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Supplementary Methods 

1. The OPEX Framework 

1.1 Overview 

We have designed the Optimal Experimental Design Framework (OPEX) to identify optimal set of 

transcriptomic experiments for maximizing prediction power in unobserved culture conditions in three 

steps (Fig. 1, steps 1-3). In the first step, we use the available transcriptomic data to Build Predictive 

Model of gene expression using culture condition as the model input. In the second step, we Calculate 

Utility Scores for unobserved culture conditions using the predictive model from the first step. In the 

third step, we Select Optimal Conditions amongst all unobserved culture conditions given their utility 

scores from the second step. In its general form, OPEX is the following optimization problem: 

 𝑋s = ArgMax 
𝑋

𝑏𝑎𝑡𝑐ℎ_𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦(𝑋, 𝑏, 𝑋o, 𝑌o) (1) 

where the matrix 𝑋s denotes the culture conditions for the next batch of experiments, the matrix 𝑋𝑜 

denotes the culture conditions for the observed experiments (with each row of the matrix being an 

experiment), matrix 𝑌o contains the gene expression profiles that map to the corresponding experiments 

of 𝑋o and scalar 𝑏 denotes the batch size (i.e. number of conditions to run for the next batch). The 

optimality of a batch of candidate conditions in matrix 𝑋 is determined using the function 

𝑏𝑎𝑡𝑐ℎ_𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 and the optimal batch is returned by ArgMax 
𝑋

.  

1.2 General Mathematical Formulation 

The following describes the three-step algorithm of OPEX algorithm for finding 𝑋s. The modular design 

of the OPEX algorithm (Algorithm 1) allows different methods to be used in each step. 
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Algorithm 2. OPEX algorithm to identify the optimal set of experiments at each round. 

Inputs: {𝑋o, 𝑌o, 𝑋u, 𝑏}, where the observed conditions are characterized by matrix 𝑋o, their corresponding 

gene expression profiles are in matrix 𝑌𝑜, the unobserved conditions are characterized by matrix 𝑋u, and the 

batch size (i.e. the number of conditions to perform next) is denoted by scalar 𝑏. 

 Output: {𝑋o, 𝑌o}, where 𝑋𝑜 and  𝑌𝑜 include the original input and the newly collected data. 

 1:   for t = 1 to 𝑇 do                                                                                 // Run OPEX for T rounds 

 2:        for j = 1 to 𝑚 do                                                                           // Run OPEX for all 𝑚 genes 

 3:            𝐲o ← 𝑌o
j
                                                                                    // Select the jth gene  

 4:            𝑀𝑜𝑑𝑒𝑙 ← 𝑏𝑢𝑖𝑙𝑑_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒_𝑚𝑜𝑑𝑒𝑙(𝑋o, 𝐲o)                           // OPEX Step 1 (see section 1.2.1) 

 5:           𝒔𝐮 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑠(𝑀𝑜𝑑𝑒𝑙, 𝑋u)                          // OPEX Step 2 (see section 1.2.2) 

 6:            𝑋s
j

← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠(𝑋u, 𝒔u, 𝑏)                         // OPEX Step 3  (see section 1.2.3) 

 7:       end for 

 8:        𝑋new ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑚𝑜𝑠𝑡_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠(𝑋s
1, 𝑋s

2, …, 𝑋s
m)   // (see section 1.2.4) 

 9:        𝑌new   ← 𝑟𝑢𝑛_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑋new)                                              // Wet lab experiments 

10:       (𝑋o, 𝑌o, 𝑋u)  ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝑋o, 𝑌o, 𝑋new, 𝑌new)                       // Update datasets 

11:   end for 

12:   return (𝑋o, 𝑌o) 

The vector 𝒔u contains 𝑛u real valued utility scores, one for each unobserved condition that is encoded 

by a corresponding row of 𝑋u. 

