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1 Supplemental Figures

1.1 Training R? comparison

Figure S 1: Compare train R? obtained by our BGW method, PrediXcan, and TIGAR.
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Train R? value per gene obtained by our BGW method (dark blue), PrediXcan (yellow),
and TIGAR (baby blue) for genome-wide genes are plotted, where genes were ranked in

the increasing order of R? by BGW.



1.2 TWAS results using individual-level GWAS data of ROS/MAP and MCADGS

Figure S 2: Manhattan plots of TWAS results of AD clinical diagnosis and global AD pathology by
using BVSR cis-eQTL estimates only.
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Figure S 3: Manhattan plots of TWAS results of neurofibrillary tangle density (tangles) and -
amyloid load (amyloid) by using BVSR cis-eQTL estimates only.
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Figure S 4: Manhattan plots of TWAS results of AD clinical diagnosis by PrediXcan and TIGAR.
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Figure S 5: Manhattan plots of TWAS results of global AD pathology by PrediXcan and TIGAR.
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Figure S 6: Manhattan plots of TWAS results of neurofibrillary tangle density (tangles) by

PrediXcan and TIGAR.
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Figure S 7: Manhattan plots of TWAS results of 3-amyloid load (amyloid) by PrediXcan and TIGAR.
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Figure S 8: Manhattan plots of standard eQTL analysis results of genes ZC3H12B and KCTD12 by
single variant tests.
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1.3 TWAS results using IGAP summary-level GWAS data of AD

Figure S 9: Manhattan plots of TWAS results using IGAP summary statistics of AD by using both
cis-eQTL and trans-eQTL (BGW-TWAS) and only cis-eQTL estimates obtained by BVSR.
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Figure S 10: Manhattan plots of TWAS results using IGAP summary statistics of AD by S-PrediXcan
and TIGAR .
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Figure S 11: Histogram of log;( Bayesian estimates for cis- and trans- specific probabilities of being
an eQTL (7is, Trans), OVEr genome-wide genes.
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2 Supplemental Tables

Gene CHR Position P-VALUE Z-score
WDR33 2 128,458,595 4.01e-08 -5.49
SAP130 2 128,698,790 1.05e-06 -4.88

GPX1¢ 3 493,96,033  2.45e-98 21.04

BTN3A2¢ 6 26,365,386 1.56e-26  10.66
ZNF192¢ 6 28,109,715 1.25e-32  -11.89
AL022393.7° 6 28,143,965 2.24e-178 -28.47
HLA-DRB1%? 6 32,546,545  8.99e-13 7.14
HLA-DQBI1 6 32,627,243  5.33e-08 -5.43
RP11-750H9.5 11  4,740,4698  3.08e-07 -5.11
SLC39A13b 11 47,428,682 1.73e-06 -4.78
FSTL3 19 676,388 4.98e-07 -5.02
MKNK2 19 2,037,480 4.12e-07 -5.06
ZNF227¢ 19 44,716,690 5.87e-12 6.88
ZFP112¢ 19 44,830,705  5.79e-20 9.14
PVR%b:< 19 45,147,097 4.3e-07 -5.05
CEACAM19%>¢ 19 45,174,723  2.54e-13 7.31
TOMM40 19 45,394,476  2.97e-11 -6.64
APOC1? 19 45,417,920 1.11e-10 6.45

FOSB 19 45,971,252  3.26e-07 -5.10
SNRPD2 19 46,190,712 1.97e-43 -13.81
FBX046 19 46,213,886  1.09e-06 -4.87

Table S 1: Significant genes identified by TWAS using BVSR cis-eQTL estimates only.
a. Genes that were also identified by BGW-TWAS.

b. Genes that were also identified by PrediXcan.

c. Genes that were also identified by TIGAR.



H Gene CHR Position P-VALUE Z-score H
HLA-DRB1“ 6 32546545 2.06e-06 4.75
SLC39A13¢ 11 47428682 8.57e-07 -4.92

PVReP 19 45147097 6.02e-10 -6.19

CEACAM19%® 19 45174723 3.6e-12  6.95

Table S 2: Significant genes identified by S-PrediXcan.

a. Genes that were also identified by BVSR estimates of cis-eQTL and trans-eQTL (BGW-TWAS) or
cis-eQTL only.

b. Genes that were also identified by TIGAR.



