
Predicting gene regulatory networks from cell
atlases
Andreas Møller and Kedar Natarajan
DOI: https://doi.org/10.26508/lsa.202000658

Corresponding author(s): Kedar Natarajan, University of Southern Denmark

Review Timeline: Submission Date: 2020-01-23
Editorial Decision: 2020-03-18
Revision Received: 2020-06-15
Editorial Decision: 2020-08-10
Revision Received: 2020-08-24
Accepted: 2020-08-31

Scientific Editor: Shachi Bhatt

Transaction Report:
(Note: With the except ion of the correct ion of typographical or spelling errors that could be a source 
of ambiguity, let ters and reports are not edited. The original formatt ing of let ters and referee 
reports may not be reflected in this compilat ion.)



March 18, 20201st Editorial Decision

March 18, 2020 

Re: Life Science Alliance manuscript  #LSA-2020-00658 

Dr. Kedar Nath Natarajan 
University of Southern Denmark 
Biochemistry and Molecular Biology 
Campusvej 55 
Odense 5230 
Denmark 

Dear Dr. Natarajan, 

Thank you for submit t ing your manuscript  ent it led "Predict ing gene regulatory networks from cell
at lases" to Life Science Alliance. The manuscript  was assessed by expert  reviewers, whose
comments are appended to this let ter. 

As you will see, the reviewers point  out several weaknesses of your analyses that would need
addressing to allow publicat ion here. Should you be prepared to address the concerns raised, we
would be happy to invite you to submit  such a revised version to us. But please consider your
opt ions carefully, we will need strong support  from both reviewers on a revised version in order to
move forward here. Should you decide to embark into the revision, it  would be important to address
the following reviewer concerns convincingly: 
- the code must be made available to the reviewers (we also mandate availability to all upon
publicat ion)
- provide quant ificat ions that are current ly missing
- more comparisons are needed to demonstrate the relevance of the approach and the definit ion of
matching cell types needs further support  via orthogonal approaches
- consider computat ional validat ion of the regulator-target/network relat ionships
- provide all informat ion necessary for proper re-review

To upload the revised version of your manuscript , please log in to your account:
ht tps://lsa.msubmit .net/cgi-bin/main.plex 
You will be guided to complete the submission of your revised manuscript  and to fill in all necessary
informat ion. Please get in touch in case you do not know or remember your login name. 

We would be happy to discuss the individual revision points further with you should this be helpful. 

While you are revising your manuscript , please also at tend to the below editorial points to help
expedite the publicat ion of your manuscript . Please direct  any editorial quest ions to the journal
office. 

The typical t imeframe for revisions is three months. Please note that papers are generally
considered through only one revision cycle, so strong support  from the referees on the revised
version is needed for acceptance. We are aware that many laboratories cannot funct ion fully during
the current COVID-19/SARS-CoV-2 epidemic and therefore encourage you to take the t ime



necessary to revise the manuscript  to the extend requested above. We will extend our 'scoping
protect ion policy' to the full revision period required. If you do see another paper with related
content published elsewhere, nonetheless contact  me immediately so that we can discuss the best
way to proceed. 

When submit t ing the revision, please include a let ter addressing the reviewers' comments point  by
point . 

We hope that the comments below will prove construct ive as your work progresses. 

Thank you for this interest ing contribut ion to Life Science Alliance. We are looking forward to
receiving your revised manuscript . 

Sincerely, 

Andrea Leibfried, PhD 
Execut ive Editor 
Life Science Alliance 
Meyerhofstr. 1 
69117 Heidelberg, Germany 
t  +49 6221 8891 502 
e a.leibfried@life-science-alliance.org 
www.life-science-alliance.org 

--------------------------------------------------------------------------- 

A. THESE ITEMS ARE REQUIRED FOR REVISIONS

-- A let ter addressing the reviewers' comments point  by point . 

-- An editable version of the final text  (.DOC or .DOCX) is needed for copyedit ing (no PDFs). 

-- High-resolut ion figure, supplementary figure and video files uploaded as individual files: See our
detailed guidelines for preparing your product ion-ready images, ht tp://www.life-science-
alliance.org/authors 

-- Summary blurb (enter in submission system): A short  text  summarizing in a single sentence the
study (max. 200 characters including spaces). This text  is used in conjunct ion with the t it les of
papers, hence should be informat ive and complementary to the t it le and running t it le. It  should
describe the context  and significance of the findings for a general readership; it  should be writ ten in
the present tense and refer to the work in the third person. Author names should not be ment ioned.

B. MANUSCRIPT ORGANIZATION AND FORMATTING:

Full guidelines are available on our Instruct ions for Authors page, ht tp://www.life-science-
alliance.org/authors 

We encourage our authors to provide original source data, part icularly uncropped/-processed
electrophoret ic blots and spreadsheets for the main figures of the manuscript . If you would like to
add source data, we would welcome one PDF/Excel-file per figure for this informat ion. These files



will be linked online as supplementary "Source Data" files. 

***IMPORTANT: It  is Life Science Alliance policy that if requested, original data images must be
made available. Failure to provide original images upon request will result  in unavoidable delays in
publicat ion. Please ensure that you have access to all original microscopy and blot  data images
before submit t ing your revision.*** 

--------------------------------------------------------------------------- 

Reviewer #1 (Comments to the Authors (Required)): 

Moller and Natarajan infer mouse-specific regulatory networks from scRNA-seq data. For this, the
authors interrogated three publicly available mouse cell at lases from "Tabular Muris" and "Mouse
Cell At las", that  were profiled by different scRNA-seq technologies and come with different
numbers of cells, t issues, and annotated cell types. In order to make the at lases comparable, they
were integrated by mapping all single-cells to 7 "cell groups" that cover 55 "reference cell types"
across various t issues. 
The authors used the SCENIC workflow to infer the gene regulatory networks and predicted their
act ivity, measured as RAS (Regulon Act ivity Score) using the stat ist ical method AUCell. 

Using the TF act ivity matrix for dimensionality reduct ion via UMAP revealed a good separat ion of
dist inct  cell-groups. Contextualizing the UMAP plot  with regulon act ivit ies revealed cell-type specific
and consensually act ive regulons. 

The authors performed simple yet effect ive cell-to-cell and regulon-to-regulon correlat ion to ident ify
cells with similar gene regulat ion profiles and regulons with similar act ivity. For the lat ter, the authors
interpreted the results as potent ial TF crosstalk and found in total 5 modules that were
subsequent ly characterized via GO and pathway analysis. 

Finally, the authors demonstrate the usage of GRN inference and regulon act ivit ies highlight ing the
importance of Irf8 during lineage development. 

It  appears that the study was carefully and overall well performed, although without having access
to the code this can not be fully confirmed. 

While the approach is not part icularly novel, the integrated GRN (as well as the individual GRN)
might be of interest  to those in the community that  do not have the capability or skills to run the
tools on their own. 

After revising the manuscript , some quest ions st ill remain open and some statements could be
supported by further analyses. Specific comments are provided hereafter: 

Major comments 



1 ) As far as we understand, the authors integrated all three at lases via matching of cell types, and
considering the common core of genes ( 11425 genes) but inferred GRN for each individual at las.
("... we ident ify 279 regulons with >60% shared between cell at lases..."; page 6). For an integrated
analysis, we would expect that  the authors infer a single consensus GRN using all 3 integrated cell
at lases. 
On page 8 2nd paragraph the authors state: "Next we focus on individual cell at lases, re-performing
GRN framework...". 
For us, it  is not ent irely clear where the difference between the "integrated" and "individual cell
at las" GRNs is. If the only difference is the considerat ion of all genes of the respect ive at las it  does
not surprise me that the authors find on page 8: "The regulon act ivit ies are highly consistent
between integrated and individual cell at lases...", as more than 80% of the genes are the same. 

2) The authors state in the introduct ion that there are mult iple methods to infer gene regulatory
networks. We missed the mot ivat ion why the authors chose SCENIC.

3) AUCell results lack direct ionality. There are other stat ist ical approaches to analyse regulons that
provide signed TF act ivit ies. Authors could compare to these, or at  least  elaborate on whether this
could be relevant for their study.

4) The authors state: "The cell-type separat ion was refined with pseudo-bulk cells and we robust ly
recover both general and specific regulons." - Given Figure 1 C and D, we are not ent irely sure
whether this statement is actually t rue. we would like to see a quant itat ive analysis to prove that
using pseudobulk actually improved cell type separat ion.

5) The authors state: "The regulon act ivit ies are highly consistent between integrated and
individual cell at lases, across single and pseudobulk cells (Supplementary Fig 8A-G, S9A-B)." - The
authors support  their statement with individual examples but also here we would like to see a
comprehensively quant itat ive analysis.

6) For the sake of t ransparency and reproducibility, the authors should make their analysis code
publicly available. (e.g. via GitHub). They ment ion a GitHub repository in the paper, but no link is
provided?