Modeling Culture Conditions. The 𝑛o × 𝑚 matrix 𝑋o, characterizes 𝑛o observed culture conditions in 

its rows using 𝑚 independent variables as columns. Examples of independent variables include the 

antibiotic concentration and temperature. Matrices 𝑋u and 𝑋s characterize 𝑛u unobserved and 𝑛s selected 

culture conditions respectively in the same way both with 𝑚 columns. Note that OPEX allows 

independent variables to be modeled as binary or real values. 

Modeling Gene Expression Profiles. The 𝑛o × 𝑑 matrix 𝑌o, contains 𝑛o gene expression profiles in its 

rows for 𝑑 genes modeled by its columns. Gene expression profiles of OPEX are modeled as real values. 
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Next, we describe the methods used in our implementation and results. 

1.2.1 Build Predictive Model 

For each gene of E. coli, we used Gaussian Processes (GP) to build a predictive model (i.e. 𝑀𝑜𝑑𝑒𝑙(𝑥)) 

to predict the expression level of the gene under a culture condition characterized by a horizontal vector 

𝒙. In our real-data results, 𝒙 is a 14-bit binary vector representing presence/absence of ten biocides and 

four antibiotics which characterize a given culture condition. In our synthetic-data results, 𝒙 is a real 

valued vector with length 2 characterizing the concentrations of one biocide and one antibiotic in each 

culture condition. 

The observed expression 𝑦 of a gene is a population average of the expression levels of the gene in 

multiple cells. According to the central limit theorem, the observed expression level of a gene under a 

culture condition follows a Gaussian distribution. Given a new unobserved condition (𝒙𝑛𝑒𝑤), the 

predicted mean of 𝑦new, 𝐸(𝑦new), and the predicted variance of 𝑦new, 𝜎new
2 , are computed by equation 

2 and 3, respectively: 

                     𝐸(𝑦new)  = 𝒌new𝐾−1𝒚o
T                                                  (2) 

    𝜎new
2 = 𝑘(𝒙new, 𝒙new)  −  𝒌new𝐾−𝟏𝒌newT

                                        (3)  

              𝑀𝑜𝑑𝑒𝑙(𝑥new)~𝒩(𝐸(𝑦new), 𝜎new
2 )                                                       (4) 

where, 𝒌new = [𝑘(𝒙new , 𝒙o
1), 𝑘(𝒙new , 𝒙o

2), … , 𝑘(𝒙new , 𝒙o
𝑛)] is a vector,  representing the correlation 

between 𝑦new and the gene expression for n observed culture conditions, ( 𝒚𝑜 = [𝑦1, 𝑦2, … , 𝑦𝑛]). The 

kernel function, 𝑘(𝒙𝑖 , 𝒙𝑗), models the correlation between 𝑦𝑖 and 𝑦𝑗 , using a squared exponential (SE) 

function: 

                                     𝑘(𝒙𝑖 , 𝒙𝑗) =  𝜎exp (− ∑
(𝑥𝑝

𝑖−𝑥𝑝
𝑗)

2

𝜃𝑝

14
𝑝=1 )                                              (5) 
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The covariance matrix 𝐾 = [

𝒌1

𝒌2

⋮
𝒌𝑛

] represents all pairwise correlations for the given gene. The parameter 

𝜎 represents the amplitude of overall correlation along all dimensions in the SE kernel while parameter 

𝜃𝑝  is used for automatic relevance determination [1]. A larger value of 𝜃𝑝  represents a smaller influence 

of the 𝑝𝑡ℎ  independent variable of a culture condition on the gene expression. These parameters are 

learned by maximizing the marginal likelihood of the observed data given the parameters. For a detailed 

derivation of the equations related to GP, see [1].  

Given the selection of GP as our model in this work (from equations (1-4)), for each gene the trained 

𝑀𝑜𝑑𝑒𝑙(𝑥new) is well defined by 𝒌new , 𝐾 and 𝒚𝐨 which are used to predict the gene expression using 

𝐸(𝑦new
     

) from equation 2 and to calculate utility scores as described next. 