Gene CHR Position P-VALUE Z-score
STX3 11 59,480,928 7.28e-07 -4.95
PRPF19 11 60,658,201 5.98e-08 5.42
TMEM109 11 60,681,345 1.09e-06 -4.88
TMEM132A 11 60,691,934 6.26e-10 -6.18

ZNF227° 19 44,716,690 1.21e-08 5.7

ZFP112° 19 44,830,705 7.32e-12 6.85
PVRP 19 45,147,097 1.82e-11 -6.72
CEACAM19%® 19 45,174,723 2.83e-16  8.18
CLPTM1 19 45,457,847 9.17e-13 -7.14
CLASRP 19 45,542,297 2.08e-09 5.99
ZNF296 19 45,574,758 3.45e-10 -6.28
TRAPPC6A 19 45,666,186 1.11e-17 -8.56
MARK4 19 45,754,549 3.41e-10 6.28
RTN2 19 45,988,549 2.7e-07 5.14
PPMIN 19 45,992,034 1.24e-08 5.69
OPA3 19 46,030,684 2.55e-10 -6.32
EML2 19 46,112,659 2.22e-09 5.98
GIPR 19 46,171,501 4.58e-12 6.92
SNRPD2 19 46,190,712 2.69e-10 6.32
DMWD 19 46,286,204 4.15e-08 -5.48
TTYH]1 19 54,926,372 4.98e-07 -5.03

Table S 3: Significant genes identified by TIGAR.

a. Genes that were also identified by BVSR estimates of cis-eQTL and trans-eQTL (BGW-TWAS) or
cis-eQTL only.

b. Genes that were also identified by S-PrediXcan.



3 Supplemental Methods

3.1 Bayesian Variable Selection Regression Model

Consider the following Bayesian variable selection regression (BVSR) model [1] for
quantitative gene expression traits:

Erx1 = XoxpWpx1 + €nx1, w; ~ TN(0 o203 4+ (1 —7m)do(+), & ~ N(0,02), (D

YT wT e

where &,,; denotes the vector of centered quantitative expression levels for n samples;
X<, denotes the centered genotype matrix of p genetic variants; ¢; denotes the residual
error independently and identically distributed (i.i.d.) with normal distribution N (0, 02);
and the broad sense “eQTL” effect size w; follows a spike-and-slab prior distribution [1,
2, 3] — that is, w; follows the normal distribution N (0, 020>

P wY e

) with probability = and the
point-mass density function dy(-) at 0 with probability (1 — 7). Basically, do(w;) = 1 if
w; = 0, otherwise dy(w;) = 0. The effect size variance (o2 c?) is assumed to be scaled by
the error term variance (o?) for the purpose of computational convenience.

As is typical of SNP-based genome-wide analyses, the genotype matrix X, contains
either dosage data within range [0, 2] or genotype data with values {0, 1,2} denoting the
expected or genotyped number of minor alleles. The assumption of the spike-and-slab prior
for w; enforces variable selection in the regression model (1). Assuming both &,; and
columns of X, are centered, the intercept term is omitted from the regression model.

3.1.1 Model cis- and trans- eQTL

In this paper, we employ this BVSR model to account for both cis- and trans- eQTL
genotype data (cis- and trans- are defined based on SNP proximity to the target gene)
for modeling quantitative gene expression traits. Particularly, we extend the BVSR model
to allow for respective prior distributions for the effect sizes of cis- and trans- SNPs (i.e.,
eQTL) as follows:

89 = Xciswcis + Xtranswtrans + € (2)
Weisi ™~ 71-cis]\[<07 O-Siso-?) + (1 - 7T-cis)(s(] (wcz’s,i)
wtrans,i ~ 7-"trans]\[(oa Utzransaez) + (1 - 7T'tr‘ans)50(1‘]157"(1113,1')7

e ~ N(0,02).

Generally, SNPs within +1MB of the flanking 5’ and 3’ ends of the target gene are
considered as cis-SNPs, and other SNPs on the genome are considered as trans-SNPs.