Minor comments: 

1) In addit ion to the review of GRN reconstruct ion by Fiers et  al., also a recent ly published
benchmark of those methods could be referred to - Pratapa et  al., Nature Methods
(ht tps://doi.org/10.1038/s41592-019-0690-6)

2) Typo in Supplementary Figure 5 A and B: alt last  -> at  least



3) Related to Figure 1C and others: Even though the term RAS (regulon act ivity score) is defined in
the main text  and method sect ion, it  would be helpful to define this term also in the legend/capt ion. 

54 "The individual regulons, their composit ions and act ivity scores are detailed in Supplementary
Table 1" page 7 - This is a wrong reference, as Supplementary Table 1 contains the results from
scMAP. Also the act ivity scores are not reported but the module number/ID. 

5) Why is the pathway analysis (Supplementary Figure 11 B) performed on regulons and not on all
genes within regulons as in the GO analysis? 

6) No logical order supplementary Figures. Supplementary Figure 3 B is referenced first  (page 5) 

Reviewer #3 (Comments to the Authors (Required)): 

In this paper, the authors use exist ing cell at lases in mouse to build regulatory networks. They do
this by first  applying scMap to ident ify similar cell populat ions in each at las and then apply SCENIC
to do network inference. Network inference is done on the ent ire merged dataset, on a
downsampled version and also on each cell at las. Results are compared based on the consistency
of recovery of regulons, defined by t ranscript ion factors enriced in a set  of co-regulated/co-
expressed genes. Although the inference of regulatory networks and modules from these published
compendia is interest ing to the community, and the finding that cell types could be discriminated by
the regulon community is insightful, the presented approach and analysis does not seem sound and
there are several points that I think need addit ional explanat ion or analysis. 

1. Definit ion of cell types. The authors don't  really provide any detail about how they determined the
generalized vocabulary of 55 cell types and species. They simply cite Supp Fig 3A and it  is unclear
how to understand the process from this figure. 

2. The authors claim that they are able to robust ly map author specified cell types, but I am finding
the figures hard to read; there is too much cross-edges between the cell types across the different
datasets. It  might be good to quant ify this. 

3. Although the authors say they are able to define matching cell types, I feel that  using one or two
addit ional approaches to correct  for batches could be beneficial. E.g. conos, scanorama, liger, seurat
are pret ty standard and new approaches that people have applied and compared and should be
used to verify their results. 

4. The definit ion of a regulon and its comparison across datasets needs to be more precise. Is a
module, a set  of co-expressed genes or co-expressed and co-regulated, or co-regulated? They
define a regulon as "(modules of enriched TFs and direct  regulators), which would suggest that  a
regulon is defined by group of regulators, but the downstream analysis only uses one TF at  a t ime. 



5. Furthermore, the authors use a measure "Correlat ion Specificity Index" to define similarity
between modules to examine the similarity of modules, but this is not well-defined. They ment ion
Pearson correlat ion between regulons, but the regulon is a collect ion of genes and TFs/regulators.
Hence using some mathematical notat ion could be beneficial here.

6. The authors they use a "variety of different feature sets" and cite Supp Fig 5A-D. But all this
shows is a set  of venn diagrams and it  is not clear what the criteria is for using a gene set. I also did
ot understand what the authors are showing in supp 5E. They say "The regulon definit ion was
highly similar with different ial gene composit ion, owing to variable sequencing (Supplementary Fig
5E)" I am not sure what is meant by "Variable sequencing" and I am not convinced the regulons are
similar. It  seems only the number of genes per regulator is plot ted, but it  does not inform us about
the composit ion of the target set .

7. The claim that "groups have good separat ion based on regulon act ivity scores" needs to better
quant ified. They are using the original cell groups and the cell type labels to color the cells in UMAP
coordinates. This grouping could be better quant ified by clustering and checking if the clusters do
correspond to the cell types.

8. I did not see the relevance of the downsampled data analysis and the authors don't  do a
systemat ic
comparison of whether the results are actually the same or different. They say that cell types are
more refined and they again find global and specific regulons, but this is very qualitat ive and more
principled comparisons are needed.

9. Similarly, I found the analysis of the individual at lases not as insightful. It  was hard for me
to see from Supp Fig 8,9 how we can infer consistency since these are different umap plots and we
can really compare these project ions. The cells could again be clustered and cluster-cell type
associat ion could be established and the regulons could be compared thereafter, or even, without
clustering.

10. The Irf8 mutant versus wild type analysis again seems disconnected and does not naturally
follow
from the cell-at las regulon analysis. Irf8 was one of regulators, but there were several others that
were discussed. Furthermore, the targets of Irf8 inferred in the cell-at las were not actually validated.
Rather, the new scRNA-seq dataset was used to redefine modules and Irf8 was found as a
regulator here.

11. In general, there is no computat ional or experimental validat ion of the regulator-target/network
relat ionships. It  is not clear how accurate the inferred networks are. Addit ional comparison to
exist ing databases of TF-target relat ionships is needed to support  the inferred GRNs.

Minor: 
Euclidian should be Euclidean.



1st Authors' Response to Reviewers         June 15, 2020   

BLACK = reviewers comments 
BLUE = our response 
RED = revised text  
Reviewer #1 (Comments to the Authors): 
Moller and Natarajan infer mouse-specific regulatory networks from scRNA-seq data. For this, the 
authors interrogated three publicly available mouse cell atlases from "Tabular Muris" and "Mouse 
Cell Atlas", that were profiled by different scRNA-seq technologies and come with different 
numbers of cells, tissues, and annotated cell types. In order to make the atlases comparable, they 
were integrated by mapping all single-cells to 7 "cell groups" that cover 55 "reference cell types" 
across various tissues.  
The authors used the SCENIC workflow to infer the gene regulatory networks and predicted their 
activity, measured as RAS (Regulon Activity Score) using the statistical method AUCell. Using the 
TF activity matrix for dimensionality reduction via UMAP revealed a good separation of distinct 
cell-groups. Contextualizing the UMAP plot with regulon activities revealed cell-type specific and 
consensually active regulons. The authors performed simple yet effective cell-to-cell and regulon-
to-regulon correlation to identify cells with similar gene regulation profiles and regulons with 
similar activity. For the latter, the authors interpreted the results as potential TF crosstalk and found 
in total 5 modules that were subsequently characterized via GO and pathway analysis.  
Finally, the authors demonstrate the usage of GRN inference and regulon activities highlighting the 
importance of Irf8 during lineage development.  
It appears that the study was carefully and overall well performed, although without having access 
to the code this can not be fully confirmed. While the approach is not particularly novel, the 
integrated GRN (as well as the individual GRN) might be of interest to those in the community that 
do not have the capability or skills to run the tools on their own.  
After revising the manuscript, some questions still remain open and some statements could be 
supported by further analyses. Specific comments are provided hereafter:  

We thank the reviewer for his/her comments, acknowledging the simplicity, effectiveness, design of 
our study in characterising atlas-scale regulatory network and its usefulness to the community.  
We would like to emphasize that our motivation is to extract and validate regulatory information by 
integrating atlas-scale datasets, especially as various cell, tissue and organism level atlases are being 
increasingly generated.  
We apologise for not enabling the Github link with jupyter notebooks (incl. revision analysis), 
which can be found here: https://github.com/Natarajanlab/Single-cell-regulatory-network.  

Major comments 
R1.1: As far as we understand, the authors integrated all three atlases via matching of cell types, 
and considering the common core of genes ( 11425 genes) but inferred GRN for each individual 
atlas. ("... we identify 279 regulons with >60% shared between cell atlases..."; page 6). For an 
integrated analysis, we would expect that the authors infer a single consensus GRN using all 3 
integrated cell atlases.  
On page 8 2nd paragraph the authors state: "Next we focus on individual cell atlases, re-performing 
GRN framework...".  
For us, it is not entirely clear where the difference between the "integrated" and "individual cell 
atlas" GRNs is. If the only difference is the consideration of all genes of the respective atlas it does 



not surprise me that the authors find on page 8: "The regulon activities are highly consistent 
between integrated and individual cell atlases...", as more than 80% of the genes are the same. 

We thank the reviewer for pointing out the ambiguity in text, relating to GRN inference between 
integrated and individual atlases.  

Although the integrated atlas is an aggregation of individual atlases, yet it is quite distinct 
considering technical features between cell groups (# of cells sampled, # of genes detected, 
sequencing depth, dropout rates etc.,; Fig. S1, S6 and S7).  
Indeed, we consider 11,425 overlapping genes (genes detected in at least 10% of total cells) for 
GRN framework (using SCENIC) that includes GRNBoost (identifying regulons), RCisTarget 
(Database crossmatching of regulon-target pairs), and AUCell (scoring regulon activity across 
individual cells). While the regulon inference (GRNBoost) are identical for all atlases, the regulon 
composition (RCisTarget) and scoring (AUCell) differs between integrated and individual atlases. 

In the revised ms, we have updated the text and especially figures (Fig. S1, S6 and S7) to highlight 
differences between integrated and individual atlases. 