1.2.2 Calculate Utility Scores 

We evaluated OPEX using three different utility score calculation methods described here. The utility 

score 𝑠new for a new unobserved condition is calculated using the utility function. The utility scores 

of all unobserved conditions are represented by vector 𝒔𝐮 = [𝑠u
1, 𝑠u

2,…, 𝑠u
𝑚], where 𝑠u

𝑗
 is the utility score 

of the 𝑗𝑡ℎ  unobserved condition for a given gene. 

Entropy (EN). The gene expression level predicted by a trained GP model follows a Gaussian 

distribution, therefore the distribution of 𝑦new is fully defined by (𝑦new) and 𝜎new
2 . Following the 

definition of entropy (equation 5), we can easily derive the entropy of the gene expression (equation 6) 

by plugging into the probability density function of  𝑦new. 

                     𝐻(𝑦new) = ∫ 𝑝(𝑦new) 𝑙𝑛(𝑝(𝑦new)) 𝑑𝑦new                                                 (6) 

                                        𝐻(𝑦new) = 0.5 𝑙𝑜𝑔(2𝜋𝑒 𝜎new
2 )                                                           (7) 

Equation 6 shows that entropy is a monotonic function of the variance of 𝑦new. Intuitively, a condition 

with a high 𝜎new
2  has a high utility explained by the uncertainty of GP model about this new condition. 

Plugging equation 3 into equation 6, we get equation 8 to calculate the entropy.  
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                        𝑠new = 𝑜. 5log (2𝜋𝑒(𝑘(𝒙new, 𝒙new) −  𝒌new𝐾−𝟏𝒌newT
))                                       (8) 

where 𝒌𝑛𝑒𝑤  and K are the same as in equation 2. 

Mutual Information (MI). In the setting of MI, the idea is to select the most representative culture 

condition amongst all possible unobserved culture conditions. The representativeness of n observed 

culture conditions is quantified by the mutual information (MI) between the observed and the 

unobserved gene expression 𝒚𝐨 and 𝒚𝐮. The MI can be calculated by equation 9 where 𝐻(𝒚𝐮) represents 

the entropy of the gene expression under all unobserved culture conditions and 𝐻(𝒚𝐮|𝒚𝐨) represents the 

entropy of the gene expression under all unobserved culture conditions given the gene expression under 

the observed culture conditions. 

                                                       𝑀𝐼 (𝒚o, 𝒚u)  =  𝐻(𝒚u)  −  𝐻(𝒚u|𝒚o)                                         (9) 

Given a set of observed conditions 𝑋o, the utility score for each unobserved culture condition 𝑥new is 

equivalent to the increase in 𝑀𝐼 (𝒚o, 𝒚u) if we move the 𝑥𝑛𝑒𝑤 to the set of observed conditions. Plugging 

equation 7 into equation 9, we can derive the utility of a new condition using the following equation (see 

the section 4.1 of reference [2] for detailed derivation):  

𝑠new = 𝑀𝐼 (𝒚
{o+new}

, 𝒚
{u−new}

)  −   𝑀𝐼 (𝒚
o
, 𝒚

u
)  =

𝜎new
2 − 𝒌new 𝐾−1 𝒌new𝑇

𝜎new
2 −𝒌{u−new}

new  𝐾{u−new}
−1  𝒌{u−new}

new 𝑇         (10) 

where 𝒚{o+new} is the gene expression in all the observed conditions and the new condition; 𝒚{u−new} is 

the gene expression in all unobserved conditions except the new condition; 𝒌new and K are the same as 

in equation 2;  𝒌{u−new}
new  is a vector composed of the covariance between the new condition and all 

other unobserved condition. 𝐾{u−new} is the pairwise covariance between all unobserved conditions 

except  the new condition. 