Note that cis- and trans- can be viewed as two non-overlapped annotations for SNPs in
the BVSR model (1)), which makes model a special case of the previously developed
Bayesian Functional GWAS (BFGWAS) method [4]. Similarly, the following independent
and conjugate hyper priors are assumed for hyper parameters in model (2)):
Teis ~ Beta(aeis, beis), 0%, ~ IG(k1, ks), 3)
Ttrans ™~ Beta(atransa btrans)a Ufmns ~ I1G (k37 k4),

O'2 ~ ]G(l{?5, ]{?6)

€

where Beta(a,,b,) denotes a Beta distribution with positive shape parameters a, and b,

for ¢ = {cis, trans}, and an Inverse-Gamma distribution /G(k;, k;) with shape parameters

2 2
Ocisy Otrans:

ks and scale parameters k; is assumed for ( 0?) with respective shape and scale
parameters.
Hyper prior values are chosen for a, and b, to enforce a sparse model, such that the
a _ -6 :
ats, = 1077 with (aq + b,) equal to the total number of

variants of respective annotation ¢ = {cis,trans}. The hyper priors for Inverse Gamma

mean of the Beta distribution

are taken as k; = ko = k3 = ky = ks = kg = 0.1 to induce non-informative priors
for (02,,02....,02). Thus, the posterior estimates of (s, 02,, Tiranss Tovans) Will mainly

be driven by data likelihood.

3.1.2 Latent Indicator Variable

To facilitate computation, a latent indicator vector -,; is introduced [2] into the model
(2), where each element ~; € {0,1} indicates whether the corresponding ith effect w,

equals to 0 with ; = 0 or follows the N (0, 020?) distribution with ; = 1. Equivalently,

v ~ Bernoulli(m;), w_ ~ &o(-), Wy ~ MV N5(0,02V5), 4)

where || denotes the number of non-zero entries in «; w_~, denotes the sub-vector of w,,»;
corresponding to variants with 7; = 0; w., denotes the sub-vector of w,.; corresponding

to the variants with {y; = 1;j =1,--- ,|v|} that follows a multivariate normal distribution
(MVN) with mean 0 and covariance 02V,; and V, is the corresponding sub-covariance-
matrix of SNPs with v; = 1, V,., = diag(o},,--- ,0.,), where o2, = o7, if the ith SNP is

of cis- annotation and o7 ; = 07,,,, if the ith SNP is of trans- annotation. The expectation

of the latent indicator variable (FE[y;]) is the posterior probability (PP;) for the ith SNP to
be an eQTL with effect size w;.



3.1.3 Bayesian Inference

From the above assumed BVSR model M), the posterior joint distribution of
(w,~, o2 m, 1) is proportional to the product of likelihood and prior density functions,

P(w7’770’277r70-e2|897X’ A) ocp(ﬁg]X,w,'y,af)P(w]A,ﬂ-,az,of)P('y]ﬂ') (5)
P(m)P(0®)P(0?),

€

where © = (Teis, Tirans), 02 = (0%,,0%...), and A is a p x 2 matrix with binary values
denoting if the analyzed SNPs are categorized as cis- or trans-.

The main challenge for modeling trans-SNPs in addition of cis-SNPs in the regression
model of expression quantitative traits is the computation burden of making
Bayesian inference for (w, E[y] = PP) with respect to genome-wide genes (~20K).
In order to make the Bayesian inference feasible in practice, we utilize the scalable
Expectation-Maximization Markov chain Monte Carlo (EM-MCMC) algorithm proposed for
BFGWAS [4]. Specifically, we first segment considered genotype data into approximately
independent blocks based on the block-wise linkage disequilibrium (LD) structure of the
human genome, i.e., X = {X;, X, -, Xx}. Then we can write the likelihood function

(5) as a product of likelihood functions for X},

K
P<89|X>wa77052) :Hpk<€g’Xk7wk>7kage2)a (6)
k=1
where (89|Xk, Wi, Yk, 7') ~ MVNWM(kak, U?Ih,k‘)
For the convenience of implementing MCMC algorithm per genome block in parallel

with given shared hyper parameters @ = (75, Tirans), 02 = (0%, 0tuns)> 02 is fixed

across all genome blocks as the variance of §,. As shown by previous studies [4], this
assumption only results in slightly conserved estimates for (w, P P) but saves the hassle of
estimating a block-specific error variance. By EM-MCMC algorithm, we estimate (wy,, P Py)
by implementing MCMC algorithm [5, 6] per block (i.e., Expectation step (E-step)) with
given values of (mw,0?); and then update the estimates of (m,0?) by maximizing the
corresponding expected posterior likelihood function [7] (Maximization step (M-step))
given the estimates of (w, PP) from the previous E-step. A few such EM iterations will be
run until the estimates of (w, o) converge, which generally requires ~5 EM iterations [4].
The estimates (w, I/JP) from the last E-step will be used to calculate Bayesian genetically
regulated gene expression (GReX) levels for additional samples with GWAS genotype data
X,

— b —_—

GReX = X,(PP;). (7)

=1



Detailed derivations about the conditional posterior distributions of w; and -, as well
as the EM-MCMC algorithm are referred to the supplementary note of the BEGWAS paper
[[4]. To further reduce the computation time for fitting such tissue-gene-specific Bayesian
model for genome-wide genes, we propose a novel computational technique to implement
the MCMC algorithm using only the pre-calculated LD coefficients and summary statistics
from standard eQTL analyses based on single variant tests. Below, we briefly outline steps
of the EM-MCMC algorithm using only summary statistics.