Fig. S1 (subpanel): Detailed workflow of atlas-scale GRN analysis. 



Fig. S6 (subpanels): Technical differences and biases in mouse cell atlases. (A) Number of cells (first row), 
library size (i.e. sequencing depth; second row) and number of genes detected (third row) for individual and 
integrated atlas. Each point represents a single-cell and the metrics are stratified and coloured based on 7 
cell groups and 55 cell types with the median numbers reported next to box plots. (D) Pie charts showing 
proportion of single- (top) and pseudobulk (bottom) cells across the 7 cell groups in individual and 
integrated cell atlas. Note: proportions are conserved between single- and pseudobulk cells. 

R1.2: The authors state in the introduction that there are multiple methods to infer gene regulatory 
networks. We missed the motivation why the authors chose SCENIC.  

This is a valid point and we thank the reviewer for raising this. In the revised ms, we have updated 
text (Page 7; also, below) to highlight the motivation of choosing SCENIC for this atla-scale 
analysis. 

“To infer gene regulatory networks (GRNs), we applied SCENIC, a framework for network inference, 
reconstruction and clustering from scRNA-seq data [10]. The SCENIC framework is applied directly on 
single-cell expression matrix and combines three different approaches for regulon identification and activity. 
The three approaches consist of (i) ‘GRNBoost’ for identification of TFs and co-expressed genes from 
single-cell expression matrix, (ii) ‘RcisTarget’ for defining ‘regulons’ (i.e enriched and validated TFs with 
their direct downstream target genes containing annotated motif, and prunes co-expressed indirect targets), 
(iii) ‘AUCell’ for scoring regulon activity (RAS: regulon activity scores) in single-cells. Our motivation for
using SCENIC for atlas scale regulon inference was three-fold. Firstly, SCENIC utilises GRNBoost,
RCisTargets and AUCell to identify and score known, direct TF-target interactions while pruning away
indirect and co-expressed TF-target links. The RCisTarget crossmatches regulons with known TF-target
databases, as opposed to de-novo predictions. This allows inference of both TF-TF and TF-target
relationships and scoring of TF-target relationships, unlike other approaches. Secondly, SCENIC does not
require a single-cell trajectory/pseudotime, unlike other widely applied GRN methods [12], and therefore is
well suited to cell atlas-scale analysis. Thirdly, SCENIC is widely used and GENIE3/GRNBoost are scored
amongst the top reconstruction methods in recent benchmarking study [12]. Applying SCENIC, we identify
279 unique regulons, with >60% (174 regulons) shared across the three atlases (Fig 1B). The high degree of
regulon overlap between the three atlases, in spite of technical differences highlights that single-cell
regulatory state is predominantly governed by core set regulators and their activities within individual cells.
A recent study also applied SCENIC, but only for MCA data using only the author assigned cell-type labels
[21].”

We additionally performed head-to-head comparison between our regulon framework with a 
published GRN inference approach (bigSCale2) for TM-10x atlas in Fig. S21. 



Supplementary Figure 21: Comparing different GRN methods for atlas-scale analysis. (A) Overlap of 
regulons and target genes identified in this study (SCENIC: GRNBoost and RCisTarget) and repeating 
analysis with published GRN method (Ioconno et al 2015) for TM-10x mouse atlas. (B) Jaccard index 
highlighting the overlap between regulon composition inferred on TM-10x atlas by our framework and 
repeating analysis with published GRN method (Ioconno et al 2015). 

R1.3: AUCell results lack directionality. There are other statistical approaches to analyse regulons 
that provide signed TF activities. Authors could compare to these, or at least elaborate on whether 
this could be relevant for their study.  

We agree with the reviewer that while AUCell scores regulon activities, it does lacks directionality 
of TF-TF crosstalk, and hence our integrated regulon network is undirected. However, our focus is 
to identify consensus and atlas-specific GRNs (and activity scores) across broad cell groups, in spite 
of sampling a variety of tissues and technical differences. We believe that statistical GRN methods 
that provide signed TF activities would be quite useful for studying cell types within a tissue or 
during development or differentiation. Additionally, we believe that a caveat of such approaches 
(benchmarked in PMID: 31907445)  is a requirement of single-cell pseudotime or trajectory, 
unsuited for whole organism atlases.  

Although, our network lacks TF-TF crosstalk directionality; the RCisTarget (within SCENIC) 
confers directionality of TF-target regulation (not TF-TF crosstalk). As in R1.1 response, we also 
perform head-to-head comparison with expression correlation-based bigSCale2 GRN inference 
approach, which fails to capture several regulons identified by SCENIC.  



R1.4: The authors state: "The cell-type separation was refined with pseudo-bulk cells and we 
robustly recover both general and specific regulons." - Given Figure 1 C and D, we are not entirely 
sure whether this statement is actually true. we would like to see a quantitative analysis to prove 
that using pseudobulk actually improved cell type separation.  

We thank the reviewer for pointing this out. We have now included several qualitative and 
quantitative comparisons between single- and pseudobulk cells in the revised manuscript. These 
include (i) PCA projections and distance to cluster centroids (Fig. 1E), (ii) computing Adjusted 
Mutual Information (AMI) and completeness (Fig. 1F) (iii) Gini coefficient as a measure of regulon 
importance in classifying cell groups (Fig. 1G, S11A), (iv) Regulon composition similarity (Fig. 
1E), (v) Silhouette score to compare clustering Fig. (S11B) and (vi) RAS correlation for all and 
individual cell groups (Fig. S11C). 

Figure 1: (E) Principal component analysis (PCA) of matched single- and pseudobulk cells based on RAS 
across individual atlases and coloured by 7 cell groups (first two columns). For each of the 7 cell groups, we 
plotted cluster centroid (column 3) and connected single- (circles) and pseudobulk (asterisk). Box plots 
(column 4) represent Euclidean distance of individual single- and pseudobulk cells to respective cell group 
centroid. The distance is a measure of clustering i.e., larger distances in pseudobulk highlight well separated 
clusters compared to single-cells. (F) Different measures of cluster comparison (top: Adjusted mutual 
information, bottom: Completeness) between pseudobulk and single-cells across integrated and individual 
mouse atlases, considering 7 cell groups. (G) Distribution of Gini coefficients per regulon in pseudobulk and 
single-cells across integrated atlas, considering all 7 cell groups. The Gini coefficient is a measure of 
inequality i.e. whether individual regulons contribute to individual (smaller Gini) or multiple cell groups 
(higher Gini). The pseudobulk cells have higher Gini coefficients and tighter distributions compared to 
single-cells, that highlights pseudobulk regulons contribute and distinguish multiple cell groups. (H) 
Comparison of regulon composition between atlases (Pairwise Jaccard index) considering TM-10x as 
reference. Each dot represents a regulon and overlap of its target genes across 3 atlases. The shaded area 
represents 95% confidence interval from the linear regression line. 



Supplementary Figure 11: RAS comparison between single- and pseudobulk cells. (A) Distribution of Gini 
coefficients per regulon in pseudobulk and single-cells across integrated atlas, stratified by individual cell 
groups. (B) Silhouette score comparing clustering between single- and pseudobulk cells across individual 
and integrated atlas. (C) RAS correlation between single and pseudobulk cells in all cells and stratified by 
individual cell groups. Error bars represent the standard deviation across single- and pseudobulk cells. The 
individual cell group correlation is significantly improved compared to global, which further validates our 
classification of 7 cell groups. 

R1.5: The authors state: "The regulon activities are highly consistent between integrated and 
individual cell atlases, across single and pseudobulk cells (Supplementary Fig 8A-G, S9A-B)." - 
The authors support their statement with individual examples but also here we would like to see a 
comprehensively quantitative analysis.  

We thank the reviewer for also pointing this out. In the revised ms, we highlight the technical 
feature differences between integrated and individual atlases (Fig. S6) and across reference cell 
groups (Fig. S7). This is also mentioned above in response to R1.1 

Supplementary Figure 11
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C. Integrated atlas (RAS correlation)
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Our ability to effectively distinguish cell groups using RAS on integrated and individual atlases is 
emphasized by (i) visual separation on UMAP (Fig. 1C & S9A, see also Fig. S1), (ii) comparing 
cell-to-cell correlations (Fig. 2A & S13A), (iii) comparing regulon-to-regulon correlations (Fig. 2B 
& S15A-C), (iv) comparing regulon-to-regulon correlations (Fig. 2C & S15D-F). We combine these 
in a single figure for the reviewers. 

Figure: Comparison between integrated and individual atlases 

Additionally, as mentioned in the responses to R1.4, we perform qualitative and quantitative 
comparisons between ‘single- and pseudobulk cells’ and between ‘integrated and individual 
atlases’, including computing Adjusted Mutual Information (AMI) and completeness (Fig. 1F). We 
also compute Silhouette score as a measure of clustering comparison between integrated and 
individual atlases (Fig. S11B) 



Figure 1: (F) Different measures of cluster comparison (top: Adjusted mutual information, bottom: 
Completeness) between pseudobulk and single-cells across integrated and individual mouse atlases, 
considering 7 cell groups. 

