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Supplemental Information 
 

Targeted antibiotic resistance gene rationale 

The targeted antibiotic resistance genes (ARGs) were chosen to provide a range of resistance 

mechanisms and vary in importance to human health.  Sulfonamide antibiotics competitively 

inhibit the action of dihydropteroate synthase (DHPS), an intermediate step in folate synthesis 

which is a vital compound for nucleic acid synthesis in some bacteria.1 sul1 encodes for an 

alternative DHPS in Gram-negative bacteria, which has a low affinity for sulfonamide 

antibiotics, thus conferring resistance.2 Functional blaTEM genes are mostly found in 

enterobacteria and produce a β-lactamase that hydrolyses the cyclic amide bond in β-lactam 

antibiotics.3 tet genes confer multiple mechanisms of resistance to tetracycline antibiotics which 

target bacterial ribosomes and inhibit protein synthesis. tet(G) encodes for an efflux pump 

specific for tetracycline that pumps the drug out of the cell of Gram-negative bacteria.4 tet(O) 

and tet(W) encode for proteins that interfere with the binding of tetracycline to the ribosome, 

thus providing ribosomal protection against the drug.4 ermF encodes for an erythromycin 

ribosomal methylase, an enzyme that modifies the 50S ribosomal subunit which is the target site 

of erythromycin antibiotics.5 New Delhi metallo-β-lactamase (NDM-1) is a recently discovered 

metallo-β-lactamase ARG mainly found in Gram-negative bacteria, that confers resistance to 

most β-lactam antibiotics including carbapenems, by hydrolyzing the β-lactam ring of the drug.6, 

7 Other ARGs of interest such as vanA (vancomycin resistance gene), mexB (multidrug  

resistance gene),  qnr (quinolone resistance gene) and mecA (methicillin resistance gene)  

resulted in non-specific binding following optimization efforts including temperature gradients 

and Mastermix adjustments in this matrix.  This may indicate these genes were not present in this 

matrix as the primer sets used have been used by us and others successfully on other matrices. 
 
 

Alpha Diversity: 3500 sequence depth vs. no subsampling (rarefaction) 

Results of the Shannon and Simpson alpha diversity indices at a depth of 3500 sequences 

showed that field biofilm samples had similar diversity compared to the biofilm communities 

grown in both experiments (p > 0.072, Kruskal–Wallis test). However, Sed-SB biofilms had 

significantly greater prokaryotic diversity indices (Shannon and Simpson) and richness than 

WW-CF biofilms (p < 0.041, Kruskal–Wallis test; Table S3). Similar results were obtained when 

the data was analyzed without sequence subsampling (rarefaction), (p < 0.034, Kruskal–Wallis 
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test; Table S4A). Evenness was significantly higher in Sed-SB biofilms compared to biofilms 

from the field and WW-CF experiment in both the 3500-sequence subsample and with no 

subsampling (p < 0.031 and p < 0.046, Kruskal–Wallis test). 

 

Control study of sonication and centrifugation 

To confirm that our sample preparation (including the sonication and centrifugation) would not 

impact our viable-cell qPCR results, a control study was performed with swabbed E. coli 

collected at exponential growth.  There was no significant difference between the E. coli sample 

treated with PMA and total DNA of the same culture based on qPCR targeting the 16S rRNA 

gene (p=0.25, Fig. S8) indicating that the sonication method did not impair cell integrity enough 

to impact our results by causing an underestimation of viable cell gene copies. 

 

Microbiome analysis and biomarkers determined by LEfSe 

Taxonomical microbial diversity analysis showed that each biofilm sample type (Field, Sed-SB, 

WW-CF) was dominated by different family taxa.  The families observed included those 

containing potential human pathogens, obligate anerobic hydrogenotrophs known to cause 

corrosion, and nitrogen oxidizing bacteria (Fig. S6 and S7).  To identify biomarkers associated 

with the different biofilm samples, LEfSe was performed. No prokaryote biomarkers were found 

as a factor of pipe material or between field sample location (System 1 vs System 2). However, 

27 biomarkers were detected as a function of biofilm sample type (Field, Sed-SB, WW-CF 

biofilm samples; Fig. S8). Results indicated that some of the 16S rRNA gene signatures detected 

are affiliated within taxonomic orders encompassing sulfate reducing bacteria like 