Covariance (COV). Similar to MI, the covariance captures how the observed culture conditions relate 

to the unobserved ones. One sequential design implementation is to select the culture condition which 

provides the highest increase in covariance between the observed datapoints and unobserved datapoints 
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[3]. The covariance matrix can be calculated by the following equation for a given gene. 

                                                      𝐶𝑂𝑉u,o =  𝐾u,o𝐾o,o
−1𝐾o,u                                                                           (11) 

𝐾u,o is a covariance matrix composed of the pairwise correlation between the unobserved conditions and 

the observed conditions. Each entry in the matrix is calculated by the kernel function of the GP. 𝐾o,o a 

covariance matrix composed of the pairwise correlation between the observed conditions. The 

covariance utility function is equal to the increment in the trace of the covariance matrix calculated by 

the following equation: 

          𝑠new = 𝑡𝑟𝑎𝑐𝑒(𝐶𝑂𝑉{u−new},{o+new}

                                    

) − 𝑡𝑟𝑎𝑐𝑒(𝐶𝑂𝑉u,o

     

)                             (12) 

where  𝐶𝑂𝑉{u−new},{o+new}

                                   

 is the same as  𝐶𝑂𝑉u,o

     

 except that a given unobserved condition 𝒙new  is 

removed from the set of unobserved and added to observed conditions for a given gene.  

1.2.3 Select Optimal Conditions for each gene 

Following the general optimization equation (1) and using the terminology above, the next condition to 

select is the one that has the maximum utility score according the 𝑗𝑡ℎ  gene is: 

                                    𝑿𝑠
𝑗
= 𝐀𝐫𝐠𝐌𝐚𝐱 

 𝒙𝐧𝐞𝐰

 𝑠new                                              (13) 

where 𝑠new is the utility score corresponding a given unobserved 𝑥new condition calculated by one of 

equations 8, 10, and 12, depending on the utility function used. For example, when we use mutual 

information (i.e. equation (10)) as the utility function, the most informative condition for 𝑗𝑡ℎ   gene is 

selected by solving the following OPEX optimization problem: 

𝑿s
𝑗
= 𝐀𝐫𝐠𝐌𝐚𝐱 

 𝒙𝑛𝑒𝑤

  
𝜎new

2 − 𝒌new 𝐾−1 𝒌new𝑇

𝜎new
2 −𝒌{u−new}

new  𝐾{u−new}
−1  𝒌{u−new}

new 𝑇                                        (14) 

Subject to ∑ 𝑥𝑖
new = 110

𝑖=1 , ∑ 𝑥𝑗
new = 114

𝑗=11 , 𝑥𝑗 ∈ {0, 1} 
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where 𝒙new is a 14-bit binary vector representing presence/absence of ten biocides and four antibiotics 

for a culture condition.  

Finally, [𝑿𝐬
1, 𝑿𝐬

2, … 𝑿𝐬
𝑚], where 𝑚 is the number of genes. With the optimal unobserved conditions 

selected for each gene, we count the frequency of each selected batch and select the most frequent one 

from  

For a larger batch size (i.e. 𝑏 > 1), the next condition in the batch was selected by greedy, constrained 

or adaptive sampling, as described in the respective results. In greedy sampling, the conditions are 

ranked based on their utility scores. The top 𝑏 conditions with highest utility scores are selected for the 

next batch. In constrained sampling, the condition with the highest utility score is selected and added 

to the batch. Then we iterate through the remaining conditions ordered by their utility scores and 

calculate their Euclidean distance to selected items in the batch. Conditions with a minimum distance 

(based on a predefined threshold) are added until the batch-size limit 𝑏 is reached. Finally, in adaptive 

sampling, the condition with the highest utility score is selected and added to the batch. Then, the 

predicted gene expression profile of the newly selected condition is considered as observed leading into 

the newly trained model and updated utility scores. The condition with the highest updated utility score 

is then added to the batch. This process is repeated until the batch-size limit 𝑏 is reached. 