Figure S11: (B) Silhouette score comparing clustering between single- and pseudobulk cells across 
individual and integrated atlas.  

R1.6: For the sake of transparency and reproducibility, the authors should make their analysis code 
publicly available. (e.g. via GitHub). They mention a GitHub repository in the paper, but no link is 
provided? 
We thank the reviewer and apologise for not enabling the Github link with jupyter notebooks (incl. 
revision analysis), which can be found here: https://github.com/Natarajanlab/Single-cell-regulatory-
network.  

Minor comments 
R1.M1: In addition to the review of GRN reconstruction by Fiers et al., also a recently published 
benchmark of those methods could be referred to - Pratapa et al., Nature Methods 
(https://doi.org/10.1038/s41592-019-0690-6)  
We have cited the GRN benchmarking paper in revised ms. 

R1.M2: Typo in Supplementary Figure 5 A and B: altlast -> at least 
We have corrected the typo in text. 

R1.M3: Related to Figure 1C and others: Even though the term RAS (regulon activity score) is 
defined in the main text and method section, it would be helpful to define this term also in the 
legend/caption.  
We have now expanded the term RAS in figure legends 

Supplementary Figure 11

A. PB vs SC comparisons

C. Integrated atlas (RAS correlation)
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R1.M4: "The individual regulons, their compositions and activity scores are detailed in 
Supplementary Table 1" page 7 - This is a wrong reference, as Supplementary Table 1 contains the 
results from scMAP. Also, the activity scores are not reported but the module number/ID.  

We thank the reviewer for pointing this out. The supplementary table 3 (SuppTable3.xlsx) contains 
the mean regulon activity scores from pseudobulk cells across integrated atlas. 

R1.M5: Why is the pathway analysis (Supplementary Figure 11 B) performed on regulons and not 
on all genes within regulons as in the GO analysis?  
We thank the reviewer for pointing this out. As the smaller modules only contain a handful of 
regulons, the GO analysis considering regulone alone (without their composition) did not produce 
any significant terms. Therefore, we considered both regulons and their composition for GO 
analysis, as reported in Fig. S14. 
For pathway analysis, the regulons alone (without their composition) produced significant and 
enriched pathways. Considering regulons and direct targets, the pathways (reported in Fig. S14) are 
still enriched, but we observe several highly specialized pathways; which likely do not operate 
across multiple cell groups. Hence we avoid considering the direct targets. 
We have updated the figure text for Fig. S14. 

R1.M6 No logical order supplementary Figures. Supplementary Figure 3 B is referenced first (page 
5)  
We thank the reviewer for pointing this out and have updated the main text. 

Reviewer #3 (Comments to the Authors (Required)): 
In this paper, the authors use existing cell atlases in mouse to build regulatory networks. They do 
this by first applying scMap to identify similar cell populations in each atlas and then apply 
SCENIC to do network inference. Network inference is done on the entire merged dataset, on a 
downsampled version and also on each cell atlas. Results are compared based on the consistency of 
recovery of regulons, defined by transcription factors enriced in a set of co-regulated/co-expressed 
genes. Although the inference of regulatory networks and modules from these published compendia 
is interesting to the community, and the finding that cell types could be discriminated by the 
regulon community is insightful, the presented approach and analysis does not seem sound and 
there are several points that I think need additional explanation or analysis.  

We thank the reviewer for his/her comments, acknowledging the power of regulatory inference in 
distinguishing individual cells across mouse atlases, as well as the usefulness of our framework to 
the community.  
We would like to re-emphasize our motivation to extract and validate the regulatory crosstalk 
through integrating analysis of atlas-scale datasets, especially given the rapid development of major 
cell, tissue and organism level atlases. 

R3.1: Definition of cell types. The authors don't really provide any detail about how they 
determined the generalized vocabulary of 55 cell types and species. They simply cite Supp Fig 3A 
and it is unclear how to understand the process from this figure.  
We thank the reviewer for pointing this out and apologise for lack of clarity. The generalised 
vocabulary of 7 cell groups is manually devised considering the reference, but also the 831 unique 



author-annotated cell-types. We chose TM-10x as a reference atlas for scMap projections, and 
further linked its 55 cell types to 7 cell groups. Subsequently for each atlas, we use scMap to project 
the author-annotated cell types to our reference cell groups.    

In the revised ms, we have updated text (Page 5-6; also below) and figures; especially Fig. S1 to 
provide a detailed overview of analysis.  

“We aimed to integrate the atlases to identify cell-type specific regulons and build a consensus regulon atlas 

(Fig 1A; Detailed workflow in Fig. S1). As each atlas samples different mouse tissues and scRNA-seq 

technologies (full length vs 3’end) to identify hundreds of varied cell types across cellular resolutions 

(discussed below), a fundamental challenge is to effectively link the original author’s cell-type annotation 

across cell atlases. We address the challenge of integrating cell-type classification by combining two 

complementary approaches. Firstly, we manually devised a generalised vocabulary consisting of broadly 

defined ‘7 cell groups’ for an standardise annotation between cell atlases (3 datasets). Secondly, we utilise 

scMAP, an unsupervised scRNA-seq cell projection method [23], to link the original author’s cell-type 

annotation across cell atlases (Supplementary methods). By utilizing Tabula Muris 10x (TM-10x) Chromium 

annotations as a reference and by combining both approaches, our generalised vocabulary contains ‘7 cell 

groups’ consisting of ‘55 reference cell-types’. The 7 cell groups include Immune (22 subgroups), 

Specialised (12 subgroups), Epithelial (7 subgroups), Stem (4 subgroups), Endothelial (4 subgroups), Basal 

(3 subgroups) and Blood (3 subgroups) (Fig. S2A). Subsequently, we applied our two-step approach to 

individual atlases i.e. TM-10x (Fig. S2B), Tabula Muris Smart-seq2 (TM-SS2; Fig. S3A), MCA (Fig. S3A-B) 

and as well as to all three atlases integrated together (Fig. S4A). Our approach allows us to build and link 

an integrated mouse atlas consisting of 831-author assigned unique cell-type labels from 50 tissues to a 

consensus of 55 reference cell-types and 7 cell groups (Fig. S4A, methods and Table S1).” 



Supplementary Figure 1: Detailed workflow of atlas-scale GRN analysis.  
To effectively integrate single-cell annotations across three atlases, we first manually devised 7 reference 
cell groups, chose TM-10x as a common reference and assigned the 55 cell types to 7 cell groups 
respectively. Next, we used scMAP to link each atlas (TM-SS2 and MCA) to the reference and built an 
integrated mouse atlas with common vocabulary for all single-cells. Using a stringent feature selection 
cutoff, we performed gene regulatory network inference using SCENIC. This briefly includes TF and TF-
target identification from single-cell expression matrices (GRNBoost), cross-validation of TF and its direct 
targets (i.e. Regulons) using annotated motif databases and pruning away indirect, co-expressed genes 
(RCisTargets) and lastly scoring the regulon activity (RAS: regulon activity score) within each single-cell.  
We applied the framework to integrated and individual atlases to (i) classify individual and pseudobulk cells 
based global regulon activity (UMAP), (ii) classify cells based on shared and distinct regulon activity (cell-



to-cell correlation), (iii) identify consensus and cell group specific regulons (regulon-to-regulon correlation) 
and (iv) build an atlas-scale regulon activity network. 

R3.2: The authors claim that they are able to robustly map author specified cell types, but I am 
finding the figures hard to read; there is too much cross-edges between the cell types across the 
different datasets. It might be good to quantify this.  

We thank the reviewer for the suggestion. As highlighted in the main text, we used scMap (with 
stringent 0.7 cutoff) for projecting atlases onto each other, considering TM-10x (55 cell types) as 
reference. We provide a contingency table (Table S1) containing mapping the TM-10x (55 cell 
types) to TM-SS2 (81 cell types), and MCA (732 cell types) respectively.  
Additionally, we perform several qualitative and quantitative comparisons for individual atlases 
considering 7 reference cell groups. These include (i) PCA projections and distance to cluster 
centroids (Fig. 1E), (ii) computing Adjusted Mutual Information (AMI) and completeness (Fig. 1F) 
and (iii) Regulon composition similarity (Fig. 1E, S11B). 