Desulfovibrionales and Desulfobacterales, which are known to be involved in microbiological 

influenced corrosion (MIC).8 In addition, Campylobacterales which is the taxonomical order of 

the known pathogen Campylobacter jejuni was significantly more abundant (p < 0.05) in Sed-SB 

biofilm. In WW-CF biofilm, methanogenic Archaea (Methanomicrobiales) which also play a role 

in MIC8 were detected as biomarkers, as well as Chlamydiales which contains obligate 

intracellular pathogenic species.9 In biofilms sampled from field municipal sewers, Nitrospira 

which is a taxonomical class containing bacteria involved in nitrogen oxidation and are 

commonly found in all WWTP,10 was significantly more abundant. In addition, the order 

Legionellales, that includes species of human pathogen Legionella pneumophila was a biomarker 

for field sewer biofilm. Taxonomic analysis to the species level did not showed the presence of 

pathogenic species belonging to these taxa, however, longer sequence reads are necessary to 

confirm the presence or absence of bacterial species. 
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Table S1.  (A) Information about the municipal sewer systems where samples were collected. 

(B) Water quality measurements of the wastewater used to feed the reactor. (C) pH and 

conductivity measurements of the sediment used to feed Sed-SB reactor. 

A                                  Sampled municipal sewer systems information 

System ID Sewer Type 
Field Biofilm 
sampling 

Field Sediment 
sampling (Sed-
SB) 

Wastewater 
source (WW-CF) 

System A Combined  X  

System 1 Separate X X  

System 2 Separate X  X 

     

 

 

 

 

 

   

B                                         Wastewater abiotic factors 

Reactor feed TSS (mg/L) COD (mg/L) pH Conductivity (µS/cm) 

Sed-SB (1st reactor run) 316.7±17 562±12 7.5±0.2 470±41 

Sed-SB (2nd reactor run) 328.7±21 2714±62 6.6±0.2 1262±68 

WW-CF 223.3±14 317±23 7.4±0.1 322.2±26      

 

 

 

C                    Abiotic factors of sediment used for Sed-SB rector setup 

System ID pH Conductivity (uS/cm) 

System 1 (1st reactor run) 7.88 97.91 

System A (1st reactor run) 7.7 59.33 

System 1 (2nd reactor run) 5.72 1242 

System A (2nd reactor run) 6.63 316.1 
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Table S2  Primers, PCR conditions temperatures, and amplicon lengths. For PCR conditions “m” 

means time in minutes and “s” means time in seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Primer sequence (5’-3’) PCR conditions 
Amplicon 
length (bp) 

R2/Efficiency 
Source 

sul1 
CGCACCGGAAACATCGCTGCAC 95C for 2m [98C for 5s, 69.9C 

for 5s]x40  
163 

0.990.1/974% 
11 

TGAAGTTCCGCCGCAAGGCTCG 

tet(G) 
GCAGAGCAGGTCGCTGG 98C for 2m [98C for 5s, 64C 

for 5s]x40 
134 

0.990.1/955% 
12 

CCYGCAAGAGAAGCCAGAAG 

ermF 
CGACACAGCTTTGGTTGAAC 

GGACCTACCTCATAGACAAG 

95C for 4m [94C for 30s, 56C 

for 30s and 72C for 30s]x40 
309 0.980.1/945% 

13 

blaTEM 
TTCCTGTTTTTGCTCACCCAG 
CTCAAGGATCTTACCGCTGTTG 

95C for 3m [95C for 15s, 60C 

for 20s]x40 
247 0.980.2/925% 

14 

tet(O) 
ACGGARAGTTTATTGTATACC 
TGGCGTATCTATAATGTTGAC 

98C for 2m [98C for 5s, 50C 

for 5s]x40 
171 0.990.1/954% 

15 

tet(W) 
GAGAGCCTGCTATATGCCAGC 

GGGCGTATCCACAATGTTAAC 

98C for 2m [98C for 5s, 60C 

for 5s]x40 
168 0.980.1/946% 

15 

NDM-1 

TTTCAGTCCGACACAACGCG 
CAGCCACCAAAAGCGATGTC 

6-FAM-CAACCGCGCCCAACTTTGGC-

TAMRA 

98C for 15m [98C for 30s, 59C 

for 1m]x40 
155 

0.970.2/896% 

6 

HF183 
ATCATGAGTTCACATGTCCG  
TACCCCGCCTACTATCTAATG  

98C for 10m [95C for 15s, 53C 

for 30s]x40 
82 0.990.1/946% 

16 

16S rRNA 
CCTACGGGAGGCAGCAG  
ATTACCGCGGCTGCTGG 

95C for 10m [95C for 15s, 60C 

for 1m]x40 
202 0.970.2/936% 17 
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Table S3  Indices and measurements of microbial alpha-diversity for field and reactor biofilm 

samples at a 3500 sequences subsample depth. 