1.2.4 Select Optimal Conditions for most of genes 

With the optimal unobserved conditions selected for each gene, we count the frequency of each selected 

batch and select the most frequent one from [𝑿𝐬
1, 𝑿𝐬

2, … 𝑿𝐬
𝑚], where 𝑚 is the number of genes.  

2. Computational Methods 

2.1 Alternative Optimal Experimental Design Methods 

For benchmarking, we used three other optimal experimental design approaches, query by the committee 

using different types of models [4-5], query by committee using bootstrapping [6], and D-optimal 

experimental design [7].  Compared to OPEX, all approaches differ in the utility function used while the 
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last approach also employs a different predictive model. 

Query by Committee Using Different Types of Models.  We used feedforward neural network (FNN), 

linear regression, Gaussian process and Support Vector Regression (SVR). For training an FNN and 

SVR, we used the packages, neuralnet and e1071, respectively. The number of hidden nodes of FNN 

and the two hyperparameters of SVR were optimized by grid search.  In each iteration, the condition 

with the highest disagreement amongst different models (i.e. highest variance) was selected for the next 

iteration. When generating a learning curve, GP model was used.   

Query by Committee Using Bootstrapping. Here we used one type of model (GP), but changed the 

training set using bootstrapping to build a committee of four GP models. Likewise, the condition with 

the highest disagreement amongst different models (i.e. highest variance) was selected for the next 

iteration. When generating the learning curve, the GP model was trained without bootstrapping.  

D-optimal Experimental Design. Here, we used a linear model to predict gene expression (linear 

models were trained by the built-in implementation for linear regression in R). The condition that 

increased the determinant of information matrix (XTX) to the most extent was selected at each iteration.  

X is a matrix consisting of the vectors each of which represents a culture condition.  

2.2 Expert Sampling 

We designed three strategies for expert sampling by consulting one chemist and three biologists to 

evaluate the effectiveness of OPEX compared to human experts. These are: 

First strategy: Structural similarity. The first strategy relied on comparing the pairwise structural 

similarity among 10 biocides and 4 antibiotics. The least similar culture condition was selected in each 

iteration. Specifically, a 1024-bit topological fingerprint was generated for each chemical using the 

Python package, rdkit. The pairwise Tanimoto similarity among the biocides and antibiotics were 

calculated [8]. The similarity between the two culture conditions was defined as the sum of the similarity 

between the two biocides and that between the two antibiotics. When exploring the space defined by the 

biocides and antibiotics, we looked up the similarity of each unobserved culture condition to all the 
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observed culture conditions and picked the least similar one.  

Second strategy: Mechanism of action. The second strategy was based on similarity in the mechanism 

of action of each antibiotic and biocide. In each iteration, we sampled the antibiotic and biocide that 

were most different from the observed ones. For the mechanism of action of each antibiotic and biocide, 

see Supplementary Table 1.  

Third strategy: Effect size. For the third strategy, three experts first ordered the four antibiotics based 

on their expected dominant impacts on transcription in the central dogma of molecular biology, 

Ampicillin < Norfloxacin < Kanamycin < Rifampicin. Rifampicin is known to inhibit RNA polymerase 

hence directly impacting transcription [9]. Kanamycin interferes with translation hence indirectly 

impacting transcription through transcription factors [10]. Norfloxacin and Ampicillin are known to 

impact DNA replication and cell wall hence ordered last with respect to their impact on overall 

transcription profile [11-12]. If an antibiotic is dominant, the choice of biocide would be expected to 

have a smaller impact on gene expression of E. coli. We rationalized that if we have the gene expression 

under a culture condition that has a more dominant antibiotic, we are likely to do a good prediction for 

the culture conditions that have the same antibiotic but different biocides. Based on such reasoning, we 

grouped the unobserved culture conditions into four groups based on the antibiotic. The group that has 

a less dominant antibiotic was sampled before the group that has a more dominant antibiotic. In each 

group, we split the culture conditions into 5 buckets based on the mechanism of each biocide. Among 

the 5 buckets, we randomly selected one in each iteration while making sure two consecutive datapoints 

were not from the same bucket. 