Figure 1: (E) Principal component analysis (PCA) of matched single- and pseudobulk cells based on RAS 
across individual atlases and coloured by 7 cell groups (first two columns). For each of the 7 cell groups, we 
plotted cluster centroid (column 3) and connected single- (circles) and pseudobulk (asterisk). Box plots 
(column 4) represent Euclidean distance of individual single- and pseudobulk cells to respective cell group 
centroid. The distance is a measure of clustering i.e., larger distances in pseudobulk highlight well separated 
clusters compared to single-cells. (F) Different measures of cluster comparison (top: Adjusted mutual 
information, bottom: Completeness) between pseudobulk and single-cells across integrated and individual 
mouse atlases, considering 7 cell groups. (G) Distribution of Gini coefficients per regulon in pseudobulk and 
single-cells across integrated atlas, considering all 7 cell groups. The Gini coefficient is a measure of 
inequality i.e. whether individual regulons contribute to individual (smaller Gini) or multiple cell groups 
(higher Gini). The pseudobulk cells have higher Gini coefficients and tighter distributions compared to 
single-cells, that highlights pseudobulk regulons contribute and distinguish multiple cell groups. (H) 
Comparison of regulon composition between atlases (Pairwise Jaccard index) considering TM-10x as 
reference. Each dot represents a regulon and overlap of its target genes across 3 atlases. The shaded area 
represents 95% confidence interval from the linear regression line. 



R3.3: Although the authors say they are able to define matching cell types, I feel that using one or 
two additional approaches to correct for batches could be beneficial. E.g. conos, scanorama, liger, 
seurat are pretty standard and new approaches that people have applied and compared and should be 
used to verify their results.  

We thank the reviewer for raising this point and were intrigued by the suggestion. The SCENIC 
authors highlight the robustness of GRN inference and scoring to overcome batch effects. To 
address the point for atlas scale data, we performed batch-correction using two widely used 
published methods (BBKNN and MNN-correct), considered a matched tissue (Spleen) from TM-
10x and TM-SS2 data. Repeating regulon scoring, we observe highly similar and correlated regulon 
activity scores (RAS) and composition similarity between non-corrected and batch-corrected data. 

In the revised ms, we have updated text (Page 10; also below) and figure (Fig. S12A-B) to report 
comparison of batch analysis.  

“Given the different technical differences between individual atlases (Dropouts, tissues profiled, scRNA-seq 
protocol, sequencing depth etc.,), we also assessed whether batch effects confound RAS across mouse 
atlases. Although SCENIC analysis has been shown to be unaffected by batch and technical effects [10], we 
performed batch correction on a common tissue (Spleen) profiled by both TM-10x and TM-SS2 atlases. We 
apply two methods ‘Batch-balanced KNN’ (BBKNN) and ‘Mutual nearest neighbors correction’ (MNN) 
[31,32] and visualise individual cells on t-distributed stochastic neighbor embedding (tSNE). The batch 
correction had minimal impact on resolving and overlapping similar cell types between the two atlases, 
compared to uncorrected data (Fig. S12A). Notably, the corrected batch effects were unique to each method 
on tSNE space. Performing SCENIC on uncorrected and two batch-corrected datasets, we find that 
individual regulon activities (RAS similarity) and regulon compositions (Jaccard coefficient) are highly 
correlated, indicating that batch effects have little effect on regulon activity (Fig. S12C-D). In summary, the 
pseudobulk approach accounts for technical and batch effects, robustly reports on regulon activities and 
leads to better classification of cell groups across individual and integrated atlas.” 



Supplementary Figure 12: Impact of batch effect correction on regulon inference. (A) UMAP embedding of 
pseudobulk cells from TM-10x and TM-SS2 atlases, considering either uncorrected or two batch corrected 
expression space (BBKNN and MNN-correct). The pseudobulk cells are coloured by cell atlas (top) and cell 
groups (bottom). Note: Both batch correction methods slightly improve the overlap of reference cell types 
compared to uncorrected UMAP. However, the clusters from BBKNN and MNN-correct don’t overlap with 
each other and introduce additional discrepancies. (B) Pairwise correlation of individual regulons (based 
on RAS) from both batch correction methods compared to uncorrected data. Each dot represents a regulon 
identified in all 3 SCENIC runs (uncorrected, BBKNN and MNN-correct). The shaded area represents the 
95% confidence interval from the linear regression line. (C) Regulon composition similarity computed from 
pairwise Jaccard index between batch corrected (BBKNN and MNN-correct) to uncorrected data. The 
shaded area represents the 95% confidence interval from the linear regression line. 



R3.4: The definition of a regulon and its comparison across datasets needs to be more precise. Is a 
module, a set of co-expressed genes or co-expressed and co-regulated, or co-regulated? They define 
a regulon as "(modules of enriched TFs and direct regulators), which would suggest that a regulon 
is defined by group of regulators, but the downstream analysis only uses one TF at a time.  

We thank the reviewer for the suggestion and apologise for the lack of clarity.  
A regulon is simply a collection, which contains a single transcription factor (TF) and all its 
transcriptional target genes and includes both direct and indirect targets. Almost all regulon 
inference approaches first compute correlation for given dataset (bulk or single RNA-seq, ATAC 
etc.,), and secondly identify/infer regulons with both correlated and co-regulated targets (direct and 
indirect). In the SCENIC framework, we first identify/infer regulons using GRNBoost. Critically, 
we next use RCisTarget to crossmatches identified regulons with annotated database of TFs and 
direct targets, to prune away indirect targets. Lastly, the regulons (TFs and direct targets) are scored 
in individual cells and provides regulon activity scores (RAS).  

In revised text, we have clarified the definition of regulon (Introduction Page 4, and below).  
A GRN is specific combination of transcription factors (TFs) and co-factors that interact with cis-regulatory 
genomic regions to mediate a specialised transcriptional programme within individual cells [9,10]. Briefly, 
a regulon is collection of a single transcription factor (TF) and all its transcriptional target genes. The 
GRNs define and govern individual cell-type definition, transcriptional states, spatial patterning and 
responses to signalling, cell fate cues [11]. 

Additionally, further clarified the SCENIC steps (Results Page 7, and below). 
“To infer gene regulatory networks (GRNs), we applied SCENIC, a framework for network inference, 
reconstruction and clustering from scRNA-seq data [10]. The SCENIC framework is applied directly on raw 
uncorrected single-cell expression matrix and combines three different approaches for regulon identification 
and activity. The three approaches consist of (i) ‘GRNBoost’ for identification of TFs and co-expressed 
genes from single-cell expression matrix, (ii) ‘RcisTarget’ for defining ‘regulons’ (i.e enriched and validated 
TFs with their direct downstream target genes containing annotated motif, and prunes co-expressed indirect 
targets), (iii) ‘AUCell’ for scoring regulon activity (RAS: regulon activity scores) in single-cells. Our 
motivation for using SCENIC for atlas scale regulon inference was four-fold. Firstly, SCENIC utilises 
GRNBoost, RCisTargets and AUCell to identify and score known, direct TF-target interactions while 
pruning away indirect and co-expressed TF-target links. The RCisTarget crossmatches regulons with known 
TF-target databases, as opposed to de-novo predictions and allows inference, scoring of both TF-TF and 
TF-target relationships, unlike other approaches. Secondly, SCENIC does not require a single-cell 
trajectory/pseudotime, unlike other widely applied GRN methods [12], and therefore is well suited to cell 
atlas-scale analysis. Thirdly, SCENIC is widely used and GENIE3/GRNBoost are scored amongst the top 
reconstruction methods in recent benchmarking study [12].” 

R3.5: Furthermore, the authors use a measure "Correlation Specificity Index" to define similarity 
between modules to examine the similarity of modules, but this is not well-defined. They mention 
Pearson correlation between regulons, but the regulon is a collection of genes and TFs/regulators. 
Hence using some mathematical notation could be beneficial here.  

This is a good point and we thank the reviewer. Firstly, we acknowledge the typo as CSI refers to 
the Connection Specificity Index (as opposed to Correlation). The CSI is a graph metric (described 



in PMID: 24296474) that ranks the regulon significance based on similarity and specificity of 
interaction partners. The CSI is calculated as:  
The CSI for two nodes A and B is calculated by:  

𝐶𝑆𝐼$% = 1 −
#𝑛𝑜𝑑𝑒𝑠	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑡𝑜	𝐴	𝑜𝑟	𝐵	𝑤𝑖𝑡ℎ	𝑃𝐶𝐶 ≥ 𝑃𝐶𝐶$% − 0.05

𝑛=
Where the Pearson correlation coefficient (PCC) is the interactional correlation between A and B. 

We have updated text (Page 11; also below) and stated the CSI notation in both figure legends (Fig. 
S15) and supplementary methods. 

R3.6: The authors they use a "variety of different feature sets" and cite Supp Fig 5A-D. But all this 
shows is a set of venn diagrams and it is not clear what the criteria is for using a gene set. I also did 
ot understand what the authors are showing in supp 5E. They say "The regulon definition was 
highly similar with differential gene composition, owing to variable sequencing (Supplementary Fig 
5E)" I am not sure what is meant by "Variable sequencing" and I am not convinced the regulons are 
similar. It seems only the number of genes per regulator is plotted, but it does not inform us about 
the composition of the target set.  