 

Sample Biofilm from: Shannon Richness Evenness 

System 1 (A) Field  1.74 28 0.52 

System 1 (B) Field  2.94 100 0.64 

System 1 (C) Field  3.16 122 0.66 

System 1 (D) Field  2.49 83 0.56 

System 2 (A) Field  2.72 80 0.62 

System 2 (B) Field  2.99 86 0.67 

System 2 (C) Field  3.88 162 0.76 

System 2 (D) Field  3.71 148 0.74 

Reactor PVC – WW-CF (A) Wastewater 2.22 47 0.58 

Reactor PVC – WW-CF (B) Wastewater 2.15 42 0.58 

Reactor Concrete – WW-CF (A) Wastewater 2.43 54 0.61 

Reactor Concrete – WW-CF (B) Wastewater 2.46 54 0.62 

Reactor PVC – Sed-SB (A) Sediment 3.51 116 0.74 

Reactor PVC - Sed-SB (B) Sediment 3.49 83 0.79 

Reactor Concrete - Sed-SB (A) Sediment 3.62 110 0.77 

Reactor Concrete - Sed-SB (B) Sediment 3.16 69 0.75 
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Table S4. Indices and measurements of microbial alpha-diversity of field and reactor biofilm samples 

with no rarefaction. (A) Represent the samples from the field and biofilm growth in the reactor, and (B) 

the samples from the disinfection experiment.  (Note letters A-D following the sample names are used to 

indicate different replicates). 

A. 

Sample Biofilm from: Shannon Richness Evenness 

System 1 (A) Field  1.45 49 0.37 
System 1 (B) Field  2.68 123 0.56 
System 1 (C) Field  2.99 138 0.61 
System 1 (D) Field  2.29 115 0.48 
System 2 (A) Field  2.66 99 0.58 
System 2 (B) Field  2.99 118 0.63 
System 2 (C) Field  3.68 186 0.70 
System 2 (D) Field  3.57 183 0.69 
Reactor PVC - WW (A) Wastewater 1.99 52 0.50 
Reactor PVC - WW (B) Wastewater 1.89 45 0.50 
Reactor Concrete - WW (A) Wastewater 2.40 56 0.60 
Reactor Concrete - WW (B) Wastewater 2.43 57 0.60 
Reactor PVC - SED (A) Sediment 4.37 323 0.76 
Reactor PVC - SED (B) Sediment 3.18 84 0.72 
Reactor Concrete - SED (A) Sediment 4.32 343 0.74 
Reactor Concrete - SED (B) Sediment 2.87 69 0.68 
B. 

Biofilm from: Surface Treatment Shannon Richness Evenness 

Wastewater PVC Treated (Total) 3.01 65 0.72 

Wastewater PVC Treated (Viable) 2.07 20 0.69 

Wastewater Concrete Treated (Total) 2.47 58 0.61 

Wastewater Concrete Treated (Viable) 2.40 50 0.61 

Sediment PVC Treated (Total) 2.41 26 0.74 

Sediment PVC Treated (Viable) 0.30 9 0.14 

Sediment Concrete Treated (Total) 2.54 20 0.85 

Sediment Concrete Treated (Viable) 2.11 19 0.72 
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Table S5  Indices and measurements of microbial alpha-diversity of the reactor's biofilm samples 

before and after the bleach treatment. Measurements were calculated at a 500 sequences 

subsample depth (rarefaction) 

 

