 0 NA 0 NA NA  NA 

L13 3 0.34 0 NA 0.44  1 

L14 3 0.34 0 NA 0.44  1 

L15 6 0.18 3 1.79 0.5  0.4 

L16 1 0.56 0 -0.41 0  NA 

L17 1 0.56 0 -0.41 0  NA 

L18 1 0.56 0 -0.41 0  NA 

L19 1 0.56 0 -0.41 0  NA 

L20 1 0.56 0 -0.41 0  NA 

L21 3 0.26 0 -0.06 0.44  1 

L22 3 0.26 0 -0.06 0.44  1 

L23 12 0.12 6 3.26 0.29   1 

Table S2: Node-level measures for participant B’s bipartite and interconnected networks. Alters and locations are 
labelled Ax and Lx respectively. 

 



S3. Alters and locations characteristics 

Tables S3 to S6 present the characteristics of alters and locations reported by participants A and B. In the 

tables describing alters (Table S3 and S5), different variables are used to describe people and groups. For 

people, age in number of years, gender in binary format, relation type in 6 categories (i.e., spouse, child, 

other family member, friend, acquaintance, work colleague) and interaction frequency in number of times 

per year are provided. For groups, the relation types of most group members, interaction frequency, group 

size and group description in verbatim transcription are provided. For locations (Table S4 and S6), type of 

location in 25 categories used to collect activities during CURHA, frequency of attendance in number of 

times per year, usual mode of transportation in 4 categories (i.e., walking, car, car other, public 

transportation), geographical location and distance from home are provided. Geographic locations are 

defined according to the Sherbrooke boroughs and the surrounding administrative municipalities. These 

boundaries were taken from the SDA20K dataset available in the Quebec Open Data Portal (Données 

Québec, 2019). Distances from home were calculated as shortest routes according to the road network 

with GRASS 7.0.4 (Neteler et al., 2012) and using CanMap Streetfiles V2013.3 (DMTI Spatial Inc, 2013).  

 

Node Type Age Gender Relation 
Frequency of 
interactions 

Group 
size 

Group descriptive 

A1 Person 55 F Children Daily NA NA 

A2 Person 21 F Family Daily NA NA 

A3 Person 84 F Friend Weekly NA NA 

A4 Person 86 F Friend Weekly NA NA 

A5-A6 Group NA NA Friend Weekly 4 Volunteering 

A7-A12 Group NA NA Friend Weekly 34 Choral 

Table S3: Characteristics of participant A’s alters 

Node Type Frequency Transportation Location Distance 

L1 General practitioner Annually Car other Mont-Bellevue 13.08 

L2 Shopping centre  Monthly Car other Jacques-Cartier 9.88 

L3 Medical specialist Semiannually Car other Fleurimont 11.74 

L4 Restaurant Monthly Car other Jacques-Cartier 11.27 

L5 Grocery store Weekly Car other Jacques-Cartier 9.74 

L6 Home NA NA Bromptonville NA 

L7 Alter residence Monthly Walking Bromptonville 0.54 

L8 Alter residence Semimonthly Walking Bromptonville 1.06 

L9 Church Weekly Walking Bromptonville 0.59 

L10 Pharmacy Weekly Walking Bromptonville 1.1 

L11 Grocery store Weekly Walking Bromptonville 0.59 

L12 Bank Monthly Walking Bromptonville 0.46 

Table S4: Characteristics of participant A’s visited locations 

 



Node Type Age Gender Relation 
Frequency of 

interactions 

A13 Person 50 F Family Weekly 

A14 Person 50 M Children Weekly 

A15 Person 75 M Friend Monthly 

A16  Person 65 M Acquaintance Monthly 

A17 Person 60 M Friend Monthly 

A18 Person 60 M Friend Weekly 

A19 Person 85 F Spouse Daily 

A20 Person 75 M Friend Weekly 

A21 Person 75 F Friend Weekly 

A22 Person 65 F Friend Weekly 

A23 Person 60 M Friend Weekly 

A24 Person 60 F Friend Weekly 

A25 Person 60 F Friend Weekly 

A26 Person 60 F Family Weekly 

A27 Person 70 M Friend Weekly 

A28 Person 67 F Friend Weekly 

A29 Person 70 M Friend Weekly 

A30 Person 55 M Friend Monthly 

A31 Person 70 M Friend Annually 

Table S5: Characteristics of participant B’s alters 

  

 

Node Description Frequency Transportation Location Distance 

L13 Home NA NA Newport NA 

L14 Visiting people Monthly Walking Newport 0.54 

L15 Restaurant Semimonthly Car other Lennoxville 35.95 

L16 Bank Quarterly Car other Cookshire-Eaton 12.82 

L17 General practitioner Quarterly Car other East Angus 22.40 

L18 Convenience store Semimonthly Car other Cookshire-Eaton 4.84 

L19 Convenience store Semimonthly Car other Cookshire-Eaton 4.92 

L20 Pharmacy Monthly Car other Cookshire-Eaton 12.89 

L21 Visiting people 5 times per year Car other Newport 11.39 

L22 Visiting people Bimonthly Car other Newport 7.70 

L23 Church Weekly Car other Cookshire-Eaton 4.77 

Table S6: Characteristics of participant B’s visited locations 

  

  



S4. Including groups in network analysis 

With VERITAS-Social, alters can either represent individually declared or groups of people. Including both 

forms of alters can be problematic during network analysis. Treating groups as individual nodes 

underestimates the number of people encountered in certain locations, whereas treating them as n 

nodes, where n is the size of the group, may have a too strong impact on the size of the network and its 

underlying properties.  To illustrate, for respondent A, two groups, consisting of 34 and 4 people, are seen 

in location L9. If we consider each of these groups as a single node, L9 has a degree of 3 and there is 6 

alters in the network. If we consider these groups as n nodes, the degree of L9 and the number of alters 

change to 39 and 44, respectively. These marked differences will have an impact on the properties of the 

network, such as density and community structure. We suggest that weighting the number nodes by first 

transforming n (e.g., √𝑛  ) can provide a more appropriate estimate of social exposure across locations 

while reducing the effect of large groups (in the Canadian CURHA sample, the largest reported group is 

150 individuals). Nevertheless, the reported individuals and group members may not play similar roles 

(e.g., group members not reported individually may be acquaintances providing few health-relevant social 

resources), although these relationships will be considered as equivalent in this analysis. 
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