We thank the reviewer for raising this valid point. The individual atlases have several technical 
differences with respect to each other. These include different number of cells profiled, number of 
tissues profiled, Full-length vs 3’scRNA-seq chemistry and platform, dropout rates, sequencing 
depth as well as many unknown factors.  
In revised ms, we summarise and highlight these differences in text (Page 6; also below) and figures 
(Fig. S1, S6 and S7). 

“The individual atlases have technical difference owing to different number of cells profiled (S6A top panel), 

sequencing depth (library size, S6A middle panel), number of tissues profiled (12 TM-10x, 18 TM-SS2, 38 

MCA; S2B, S3A-B), scRNA-seq chemistry (Full-length vs 3’), scRNA-seq platform and number of genes 

detected (S6A bottom panel). The dropout distribution for individual atlases highlights the relationship 

between number of cells profiled, library size and genes detected (Fig. S6B). Specifically, MCA compared to 

Tabula Muris atlases has the highest number of profiled cells at sparse sequencing depth, lower gene 

detected and highest dropout rates across reference cell groups (S6A-B). Our 7 reference cell groups and 

high and proportional number of cells from both integrated (Fig. S6C) and individual atlas (Fig. S6D). For 

example, the Immune cell group consists of 20,133 individual cells classified across 22 reference cell types, 

while the blood cell group consists of 1559 cells classified into 3 reference cell types (Fig. S6C and S2A). We 

further present the different technical features for each reference cell type across integrated and individual 

atlas (Fig. S7A). Our two-step approach consisting of simplified cell group and subgroup classification 

allows us to mitigate technical and cell-type label discrepancies, integrate mouse cell atlases to investigate 

global and specific regulators across atlases.” 



Fig. S6 (subpanels): Technical differences and biases in mouse cell atlases. (A) Number of cells (first row), 
library size (i.e. sequencing depth; second row) and number of genes detected (third row) for individual and 
integrated atlas. Each point represents a single-cell and the metrics are stratified and coloured based on 7 
cell groups and 55 cell types with the median numbers reported next to box plots. 

We also agree with the reviewer that Venn diagram comparison of multiple feature sets can be 
confusing, as we present regulon inference results from a single feature set (minimum 10% genes 
detected). To simplify, we have removed the comparison of different feature sets in the revised text. 

R3.7 & R 3.8 
R3.7: The claim that "groups have good separation based on regulon activity scores" needs to better 
quantified. They are using the original cell groups and the cell type labels to color the cells in 
UMAP coordinates. This grouping could be better quantified by clustering and checking if the 
clusters do correspond to the cell types.  
R3.8: I did not see the relevance of the downsampled data analysis and the authors don't do a 
systematic comparison of whether the results are actually the same or different. They say that cell 
types are more refined and they again find global and specific regulons, but this is very qualitative 
and more principled comparisons are needed.  

We thank the reviewer for raising these valid suggestions and apologise for the lack of quantitative 
comparisons. Indeed the crowding of points on UMAP makes visual comparison very tricky. This 
concern is also shared by reviewer 1.  

We would like to clarify that the pseudobulk cells are an aggregate of 50 individual cells, based on 
original authors tissue and cell-type labels. These are not downsampled data/cells, rather robust 
cells with decreased expression noise and improved RAS. The pseudobulk also improves the 
integrated regulon atlas, as rare/sparse cell populations have diminished representation.  

To address the reviewers points (As in R1.4 response), we have now included several qualitative 
and quantitative comparisons between single- and pseudobulk cells in the revised manuscript. These 
include (i) PCA projections and distance to cluster centroids (Fig. 1E), (ii) computing Adjusted 



Mutual Information (AMI) and completeness (Fig. 1F) (iii) Gini coefficient as a measure of regulon 
importance in classifying cell groups (Fig. 1G, S11A) and (iv) Regulon composition similarity (Fig. 
1E, S11B). 

Figure 1: (E) Principal component analysis (PCA) of matched single- and pseudobulk cells based on RAS 
across individual atlases and coloured by 7 cell groups (first two columns). For each of the 7 cell groups, we 
plotted cluster centroid (column 3) and connected single- (circles) and pseudobulk (asterisk). Box plots 
(column 4) represent Euclidean distance of individual single- and pseudobulk cells to respective cell group 
centroid. The distance is a measure of clustering i.e., larger distances in pseudobulk highlight well separated 
clusters compared to single-cells. (F) Different measures of cluster comparison (top: Adjusted mutual 
information, bottom: Completeness) between pseudobulk and single-cells across integrated and individual 
mouse atlases, considering 7 cell groups. (G) Distribution of Gini coefficients per regulon in pseudobulk and 
single-cells across integrated atlas, considering all 7 cell groups. The Gini coefficient is a measure of 
inequality i.e. whether individual regulons contribute to individual (smaller Gini) or multiple cell groups 
(higher Gini). The pseudobulk cells have higher Gini coefficients and tighter distributions compared to 
single-cells, that highlights pseudobulk regulons contribute and distinguish multiple cell groups. (H) 
Comparison of regulon composition between atlases (Pairwise Jaccard index) considering TM-10x as 
reference. Each dot represents a regulon and overlap of its target genes across 3 atlases. The shaded area 
represents 95% confidence interval from the linear regression line. 



 

Supplementary Figure 11: RAS comparison between single- and pseudobulk cells. (A) Distribution of Gini 
coefficients per regulon in pseudobulk and single-cells across integrated atlas, stratified by individual cell 
groups. (B) Silhouette score comparing clustering between single- and pseudobulk cells across individual 
and integrated atlas. (C) RAS correlation between single and pseudobulk cells in all cells and stratified by 
individual cell groups. Error bars represent the standard deviation across single- and pseudobulk cells. The 
individual cell group correlation is significantly improved compared to global, which further validates our 
classification of 7 cell groups. 

R3.9: Similarly, I found the analysis of the individual atlases not as insightful. It was hard for me  
to see from Supp Fig 8,9 how we can infer consistency since these are different umap plots and we 
can really compare these projections. The cells could again be clustered and cluster-cell type 

Supplementary Figure 11

A. PB vs SC comparisons

C. Integrated atlas (RAS correlation)
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association could be established and the regulons could be compared thereafter, or even, without 
clustering.  

We believe that independent analysis of integrated and individual atlas uncovers distinct features of 
the regulatory landscape. As in response to R1.5, we combine and present the visual and qualitative 
features of integrated and individual atlases in a single figure for the reviewers. These include  
(i) UMAP embedding (Fig. 1C & S9A, see also Fig. S1), (ii) comparing cell-to-cell correlations
(Fig. 2A & S13A), (iii) comparing regulon-to-regulon correlations (Fig. 2B & S15A-C), (iv)
comparing regulon-to-regulon correlations (Fig. 2C & S15D-F).

Figure: Comparison between integrated and individual atlases 



For more qualitative and quantitative comparison between ‘single- and pseudobulk cells’ and 
between ‘integrated and individual atlases’, we compute Adjusted Mutual Information (AMI) and 
completeness (Fig. 1F) to the ground truth (i.e 7 cell groups). Both metrics show good agreement 
between single- and pseudobulk cells across both integrated and individual atlases. 

Figure 1: (F) Different measures of cluster comparison (top: Adjusted mutual information, bottom: 
Completeness) between pseudobulk and single-cells across integrated and individual mouse atlases, 
considering 7 cell groups.  

Lastly, we compare and speculate on specific regulon crosstalk identified only across individual 
atlases. Across the integrated network, we can broadly observe the smaller modules (1&5) bridge 
the connection between larger modules (3&4). However the MCA network clearly distinguishes the 
interaction specifically  mediated by module 1 and module 3.  

Figure: Comparison of regulon module crosstalk between integrated and MCA. 

R3.10 & R3.11 
R3.10: The Irf8 mutant versus wild type analysis again seems disconnected and does not naturally 
follow from the cell-atlas regulon analysis. Irf8 was one of regulators, but there were several others 
that were discussed. Furthermore, the targets of Irf8 inferred in the cell-atlas were not actually 
validated. Rather, the new scRNA-seq dataset was used to redefine modules and Irf8 was found as a 
regulator here.  
R3.11:  In general, there is no computational or experimental validation of the regulator-
target/network relationships. It is not clear how accurate the inferred networks are. Additional 
comparison to existing databases of TF-target relationships is needed to support the inferred GRNs. 



We thank the reviewer for both the valid comments. Indeed we highlight several regulons 
(including Irf8), which have fundamental implications for individual cell types across atlas. Yet, the 
single-cell data with IRF8 knockout (IRF8-/- or KO) across myeloid differentiation provides a 
biological validation of regulon importances and RAS for cellular states. Furthermore, comparing 
IRF8 KO to wildtype cells, we observe minimal reduction in scRNA-seq expression but highly 
diminished RAS; indicative of the cell state switch from monocytes to granulocytes. 

