Supplementary Material

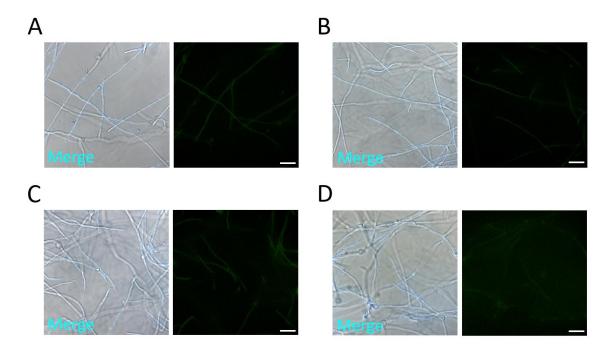
Single-molecule FISH reveals subcellular localization of α -amylase and actin mRNAs in the filamentous fungus *Aspergillus oryzae*

Yujiro Higuchi*, Kaoru Takegawa

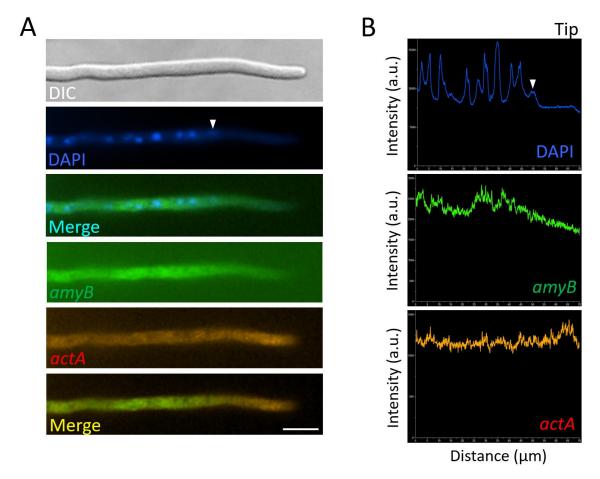
Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

*Corresponding author. Tel/Fax: +81 92 802 4734, E-mail address: y.higuchi@agr.kyushu-u.ac.jp

Word count: Abstract, 208; Main, 4390.


Number of figures: Main, 7; Supplementary, 4.

atgatggtcgcgtggtggtctctatttctgtacggccttcaggtcgcggcacctgctttg cgcaccaccagagataaaga Probe # 1	tgtccctaccagaacgtcatggacggcgtactgaactatcccatttactatccactcctc acagggatggtctt ccgcatgactgatagggta atgataggtgaggag # 25 Probe # 26 Probe # 27
gctgcaacgcctgcggactggcgatcgcaatccatttattt	aacgccttcaagtcaacctccggcagcatggacgacctctacaacatgatcaacaccgtc ttgcg aagttcagttggaggccgtc tacctgctggagatgttgta tagttgtggcag Probe # 28 Probe # 29 Probe # 30 aaatccgactgtccagactcaacacctctgggcacattcgtcgagaaccacgacaaccca tttaggct acaggtctgagttgtgagga ccgtgtaagcagctcttggt ctgttgggt
gcaaggacggatgggtcgacgactgcgacttgtaatactgcggatcagaaatactgtggt cgttc gacgctgaacattatgacgc ctttatgacacca Probe # 4 Probe # 5	Probe # 31 Probe # 32 Probe # 3 cggttcgcttcttacaccaacgacatagccctcgccaagaacgtcgcagcattcatcatc
ggaacatggcagggcatcatcgacaagttggactatatccagggaatgggcttcacagcc ccttgta gttcaacctgatataggtcc gaagtgtcgg Probe # 6 Probe # 7	gccaagcgaag atgtggttgctgtatcggga cttgcagcgtcgtaagtagt 3 Probe # 34 Probe # 35
atctggatcaccccgttacagcccagctgccccagaccaccgcatatggagatgcctactagacctagt gtatacctctacggatg	ctcaacgacggaatccccatcatctacgccggccaagaacagcactacgccggcggaaac ctgccttaggggtagtagat Probe # 36
Probe # 8 catggctactggcagcaggatatatactctctgaacgaaaactacggcactgcagatgac gta gatgaccgtcgtcctatata gagagacttgcttttgatgc gtgacgtctactg Probe # 9 Probe # 10 Probe # 11	gaccccgcgaaccgcgaagcaacctggctctcgggctacccgaccga
ttgaaggcgctctcttcggcccttcatgagagggggatgtatcttatggtcgatgtggtt aacttcc gagaagaagccgggaagtact ccctacatagaataccagct Probe # 12 Probe # 13	aagttaattgcctccgcgaacgcaatccggaactatgccattagcaaagatacaggattc ttcaattaacggaggcgctt gttaggccttgatacggtaa cgtttctatgtcctaag Probe # 37 Probe # 38 Probe # 39 gtgacctacaagaactggcccatctacaaagacgacacaacgatcgccatgcgcaagggc cac gatgttcttgaccgggtaga gtttctgctgttgctagc
gctaaccatatgggctatgatggagcgggtagctcagtcgattacagtgtgtttaaaccg gattggtatacccgatacta ccatcgagtcagctaatgtc ttggc Probe # 14 Probe # 15 Probe	Probe # 40 Probe # 41 acagatgggtcgcagatcgtgactatcttgtccaacaagggtgcttcgggtgattcgtat
ttcagttcccaagactacttccacccgttctgtttcattca	cagcgtctagcactgataga acgaagcccactaagcata Probe # 42 Probe # 43
# 16 Probe # 17 Probe # 18	accetetecttgagtggtgeggttacacageeggccageaattgaeggaggteattgge t egttaaetgeetecagtaae Probe # 44
caggttgaggattgctggctaggagataacactgtctccttgcctgatctcgataccacc gtcca gatcctctattgtgacagag gactagagctatggtgg Probe # 19 Probe # 20	tgcacgaccgtgacggttggttcggatggaaatgtgcctgttcctatggcaggtgggcta
aaggatgtggtcaagaatgaatggtacgactgggtgggatcattggtatcgaactactcc ttc caccagttcttacttaccat caccctagtaaccatagctt	cctttacacggacaaggata at Probe # 45 Pr
attgacggcctccgtatcgacacagtaaaacacgtccagaaggacttctggcccgggtac ggaggcatagctgtgtcatt gtgcaggtcttcctgaagac Probe # 23 Probe # 24	cctagggtattgtatccgactgagaagttggcaggtagcaagatctgtagtagctcg ggatcccataacataggc tccatcgttctagacatcat obe # 46 Probe # 47
aacaaagccgcaggcgtgtactgtatcggcgaggtgctcgacggtgatccggcctacact atgtga Probe	


