Supplemental Information:

Cooperative dynamics across distinct structural elements regulate PTP1B activity

Kristiane R. Torgeson¹, Michael W. Clarkson¹, Ganesan Senthil Kumar¹, Rebecca Page¹ & Wolfgang Peti^{1,*}

Contents:

- (1) Figure S1. A CH/ π switch enables the WPD loop closure in PTP1B.
- (2) Figure S2. ¹³C ILV assignment of PTP1B.
- (3) **Figure S3.** PTP1B helices α 1' and α 2' show slow exchange between a bound and unbound state.
- (4) Figure S4. PTP1B ¹³C ILV fast timescale relaxation data at two magnetic fields.
- (5) Figure S5. PTP1B ¹³C ILV fast timescale relaxation data.
- (6) **Figure S6.** Comparison of ¹⁵N backbone and ¹³C ILV side chain chemical shift perturbation (CSP) data of PTP1B upon TCS401 binding.

Figure S1: A CH/ π switch enables the WPD loop closure in PTP1B. The open (left; PDB 5K9V) and closed (right; PDB 5K9W) state of PTP1B; the closed state is stabilized by adding saturating amounts of the PTP1B-specific inhibitor TCS-401 (sticks). Key structural components of PTP1B are highlighted, including the PTP and Q-loop (teal), the WPD-loop (orange) and helix α 3 (lavender). Residues that form the CH/ π switch that facilitates WPD loop closure during the catalytic cycle are labeled (F269, P185 and W179). Residues used previously for ¹⁵N ct-CPMG relaxation dispersion dynamics analysis are shown as pink spheres.

Figure S2: ¹³**C ILV assignment of PTP1B. (A)** Fully annotated 2D [¹H,¹³C] HSQC spectrum of PTP1B (residues 1-301). We did not perform a stereospecific assignment of Leu δ 1/2 and Val γ 1/2 residues; rather, the cross-peak with the lowest ¹³C ppm value was always labeled 1. **(B)** Overlay of the 2D [¹H,¹³C] HSQC spectrum of PTP1B (black) with that of TCS401-saturated PTP1B (red; 1:6 ratio). Chemical shift perturbations (CSPs) are shown using arrows. All data measured at 18.8 T.

Figure S3: PTP1B helices α 1' and α 2' show slow exchange between a bound and unbound state. (A) 2D [¹H,¹³C] HSQC of the ¹³C methyl lle δ region of PTP1B. Residues with duplicate peaks are highlighted by a blue circle. (B) PTP1B structure, with helices α 1' and α 2' colored pink, the lle residues shown as sticks and colored blue and the linker L0 highlighted with a yellow ellipse. (C) Overlay of the 2D [¹H,¹³C] HSQC of the ¹³C methyl lle δ region of PTP1B (black) with the 2D [¹H,¹³C] HSQC of the ¹³C methyl lle δ region of PTP1B (black) with the 2D [¹H,¹³C] HSQC of the ¹³C methyl lle δ region of PTP1B saturated with TCS401 (1:6 ratio; red). Ile residues that show duplicate peaks are highlighted with blue circles. All data measured at 18.8 T.

Figure S4. PTP1B ¹³C ILV fast timescale relaxation data at two magnetic fields. (A) 18.8 T (800 MHz ¹H Larmor) T₁ and T₂ ¹³C ILV side chain relaxation data for PTP1B (black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; corresponding PTP1B secondary structural elements shown above. (B) 14.1 T (600 MHz ¹H Larmor) T₁ and T₂ ¹³C ILV side chain relaxation data for PTP1B (black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; corresponding PTP1B black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; corresponding PTP1B black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; corresponding PTP1B black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B black) and PTP1B:TCS401 (1:6 ratio; red) plotted against PTP1B black) and PT

Figure S5. PTP1B ¹³**C ILV fast timescale relaxation data. (A)** T_1 and T_2 ¹³**C** ILV side chain relaxation data plotted against PTP1B primary sequence and colored based on amino acid type: Ile (orange), Leu (blue) and Val (pink); corresponding PTP1B secondary structural elements shown above. **(B)** Table reporting the T_1 and T_2 ¹³**C** ILV side chain relaxation data by amino acid type. All data measured at 18.8 T.

Figure S6. Comparison of ¹⁵N backbone and ¹³C ILV side chain chemical shift perturbation (CSP) data of PTP1B upon TCS401 binding. CSPs plotted against PTP1B residue number; corresponding PTP1B secondary structural elements shown above. Red lines indicate peaks that broadened beyond detection upon saturation with TCS401.