Nonetheless, we have performed additional validation of regulon network including (i) TFBS motif 
comparison and correlation within each module, (ii) validating regulon network with  
experimentally annotated STRING protein-protein interactions, (iii) validating regulon interactions  
(CSI) with experimentally annotated STRING protein-protein interactions, and (iv) validating 
regulon network with essential genes from Online Gene essentiality database 



Supplementary Figure 17: Validation of regulon network. (A) Top: Motif correlation between 
individual regulons within each module. The rows and columns indicate individual motif sequences 
of different lengths. Bottom: representative examples of TFs and their enriched motifs for each 
regulon module. (B) Annotated protein-protein interactions (PPi) from STRING overlaid on 
integrated regulon network. STRING contains all regulons (nodes), and only STRING validated 
interactions (black edges) are highlighted in the regulon network. Over 55% of regulon network 
edges are validated by STRING. (C) Distribution of the STRING validated interactions captured in 



regulon network, plotted across 20 percentile combined score bins (x-axis). The number of regulon 
network links are listed above individual bins. The combined score is a measure of confidence of 
STRING PPi. (D) Correlation between regulon connection specificity index (CSI) and STRING 
confidence score. The error bars represent the 95% confidence interval. Red line indicates the CSI 
threshold used to construct regulon network. (E) Regulon network overlaid with experimentally 
validated and essential genes (OGEE essentiality status). The enlarged nodes represent essential 
genes, while diminished nodes are non-essential. The regulons absent in OGEE are greyed out in 
the network. 

Minor:  
R3.M1: Euclidian should be Euclidean. 
We have corrected the typo in text. 



August 10, 20201st Revision - Editorial Decision

August 10, 2020 

RE: Life Science Alliance Manuscript  #LSA-2020-00658R 

Dr. Kedar Nath Natarajan 
University of Southern Denmark 
Biochemistry and Molecular Biology 
Campusvej 55 
Odense 5230 
Denmark 

Dear Dr. Natarajan, 

Thank you for submit t ing your revised manuscript  ent it led "Predict ing gene regulatory networks
from cell at lases". We would be happy to publish your paper in Life Science Alliance pending final
revisions necessary to meet our formatt ing guidelines. 

-please address the remaining concerns of Reviewer 1 and provide a point-by-point  response to
his/her comments
-please provide both your main and supplementary figures as separate files
-please add 'Fig.'in front of callout  to S6A (Page 6)
-please double-check your figure callouts--in the manuscript  text , there is a callout  for Figure S7 B,D
but these panels are neither in the figure nor in the legend; there is a callout  for S12C-D, but figure
and legend does not have panel D (page 10)
-please add a figure callout  for S12B and S22C
-please add the figure legends to the main manuscript  text
-please remove Panel A for Fig. S1, Fig. S4, Fig. S7
-please provide more descript ive legends for Fig. S18, S19, and S20
-please enhance the resolut ion for figures S2, S3, S4, S5, S21 to ensure that the text  is readable;
each figure needs to fit  on one page, so you might have to split  figures into 2 figures
-for Fig. S3A: we suggest to make at  least  the text  showing the individual t issues and cell groups
larger
-for Fig. S3B and Fig. S4: Please ensure this figure is legible. It  might be best to remove the text  on
"Authors cell types". The text  describing t issues, reference cell types and cell groups should be
enlarged or alternat ively, you could work with color codes and a legend.
-for Fig. S21 A and B: these could be enlarged or maybe even placed on two different pages.

If you are planning a press release on your work, please inform us immediately to allow informing our
product ion team and scheduling a release date. 

To upload the final version of your manuscript , please log in to your account:
ht tps://lsa.msubmit .net/cgi-bin/main.plex 
You will be guided to complete the submission of your revised manuscript  and to fill in all necessary
informat ion. Please get in touch in case you do not know or remember your login name. 

To avoid unnecessary delays in the acceptance and publicat ion of your paper, please read the
following informat ion carefully. 



A. FINAL FILES:

These items are required for acceptance. 

-- An editable version of the final text  (.DOC or .DOCX) is needed for copyedit ing (no PDFs). 

-- High-resolut ion figure, supplementary figure and video files uploaded as individual files: See our
detailed guidelines for preparing your product ion-ready images, ht tp://www.life-science-
alliance.org/authors 

-- Summary blurb (enter in submission system): A short  text  summarizing in a single sentence the
study (max. 200 characters including spaces). This text  is used in conjunct ion with the t it les of
papers, hence should be informat ive and complementary to the t it le. It  should describe the context
and significance of the findings for a general readership; it  should be writ ten in the present tense
and refer to the work in the third person. Author names should not be ment ioned. 

B. MANUSCRIPT ORGANIZATION AND FORMATTING:

Full guidelines are available on our Instruct ions for Authors page, ht tp://www.life-science-
alliance.org/authors 

We encourage our authors to provide original source data, part icularly uncropped/-processed
electrophoret ic blots and spreadsheets for the main figures of the manuscript . If you would like to
add source data, we would welcome one PDF/Excel-file per figure for this informat ion. These files
will be linked online as supplementary "Source Data" files. 

**Submission of a paper that does not conform to Life Science Alliance guidelines will delay the
acceptance of your manuscript .** 

**It  is Life Science Alliance policy that if requested, original data images must be made available to
the editors. Failure to provide original images upon request will result  in unavoidable delays in
publicat ion. Please ensure that you have access to all original data images prior to final
submission.** 

**The license to publish form must be signed before your manuscript  can be sent to product ion. A
link to the electronic license to publish form will be sent to the corresponding author only. Please
take a moment to check your funder requirements.** 

**Reviews, decision let ters, and point-by-point  responses associated with peer-review at  Life
Science Alliance will be published online, alongside the manuscript . If you do want to opt out of
having the reviewer reports and your point-by-point  responses displayed, please let  us know
immediately.** 

Thank you for your at tent ion to these final processing requirements. Please revise and format the
manuscript  and upload materials within 7 days. 

Thank you for this interest ing contribut ion, we look forward to publishing your paper in Life Science
Alliance. 



Sincerely, 

Reilly Lorenz 
Editorial Office Life Science Alliance 
Meyerhofstr. 1 
69117 Heidelberg, Germany 
t  +49 6221 8891 414 
e contact@life-science-alliance.org 
www.life-science-alliance.org 

------------------------------------------------------------------------------ 
Reviewer #1 (Comments to the Authors (Required)): 

Notes to the authors: 
We thank the authors for their detailed answers to our raised points and the addit ional analyses.
We feel that  there are st ill a few open points not properly addressed, but this is due likely due to a
misunderstanding - which might also be part ly our fault  due to not precisely asked quest ions. We
would be happy to revise a short  further round for the points below. 

Major comments: 

R1.3 We have the feeling that the authors mixed up the process of GRN reconstruct ion and the
final inference of TF act ivit ies based on our quest ion. The term "direct ionality" was intended to be
related to the TF act ivity and not to the TF-target interact ions. We apologize for not being more
precise in our comment. 
Both processes (GRN construct ion and TF act ivity inference) can be executed independent ly from
each other. This means for example that the authors st ill could use Genie3 and RcisTarget from
the SCENIC workflow for network reconstruct ion without relying on pseudot ime or t rajectories
informat ion. For the TF act ivity inference, AUCell might be replaced with any other stat ist ical
method that aims to analyze gene sets and is suited for single-cell data. VIPER
(https://www.bioconductor.org/packages/release/bioc/html/viper.html) is one of these methods that
returns for each TF a signed normalized enrichment score which is considered a proxy of TF
act ivity. Our point  in the revision is that  we believe that this informat ion might be superior to the
undirected AUCell output (only values from 0-1). 

R1.4 We thank the authors for the vast number of addit ional analyses aiming to support  the init ial
hypothesis that cell types are better separated in reduced dimensionality space using pseudobulk
approach instead of the original single-cell data. 
However, we are confused with Figure 1E. We understand that the authors determined separately
for single-cell and pseudobulk the centroids for each cell type cluster. Subsequent ly, the distance
from the individual cells/meta-cells is computed to their respect ive cluster centroid. We believe that
a large distance means that the cluster members are less t ight  arranged and thus spread around in
space while a small distance corresponds to a relat ively narrow cluster, which goes along with a
better separat ion among the individual clusters/cell types. 
However, the authors connect larger distances in the pseudobulk approach with a better
separat ion of cell types. ("The distance is a measure of clustering i.e., larger distances in pseudobulk
highlight  well-separated clusters compared to single-cells"). We could not understand this
conclusion. 



Minor comments: 
1) The mot ivat ion why the authors used SCENIC could be more concise. Even though we asked for
this we believe that half a page is not needed, a couple of lines are enough. Especially, the detailed
summary of SCENICs workflow could either go to supplement or be removed.

2) The authors missed answering to our 3rd minor comment.
"The GRN from SCENIC covers consistent ly across all at lases only a limited number of TFs/regulons
(279). Could the authors elaborate on what could be the reason for this?"

3) There are extra parenthesis and the end of the 2nd paragraph of the introduct ion. Probably an
art ifact  from the previous citat ion style.

4) Regarding Figure S11B. The scale of the silhouette plots should be the same for the single-cell
and pseudobulk approach to facilitate the comparison.