Supplementary Figure S1. smFISH probe for *amyB*. In 1,497 b of *amyB* sequence, 47 regions (indicated as Probe #) of 18-22 nt were selected for the smFISH probe, each attached with FAM fluorescence molecule.

atggaagaggaagttgctgctctcgtcattgacaatggttcgggtatgtgcaaggccggt cttcaacgacgagagcagta gttaccaagcccatacacgt Probe # 1 Probe # 2	gctggccgtgatttgaccgattacctcatgaagatcctggctgagcgggttacactttc gaccggcactaaactggcta ggagtacttctaggaccgac gcgccaatgtgaaag Probe # 21 Probe # 22 Probe # 23
ttcgccggtgacgatgcccccgtgctgtcttcccctccattgtcggtcg	tccaccaccgctgagcgtgaaattgtccgtgacatcaaggagaagctttgctacgtcgcc aggtg ggcgactcgcactttaacag actgtagttcctttcgaaa atgcagcgg Probe # 24 Probe # 25 Probe # 2 ctcgacttcgagcaggagattcagaccgcttctcagagctccagcctcgagaagtcctat gagctgaagct tctaagtctggcgaagagtc gtcggagctcttcaggata 6 Probe # 27 Probe # 28
gtaccat tactaaccatacccagtctt gagaatacagccactactcc cagg Probe # 5 Probe # 6 Prob aagcgtggtatcctcaccctcagatatcctatcgagcacggtgtcgtcacaaactgggat ttcgcaccataggagt gtctataggatagctcgtgc cagtgtttgacccta e # 7 Probe # 8 Probe # 9	gagcttcctgatggccaggtcatcaccatcggtaacgagcgtttccgtgctcctgaggct c gaaggactaccggtccagta ggtagccattgctcgcaaag cgaggactccga Probe # 29 Probe # 30 Probe # 31
gacatggagaagatttggcatcacacattctacaacgagctccgtgttgctcccgaggag ctgta tcttctaaaccgtagtgtgt gatgttgctcgaggcacaac Probe # 10 Probe # 11	ctcttccagcctagcgttctggggtaggaagcggtggtatccacgttaccaccttcaac gagaaggt gatcgcaagacccagacctt ccataggtgcaatggtggaa tg
cacceggttctcctgacggaagcccctatcaaccctaagtccaaccgtgagaagatgacc	ggtggtactaccatgtaccctggcatctccgatcgtatgcagaaggaaatcaccgccctt cc gatggtacatgggaccgtag ctagcatacgtcttccttta gaa Probe # 37 Probe # 38 Pro gccccctcgtccatgaaggtcaagatcattgctcctcctgagcgtaaatactccgtctgg cgggggagcaggtactt gttctagtaacgaggaggac gcatttatgaggcagacc be # 39 Probe # 40 Probe # 41
tcactgtatgcctccggtcgtaccaccggtatcgttctggattctggtgacggtgtcacc agtgacatacggag cagcatggtggccatagcaa ctaagaccactgccacagtg # 16	atcggtggttccatcttggcttccctgtccaccttccagcagatgtggatctccaagcag ta caccaaggtagaaccgaagg caggtggaaggtcgtctaca tagaggttcgtc Probe # 42 Probe # 43 Probe # 44
	gagtacgacgagcggtccttcgatcgttcaccgcaagtgcttctaa ctcatgct ggaagctagcaagtggcgtt Probe # 45

Supplementary Figure S2. smFISH probe for *actA*. In 1,128 b of *actA* sequence, 45 regions (indicated as Probe #) of 18-22 nt were selected for the smFISH probe, each attached with CAL Fluor Red 610 fluorescence molecule.

Supplementary Figure S3. smFISH procedures were performed without the *amyB* probe in cultures of CD before shifting (**A**) and after shifting to CDmal, at 30 min (**B**), 60 min (**C**) and 90 min (**D**). Note that almost no fluorescent signals associated with *amyB* were observed (each right panel). Scale bars, 20 μm.

Supplementary Figure S4. Localization of *amyB* and *actA* mRNAs in an *A. oryzae* hypha cultured in complete medium containing maltose. (**A**) smFISH was performed with *amyB* and *actA* probes added to an overnight culture in MPY. The white arrowhead indicates the nucleus located closed to the apex. (**B**) Line scan analyses of DAPI, *amyB* and *actA* mRNAs fluorescent signals were conducted through the hypha of (**A**). The white arrowhead indicates the nucleus located closed to the apex. Note that the fluorescent signals of *amyB* mRNAs are not seen in the apical region, whereas those of *actA* mRNAs appeared more intense in the apical region. Scale bar, 10 μm.