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1 Derivation of the correction factor

All qPCR data, reported in this study, was measured on either of two different PCR machines, namely a
TaqMan 7500 and a Lightcycler480. Given the slightly different setups, we observed a shift between the
log10 NPM1 values measured with the two machines (with the Lightcycler-values tending to be higher).
For this reason we introduced a correction factor to make the measured values comparable. To derive this
factor we used all n=440 samples for which measurements with both machines were available (including
blood measurements and patients that were not part of this study). The factor was then calculated as follows:

f actor = 10mean(log10(νLc)−log10(νT M))

with νLc being the Lightcycler values and νT M the TaqMan values. This factor of 2.55 was than used to
correct measuremnts obtained with TaqMan PCR.

2 Patient selection

Model fitting to time course data requires a minimal set of quality criteria. For this reason we excluded
patients with obvious discrepancies in the data, such as a missing chemo therapy cycle information, or too
few data points. 137 of the 275 patients received stem cell transplantation and all measurements after the
transplantation were censored. For the model analysis we only considered those patients for which at least
3 measurements were left after censoring. An overview of the data aggregation and selection is provided in
the following flow chart:
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3 Response characteristics

In our previous paper we derived characteristic parameters to describe the dynamics of NPM1 time courses
of AML patients [1]. They characterise the patient-specific treatment response as well as the remission and
relapse behaviour:

The elimination slope (α) was defined as the average slope from the initial measurement until the
first measurement below 1% during the first six months of primary treatment (induction + consolidation
therapy), using a linear regression of NPM1/ABL values. At least two eligible data points were necessary to
calculate the elimination slope α .

The NPM1 level after primary treatment (n) was defined as the lowest measurement within the first
9 months after treatment start.

The relapse slope (β ) quantifies the speed of relapse occurrence. It is defined as the maximum slope
between any two consecutive measurements obtained from all sequentially increasing measurements around
the relapse threshold.

The molecular relapse time (d) was defined as the approximated time point when the NPM1/ABL value
exceeds the relapse threshold of 1 % using a linear regression between the last point below and the first point
above the threshold.

4 Model comparison

In order to motivate and justify our choice of the model setup and especially the choice of the two free
parameters used for model fitting, we systematically compared representative models with different free
parameters.

A visual summary of the comparison can be found in Supplementary Figure S5A.

• Model 1 was the model used throughout the study with the leukemic proliferation rate (pl) and the
leukemic activation rate (tA

l ) as the free parameters.
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• In model 2 we added an additional free parameter: the chemotherapeutic kill rate (c), as varying
chemo-sensitivities between patients.

• In model 3 the leukemic inactivation rate (tQ
l ) was added to the free parameters (adding up to a number

of 4).

• In model 4 we investigated, whether we can improve the quality of the model, when neglect the
differentiation of all cells in the model by using model 1 and additionally setting the differentiation
rates (dl/h) to zero.

• In model 5 we investigated, whether a differential chemotherapeutic effect on healthy and leukemic
cells (as different parameters cl and ch) could improve the fit to the data.

• In model 6 we chose the chemotherapeutic kill rate (c) instead of the leukemic activation rate (tA
l ) as

the second free parameter.

• In model 7 we chose the chemotherapeutic kill rate (c) instead of the leukemic activation rate (tA
l ) as

the second free parameter.

For the quantitative assessment we took a dual approach. First, we used Akaike’s information criterion
(AIC, calculated within the software Monolix, in which we included the free model parameters as random
effects) as a measure to quantify which model optimally describes the average patient behaviour as well
as the number of the estimated parameters. The AIC integrates both, the fitting quality (i.e. the residual
error) and the number of free model parameters. Second, we evaluated how well the model parameters are
structurally identifiable on the level of individual patients. To this end, we used a simulated time course
and evaluated the corresponding likelihood landscape. Based on the global optimization using the AIC
approach (Supplementary Figure S5A), we could already narrow the set of optimal models to the first three
(models 1 - 3). Comparing the likelihood landscapes for these models we reason that the estimation of a
third parameter, namely the chemotherapeutic kill rate c severely limits the identifiability (Supplementary
Figure S5B). On the basis of these considerations we opt for a minimal model in which the rate pl (reflecting
the aggressiveness of the leukaemic clone) and the leukaemic activation rate tA

l (reflecting the individual
chemosensitivity) are structurally identifiable and suited to also obtain a close to optimal parameterization
for the whole population of patients.

5 Sensitivity analysis

The overall results of the model fitting depends not only on the individual choice of the free parameters but
is also influenced by the choice of the global parameters, which are set equal for all patients. In order to
analyse the sensitivity of the model results on the choice of those we systematically varied them around their
prespecified values. In particular, we performed a sensitivity analysis for the proliferation rate of the healthy
cells (ph), the carrying capacities of both states (KA/Q) and the chemotherapeutic kill rate (c). For each
univariate parameter variation, we again fitted the model to all patients and calculated the mean absolute
error (MAE) for this particular setting. The results of this analysis are summarized in Supplementary Figure
S6.

For the proliferation rate of the healthy cells ph we also had to adjust the lower and upper bound of the
proliferation rate of leukemic cells (pl), as our model was build in the assumption that the leukemic cells
proliferate faster than the healthy cells. We observe that the actual choice of the parameter ph has no major
impact on the MAE (Supplementary Figure S6A). Looking at another important model result, namely the
estimation of the 1-year relapse probability (see Figure 3F), no qualitative differences appear for different
values of ph. This is vidsually shown in Supplementary Figure S7.

When comparing the MAE using different combinations of the carrying capacities KA/Q (see Supple-
mentary Figure S6B), we observe that their absolute values are not important, as the MAE remains the same
for all cases KA = KQ. There is also no major effect, when the active state capacity KA exceeds the capacity
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of the quiescent state KQ. However, when the quiescent state has a higher capacity than the active state
(KQ > KA) the MAE is visibly increased, indicating that this combination is not a good choice for a model
fit.

The value of the chemotherapeutic kill rate c has only minor impact on the overall goodness of fit (see
Supplementary Figure S6C). It is only important that the value is chosen sufficiently high (above 0.9 1/day).
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