3.1.4 Fast MCMC using Only Summary Statistics

As shown in the BFGWAS supplementary note [4], the posterior distribution for (wy,~yx)
of block £ is
P(’Ujk, 7/€|X/€7 gg7 T, 027 6?) X P(89|X1€7 W, Yk, GS)P(wk|7k7 02 GQ)P(7k|7T) (8)

) YE

The conditional posterior distribution of w),, | is given by

P(Wiy | X i) Ego Vi, 02, 02) ~
MV (K Kot + Vi) Kl ), (X X + V) 7) - ©)

|vee [V [ Ve

After integrating wj, out from (8], the marginal conditional posterior distribution for ~; is
given by

P(v| Xy, 85,7, 0%, 07) 0</ Pr(84] X, wr, Wiy 02) P(wil e, 02, 02) P(ye| ) dwy
wy,
1

X |Q|.Yk| |_1/2 exp {202

(8 X o) Vine 21 <X|tm.8g>} Py ),
(10)

where Q|‘>’k| = ‘/|’Yk|(X/

||
subscript |v,| indicates sub-matrices or sub-vectors corresponding to variants with nonzero

Xivil) + Inyp> 02 will be taken as the variance of &,, and the

indicator variables. That is, V)., is a diagonal matrix with (V},,|);; = 02, or o}, given
the jth SNP is cis- or trans-.

As discussed in the BFGWAS paper [4], majority computation time is spent on
implementing the MCMC algorithm per genome block (E-step), because > 10,000 MCMC
iterations are required for obtaining converged estimates for (wy, ;). Particularly, most
computation resource is spent on evaluating the posterior likelihood (9) and per

MCMC iteration, where calculating X|_ | X),,| and X| &, costs most computation time.
[vee| <™ 17k [ve| ™9



Therefore, by deriving values of X|_ | X\,,| and X| &, from pre-calculated LD coefficients
and summary statistics [8]], up to 90% computation time can be saved.

Consider the single variant regression model that is generally used for standard eQTL
analyses,

8, = Xyw; + €, (11

where X; denotes the genotype vector of the ith SNP. The least square estimator w; is given
by w; = (X[X;) ' X/&,. Then the elements of vector X, |8, are given by

(X|/»yk|8g)i = w; (X[ X;), (12)

where X!X; = (n—1)Var(X;) can be either pre-calculated using individual-level genotype
data or approximated by 2n f;(1 — f;) with sample size n and minor allele frequency f;.
Note that {X/X;; i = 1,...,p} are also the diagonal values of X|’%|X|7k|. For the off-

diagonal values, [X| X\, ]u; can be derived from the LD coefficient between the ith

and jth SNPs, r;; = #&,Xﬂ That is,
[l J

X Xells = s (| (XIX)(X]X5)) (13)

Thus, given the summary statistics of the variance of quantitative gene expression trait
&,, sample size n, either SNP genotype variances {Var(X;)} or minor allele frequencies
{f:}, pre-calculated LD coefficients {r;;;i,j = 1,---,p}, and least square estimates
of effect sizes {w;} from single variant regression models (12), we can obtain values
of X[, X}y and X[ &; with manageable computation cost to evaluate the posterior
mean of w; (9) and the posterior likelihood for ~; (10). Moreover, if individual level
genotype and expression quantitative trait data are not available, the MCMC can still
be implemented by using summary statistics where minor allele frequencies and LD
coefficients could be approximated by corresponding values generated from reference

panels of the same ethnicity.

3.1.5 Adapted EM-MCMC Algorithm

To further reduce computation burden, instead of considering all segmented genome
blocks for genome-wide SNPs, we only fit model (2) with pruned genome blocks that either
contain at least one cis-SNP or at least one potential trans-eQTL with p-value < 1 x 10~°
by single variant test (i.e., testing Hy : w; = 0 with model (12))).