5) We thank the authors for making their code publicly available. We would welcome it  if the authors
could provide some informat ion in the README file to guide through the structure of the repository.

Reviewer #3 (Comments to the Authors (Required)): 

The authors have done a good job of addressing my concerns. The only thing I would ment ion is
that the computat ional validat ion of the regulatory network is happening at  the regulon-regulon
level, which one can think of as a TF-TF network, rather than a TF-gene network (which includes
TF-TF edges). It  would be good to make this clear in the paper that this is what the paper is
ult imately finding. I also think that the co-presence of mot ifs is circular because SCENIC uses mot ifs
to filter edges. What I was looking for is a validat ion of some of the well-known cell types with a key
TF, with available ChIP-seq data, e.g. from ENCODE. But this is a "nice to have" point  and the
authors are not required to do this for the publicat ion. 



BLACK = reviewers comments 

BLUE = our response 

RED = revised text  

Reviewer #1 (Comments to the Authors): 

We thank the authors for their detailed answers to our raised points and the additional analyses. We 

feel that there are still a few open points not properly addressed, but this is due likely due to a 

misunderstanding - which might also be partly our fault due to not precisely asked questions. We 

would be happy to revise a short further round for the points below. 

We thank the reviewer for his/her comments for the second review, which has taken a significant 

additional time. Also acknowledging that we have addressed the raised points and critically 

performed several additional analyses to strengthen the manuscript.  

Major comments: 

R1.3 We have the feeling that the authors mixed up the process of GRN reconstruction and the final 

inference of TF activities based on our question. The term "directionality" was intended to be 

related to the TF activity and not to the TF-target interactions. We apologize for not being more 

precise in our comment. Both processes (GRN construction and TF activity inference) can be 

executed independently from each other. This means for example that the authors still could use 

Genie3 and RcisTarget from the SCENIC workflow for network reconstruction without relying on 

pseudotime or trajectories information. For the TF activity inference, AUCell might be replaced 

with any other statistical method that aims to analyze gene sets and is suited for single-cell data. 

VIPER (https://www.bioconductor.org/packages/release/bioc/html/viper.html) is one of these 

methods that returns for each TF a signed normalized enrichment score which is considered a proxy 

of TF activity. Our point in the revision is that we believe that this information might be superior to 

the undirected AUCell output (only values from 0-1). 

We thank the reviewer for his/her comments, and acknowledging the potential ambiguity. We have 

now included a comparison between AUCell and VIPER for B-cells from the TM-10x cell atlas. 

Supplementary Figure 22: Comparing different GRN scoring methods 

A. Correlation between AUCell and VIPER scoring of regulons across B-cells from TM-10x atlas. For each

regulon, x-axis represents Area Under the Curve (AUC) computed by AUCell, while y-axis represents normalised

enrichment score (NES) computed by VIPER.

2nd Authors' Response to Reviewers          August 24, 2020

https://www.bioconductor.org/packages/release/bioc/html/viper.html


B. Correlation between regulon specificity score (RSS) and NES (VIPER) for each regulon  across B-cells from

TM-10x atlas.

Each dot represents a regulon and the shaded area represents 95% confidence interval from the linear regression

line.

R1.4 We thank the authors for the vast number of additional analyses aiming to support the initial 

hypothesis that cell types are better separated in reduced dimensionality space using pseudobulk 

approach instead of the original single-cell data. 

However, we are confused with Figure 1E. We understand that the authors determined separately 

for single-cell and pseudobulk the centroids for each cell type cluster. Subsequently, the distance 

from the individual cells/meta-cells is computed to their respective cluster centroid. We believe that 

a large distance means that the cluster members are less tight arranged and thus spread around in 

space while a small distance corresponds to a relatively narrow cluster, which goes along with a 

better separation among the individual clusters/cell types. 

However, the authors connect larger distances in the pseudobulk approach with a better separation 

of cell types. ("The distance is a measure of clustering i.e., larger distances in pseudobulk highlight 

well-separated clusters compared to single-cells"). We could not understand this conclusion. 

We thank the reviewer for his/her comments.  

We interpret the distance from cluster centroid (single- and/or pseudo-bulk cells) as a measure of 

cell group separation, as mentioned in the figure legend and as the reviewer highlighted. 

Additionally, we believe that the distance alone does not fully account for the spread of points 

(single- and/or pseudo-bulk cells). We highlight this over tSNE plotting RAS for the TM-10x cell 

groups, where we can appreciate better separation of different cell groups (& reference cell types) 

including basal, stem and blood cell groups. We also provide the pseudobulk and single-cells RAS 

UMAPs in Fig. S9A-B. 

We have removed the above statement from the figure legend to avoid confusion.  

Minor comments: 

1) The motivation why the authors used SCENIC could be more concise. Even though we asked for

this we believe that half a page is not needed, a couple of lines are enough. Especially, the detailed

summary of SCENICs workflow could either go to supplement or be removed.

We’ve updated the text accordingly.

2) The authors missed answering to our 3rd minor comment.

"The GRN from SCENIC covers consistently across all atlases only a limited number of
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TFs/regulons (279). Could the authors elaborate on what could be the reason for this?" 

We apologise for this. 

We start with ~650 TFs, based on SCENIC and first filter TFs and genes not expressed in 10% of 

the cells (Fig. S1). The remaining ~450 TFs undergo second filtering step with GRNBoost (co-

expression) and RCisTarget (TF motif). The resulting 279 regulons are used for scoring and 

analysis (Fig. S1)  

3) There are extra parenthesis and the end of the 2nd paragraph of the introduction. Probably an

artifact from the previous citation style.

We’ve corrected the text.

4) Regarding Figure S11B. The scale of the silhouette plots should be the same for the single-cell

and pseudobulk approach to facilitate the comparison.

We’ve updated the figure.

5) We thank the authors for making their code publicly available. We would welcome it if the

authors could provide some information in the README file to guide through the structure of the

repository.

We’ve now added a README with the structure of the repository.

Reviewer #3 (Comments to the Authors (Required)): 

The authors have done a good job of addressing my concerns. The only thing I would mention is 

that the computational validation of the regulatory network is happening at the regulon-regulon 

level, which one can think of as a TF-TF network, rather than a TF-gene network (which includes 

TF-TF edges). It would be good to make this clear in the paper that this is what the paper is 

ultimately finding. I also think that the co-presence of motifs is circular because SCENIC uses 

motifs to filter edges. What I was looking for is a validation of some of the well-known cell types 

with a key TF, with available ChIP-seq data, e.g. from ENCODE. But this is a "nice to have" point 

and the authors are not required to do this for the publication. 

We thank the reviewer for his/her comments and appreciate inputs for improving our manuscript. 

We are glad to have addressed all the concerns. 



August 31, 20202nd Revision - Editorial Decision

August 31, 2020 

RE: Life Science Alliance Manuscript  #LSA-2020-00658RR 

Dr. Kedar Nath Natarajan 
University of Southern Denmark 
Biochemistry and Molecular Biology 
Campusvej 55 
Odense 5230 
Denmark 

Dear Dr. Natarajan, 

Thank you for submit t ing your Research Art icle ent it led "Predict ing gene regulatory networks from
cell at lases". It  is a pleasure to let  you know that your manuscript  is now accepted for publicat ion in
Life Science Alliance. Congratulat ions on this interest ing work. 

The final published version of your manuscript  will be deposited by us to PubMed Central upon
online publicat ion. 

Your manuscript  will now progress through copyedit ing and proofing. It  is journal policy that authors
provide original data upon request. 

Reviews, decision let ters, and point-by-point  responses associated with peer-review at  Life Science
Alliance will be published online, alongside the manuscript . If you do want to opt out of having the
reviewer reports and your point-by-point  responses displayed, please let  us know immediately. 

***IMPORTANT: If you will be unreachable at  any t ime, please provide us with the email address of
an alternate author. Failure to respond to rout ine queries may lead to unavoidable delays in
publicat ion.*** 

Scheduling details will be available from our product ion department. You will receive proofs short ly
before the publicat ion date. Only essent ial correct ions can be made at  the proof stage so if there
are any minor final changes you wish to make to the manuscript , please let  the journal office know
now. 

DISTRIBUTION OF MATERIALS: 
Authors are required to distribute freely any materials used in experiments published in Life Science
Alliance. Authors are encouraged to deposit  materials used in their studies to the appropriate
repositories for distribut ion to researchers. 

You can contact  the journal office with any quest ions, contact@life-science-alliance.org 

Again, congratulat ions on a very nice paper. I hope you found the review process to be construct ive
and are pleased with how the manuscript  was handled editorially. We look forward to future excit ing
submissions from your lab. 



Sincerely, 

Reilly Lorenz 
Editorial Office Life Science Alliance 
Meyerhofstr. 1 
69117 Heidelberg, Germany 
t  +49 6221 8891 414 
e contact@life-science-alliance.org 
www.life-science-alliance.org 
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