Biofilm from: Surface Treatment Shannon Simpson 
Inverse 

Simpson 
Fisher Richness Evenness 

Sediment Concrete Untreated  3.11 0.92 12.8 14.2 51 0.79 

Sediment Concrete Untreated 3.73 0.95 22.0 29.9 86 0.84 

Sediment Concrete Treated (Total) 2.56 0.90 10.0 4.17 20 0.85 

Sediment Concrete Treated (Viable) 2.25 0.85 6.79 3.40 17 0.79 

Sediment PVC Untreated  3.45 0.95 19.7 17.0 83 0.79 

Sediment PVC Untreated 3.51 0.94 15.5 28.4 58 0.85 

Sediment PVC Treated (Total) 2.81 0.91 11.6 5.82 26 0.86 

Sediment PVC Treated (Viable) 0.40 0.15 1.17 1.35 8 0.19 

Wastewater Concrete Untreated  2.35 0.84 6.14 9.22 37 0.65 

Wastewater Concrete Untreated 2.37 0.83 6.03 8.57 35 0.67 

Wastewater Concrete Treated (Total) 2.51 0.85 6.64 9.22 37 0.70 

Wastewater Concrete Treated (Viable) 2.66 0.87 7.58 9.22 37 0.74 

Wastewater PVC Untreated  2.12 0.80 5.01 6.11 27 0.64 

Wastewater PVC Untreated 2.34 0.83 5.72 6.89 39 0.77 

Wastewater PVC Treated (Total) 2.17 0.81 5.31 6.41 28 0.65 

Wastewater PVC Treated (Viable) 2.31 0.84 6.28 4.17 20 0.61 
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A. 

 
B. 

 
Fig. S1. Rarefaction curves for samples of both (A) disinfection experiment and (B) biofilm growth, and 

field biofilm samples. The plots represent the comparison of the observed OTUs (y axis) and the 

sequences depth (x axis).  
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Fig. S2 Relative abundance of ARGs and human fecal indicator HF183 (i.e., normalized to 16S rRNA 

gene copies) for field biofilm samples (2 sites) and the simulated systems (WW-CF and Sed-SB) in both 

pipe materials (PVC and concrete). Error bars represent the standard deviation of the mean (n=6 for 

“System 1”, n=5 for “System 2” and n=4 for all the biofilm reactor samples). 
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Fig. S3 Comparison of the concentration of 16S rRNA gene 

copies between the wastewater used to feed each reactor setup 

(Sed-SB vs WW-CF). Error bars represent the standard deviation 

of the mean (n=2 for Sed-SB and n=3 for WW-CF) 
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Fig. S4 Relative abundance of ARGs (i.e., normalized to 16S rRNA gene copies) for feed wastewater and 

the biofilm for reactor (A) Sed-SB and (B) WW-CF. In the Sed-SB plot (A) n = 4 in all the samples while 

in WW-CF plot (B) n = 3 for wastewater and n = 4 for each biofilm sample (on PVC and on concrete). 

Error bars represent the standard deviation of the mean. 
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Fig. S5 Concentration of 16S rRNA gene copies per area for the field biofilm samples (2 sites) and the 

reactor biofilm in both setups (WW-CF and Sed-SB) and pipe materials (PVC and Concrete). Error bars 

represent the standard deviation of the mean (n=6 for field biofilm samples and n=4 for all the biofilm 

reactor samples). 
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Fig S6. Heatmap showing the microbiome at the family level of all field and reactor biofilm samples. 

White color represents 37% relative abundance of the taxon, while red means 0% relative abundance. 

Heatmap was created with a 3500-sequence subsample (rarefaction). 
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Fig. S7. Concentrations of total and viable cells carrying viable 16S rRNA gene and ARG copies in the 

biofilms of both reactor setups (A) WW-CF and (B) Sed-SB before the treatment with bleach  (0 minutes; 

red circle), after 1 minute of exposure to the disinfectant (orange square) and 10 minutes of exposure 

(yellow triangle). n=4 for all WW-CF samples and n=5 for all Sed-SB samples. Error bars represent the 

standard deviation of the mean. The red dotted line represents the LOQ based on the lowest value in the 

qPCR standard curve. 
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Fig. S8 Concentrations of the total and viable-cells carrying 16S rRNA gene.  Samples were collected 

from swabs of a culture of Escherichia coli (TOP10) and analyzed following dislodging by sonication. 

Error bars represent the standard deviation of technical replicates (n=3). 
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Fig. S9. Heatmap of the biofilm microbiome in both reactor setups (Sed-SB and WW-CF) at the family 

level before (Unt) and after (Trt)10 minutes of exposure to 4.6% bleach for total (T) DNA and DNA from 

viable (V) cells. White color represents 37% relative abundance of the taxon while red represents 0% 

relative abundance. The heatmap was created with a 500-sequences subsample depth (rarefaction). 
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Fig. S10. Linear discriminant analysis (LDA) effect size (LEfSe) histogram. LDA Score of the most 

abundant bacteria in the different types of biofilm samples  
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