The steps of our adapted EM-MCMC algorithm per gene per tissue type are as follows:



(i) Generate summary statistics: either obtain from individual level genotype data and
single variant analyses for genome-wide SNPs, or obtain SNP genotype variances
and LD coefficients from reference panel and other summary statistics from previous
standard eQTL analyses based on single variant tests;

(ii) Prune genome blocks for applying model (2):
(a) Consider blocks that contain either at least one cis-SNP or at least one potential
trans-eQTL with single variant test p-value < 1 x 107%;

(b) Select up to B blocks with minimal p-values within block from smallest to
largest. For example, B = 100 was used in our application studies. This number
can be tuned by users to reduce total computation time accordingly;

(c) Select any remaining blocks containing cis-SNPs that were not selected in (b);
(iii) Apply EM-MCMC algorithm to the pruned blocks:

(a) Fix o2 at the variance of &,;
(b) Set initial values for (7, 0?), €.8., Teis = Tirans = 1 x 107% and 02, = 02.,,,. = 0.1;

(c) E-step: Conditioning on the most recent estimates of (, o?), estimate (w, PP)
by implementing MCMC algorithm per block using only summary statistics;

(d) M-step: Conditioning on the estimates of (w, PP) from the previous E-step,
update (w,0?) by their maximum a posteriori estimates (MAPs), maximizing
the expected log-posterior-likelihood functions [7]];

(e) Repeat the EM-steps (c) and (d) for a few times until the MAPs of (m,o?)
converge, e.g., 5 EM steps.

(iv) Estimates of (w, P P) from the last E-step will be used to impute Bayesian GReX from
GWAS genotype data of new samples by (7).

See the supplementary note of the BFGWAS paper [4] for details of the EM-MCMC
algorithm (iii).
3.2 Software

Software implementing this BGW-TWAS is now available at GitHub (https://github.
com/yanglab-emory/BGW-TWAS). All steps are wrapped together (enabling parallel
computation) through submitting jobs by a Makefile that is generated by a Perl script,


https://github.com/yanglab-emory/BGW-TWAS
https://github.com/yanglab-emory/BGW-TWAS

which wraps together generating summary statistics by single variant tests with individual-
level genotype and gene expression data, pruning genome blocks, implementing adapted
EM-MCMC algorithm, and calculating Bayesian GReX for TWAS.

3.3 ROS/MAP Data Description
3.3.1 Study Design

ROS and MAP are prospective cohort studies of aging and dementia, which recruit older
adults without known dementia at enrollment who agree to annual clinical testing and
brain donation with structured collection of postmortem brain indices at the time of death.
All participants sign an informed consent, an Anatomic Gift Act and a consent for their data
deposited in the Rush Alzheimer’s Disease Center (RADC) repository to be re-purposed
by other investigators. Both studies were approved by an Institutional Review Board of
Rush University Medical Center, Chicago, IL. Both studies employ harmonized clinical and
postmortem data collection facilitating joint analyses.

3.3.2 Cognitive testing and Cognitive Status Diagnosis

Trained technicians administered 17 cognitive tests annually as described previously from
which a composite measure of global cognition was constructed[9]. Cognitive status was
determined in a three-step process. Annual cognitive testing was scored by a computer
and reviewed by a neuro-psychologist to diagnose cognitive impairment and reviewed by
a physician. At the time of death, a physician used all cognitive and clinical data collected
prior to death, blinded to all postmortem data, to classify persons with respect to dementia,
mild cognitive impairment and no cognitive impairment as previously described[/10].

3.4 Postmortem Assessment

Brain removal, tissue sectioning and preservation, and a uniform gross and microscopic
examination with quantification of post-mortem indices followed a standard protocol
[11, 12, [13]. AD pathology (i.e., neuritic plaques, diffuse plaques and neurofibrillary
tangles) was visualized using a modified Bielschowsky silver stain on sections from five
brain regions and a global summary measure was constructed as described in prior
publications[14]. 5-amyloid load and paired helical filament tau immunoreactive neuronal
neurofibrillary tangles (tangles) were quantified in 8 brain regions (anterior cingulate
cortex, superior frontal cortex, mid frontal cortex, inferior temporal cortex, hippocampus,



entorhinal cortex, angular gyrus/supramarginal gyrus, and calcarine cortex). Overall (-

amyloid load was calculated through averaging mean percent area of f-amyloid deposition

per region, across multiple brain regions. Likewise, tangles densities were derived by

averaging tangles densities across corresponding brain regions. The global measure of AD

pathology is based on counts of neuritic and diffuse plaques and neurofibrillary tangles

(15 counts) on 6m sections stained with modified Bielschowsky.
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