Biochemical screening for SARS-CoV-2 main protease inhibitors

Camila Coelho^{1*}, Gloria Gallo^{1*}, Claudia B. Campos¹, Leon Hardy², Martin Würtele^{1**}

¹ Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil. ²Department of Physics, University of South Florida, Tampa, United States of America. *These authors contributed equally to this work. **Corresponding author.

Supporting Information

S1 Table. Kinetics of SARS-Cov-2 M^{pro} inhibitors. IC₅₀, inhibitory (dissociation) constants (K_i), Michaelis Menten constants (K_m), turnover numbers (k_{cat}), and different kinetic model candidates (together with acceptance criteria values) of SARS-Cov-2 M^{pro} inhibitors are given.

Compound	IC₅₀ (μM) [*]	Ki (μM) [*]	Km (μM) [*]	k _{cat} (s⁻¹)*	Inhibition mechanism ^{**}	SSQ [§]	∆AIC ^{&}	ΔBIC [#]
Thimerosal (1)	0.6 ±	0.6 ±	47 ± 8	0.010 ±	Mixed	1	0	0
	0.1	0.2		0.0011	non-competitive	1.4	2.4	1.5
Phenylmercuric	0.4 ±	0.11 ±	52 ±	0.013 ±	Competitive	1	0	0
acetate (2)	0.06	0.03	19	0.0024	non-competitive	1.1	2.0	2.0
Bronopol (3)	4.4 ±	2.5 ±	45 ± 9	0.010 ±	non-competitive	1	0	0
	0.6	0.3		0.0013	mixed	1	3.0	3.9
Tannic acid (4)	2.1 ±	1.4 ±	47 ± 8	0.010 ±	Competitive	1	0	0
	0.2	0.14		0.0011	non-competitive	1.2	4.1	4.1
Hematoporphyrin	3.9 ±	5.9 ±	50 ± 8	0.011 ±	non-competitive	1	0	0
(5)	0.6	0.5		0.0011	mixed	1	3.0	4.2
					competitive	1.2	3.2	3.2
3,4-Didesmethyl-5-	10.6 ±	5.6 ±	51 ±	0.011 ±	non-competitive	1	0	0
deshydroxy-3'-	1.3	0.5	10	0.0014	competitive	1.1	2.1	2.1
ethoxyscleroin (6)					mixed	1	3.3	4.4
Evans blue (11)	0.2 ± 0.06	0.21 ± 0.022	56 ± 8	0.010 ± 0.0008	Competitive	1	0	0
Chicago Sky Blue	7.7 ±	1.3 ±	56 ±	0.013 ±	Competitive	1	0	0
(12)	1.6	0.2	12	0.0015	noncompetitive	1.2	3.2	3.2
					mixed	1	3.4	4.4

*Error values are expressed as standard error of the mean (SEM).

^{**}Most probable mechanism according to SSQ, ΔAIC and ΔBIC analyses in bold.

[§]Summed squared deviation.

[&]Second order Akeike information criterion.

[#]Bayesian information criterion.

S2 Table. Toxicity of SARS-Cov-2 M^{pro} inhibitors.

Compound	LD ₅₀ *	Source
Thimerosal (1)	75 mg/kg (oral, rat)	Pesticide Chemicals Official Compendium, Association of the American Pesticide Control Officials, Inc., 1966, (1130), 1966.
Phenylmercuric acetate (2)	41 mg/kg (oral, rat)	Acute Toxicity Data. Journal of the American College of Toxicology, Part B., 1(175), 1992.
Bronopol (3)	180 mg/kg	Pesticide Index, Frear, E.H., ed., State College, PA, College Science Pub., 1969, 5(30), 1976.
Tannic acid (4)	No data available	
Hematoporphyrin (5)	307 mg/kg (IV, mouse)	Nippon Yakurigaku Zasshi. Japanese Journal of Pharmacology., 57(219), 1961.
3,4-Didesmethyl-5-deshydroxy-3'- ethoxyscleroin (6)	No data available	
2,3,4-Trihydroxy-4'- ethoxybenzophenone (7)	No data available	
Chloranil (8)	4 g/kg (oral, rat)	Pesticide Chemicals Official Compendium, Association of the American Pesticide Control Officials, Inc., 1966, (218), 1966.
Plumbagin (9)	16 mg/kg (oral, mouse)	Indian Journal of Experimental Biology, 18(876), 1980. [PMID:7461745]
Vanitiolide (10)	No data available	
Evans blue (11)	340 mg/kg (IP, mouse)	Biochemical and Biophysical Research Communications., 136(64), 1986. [PMID:3010977].
Chicago Sky Blue (12)	2260 mg/kg(IV, mouse)	Science, 114(41), 1951. [PMID:14854894]

 * LD₅₀ – median lethal dose, as reported in <u>www.pubchem.gov</u>

S1 Figure: **Inhibition kinetics of SARS-Cov-2 M^{pro} inhibitors.** Enzyme kinetics experiments of selected inhibitory compounds were performed with the MCA-AVLQSGFR-K(Dnp)-K-NH2 fluorescent peptide as substrate (S) and using 0.5 μ M of recombinant M^{pro} and the shown inhibitor concentrations (given in μ M). Fluorescence values were converted using a calibration curve with MCA to molar values and corrected for IFE (internal filter effect) to obtain enzymatic rates. Thimerosal (1) Phenylmercuric acetate (2)