2.3 Random Sampling 

For random sampling, we randomly selected a datapoint (an experimental condition in our setting) from 

all the unobserved datapoints as the next datapoint to collect. The default random function in R was used. 

2.4 Exploration-Exploitation Tradeoff 

The calculated utility scores have a potential myopic bias, therefore relying on them for selecting the 
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next batch of experiments (i.e. exploitation of the model) can lead to overfitting. To avoid this, a portion 

of the selected conditions for the next batch can be selected randomly (i.e. exploration of the sample 

space). The exploration-exploitation trade-off is fundamental in optimal experimental design [2]. 

Exploration refers to switching to a strategy different from the predefined strategy based on one of the 

utility functions. The role of exploration is similar to simulated annealing [14]. Exploitation means 

exploiting the information learned from the collected data and selecting the next datapoint based on the 

prediction of a model trained on the collected data. We used exploration frequency to control the tradeoff. 

The effect of the exploration frequency parameter was evaluated on synthetic datasets and the RNA-Seq 

dataset. 

2.5 Synthetic and Real RNA-Seq Datasets 

OPEX was evaluated on a synthetic dataset and real RNA-Seq datasets. 

2.5.1 Synthetic Datasets Generation. The observed response of a biological system to culture condition 

perturbations, can be modeled in a multi-dimensional space using a dependent response variable and a 

set of independent variables. Such models are usually non-smooth and rugged with a few peaks or valleys 

in the space.  To simulate such rugged spaces, the sum of 300 bi-variate normal distributions with 

different means and a variance of 1 were superimposed and taken to the power of 2, 3, 4, 5, 6, 7, and 8, 

generating seven datasets, with varying skewness. The two dimensions of the bi-variate normal 

distributions simulated various concentrations of an antibiotic and a biocide and the value of the 

superimposed normal distributions represents the gene expression in a culture condition defined by the 

antibiotic and biocide. The impact of noise; a property of biological data; was also evaluated by adding 

white noise with levels proportional to the gene expression level for each datapoint. 

2.5.2 RNA-Seq Dataset 

We measured the gene expression profiles of E. coli under 45 culture conditions defined by 4 antibiotics 

and 40 combinations of 10 biocides and 4 antibiotics, and an untreated control. Out of all the genes of 

E. coli, 1,123 genes had a count per million (CPM) larger than 100 in at least half of the samples. The 

fold changes of the genes that have a CPM less than 100 in at least half of the samples are expected to 
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be sensitive to the sequencing depth [13]. To exclude the effect of those genes, we tested OPEX only 

using the 1,123 genes. We also tested OPEX and variations of OPEX on all the 4,391 genes, which 

resulted in similar results (Section 2.5). 

2.5.3 Validating OPEX on Synthetic Datasets 

When validating the performance of OPEX on the synthetic datasets, we first randomly split a synthetic 

dataset into three datasets, a training dataset, a pool of candidate conditions, and a benchmark set for 

evaluating the prediction performance of a trained predictive model. Then we evaluated OPEX in 30 

iterations. In each iteration, we trained a GP model using the training dataset, calculated the utility score 

of each candidate condition that remained in the pool and selected a batch of conditions for adding to 

the training set. Finally, we evaluated the predictive performance by the mean absolute error of 

predictions on the benchmark set. After running OPEX for 30 iterations, we visualized the prediction 

accuracy at each iteration as a learning curve and compare the learning curve of OPEX and that of the 

baseline. When selecting a batch of conditions in a batch, we tested three approaches as outlined in 

section 1.2.3.  Random sampling was used as the baseline for evaluating the performance of OPEX. 

2.6 Validating OPEX on an RNA-Seq Dataset 

Since the RNA-Seq dataset does not have as many records as in the synthetic datasets, we slightly 

changed our validation method for it. We first split the whole dataset into two parts instead of three. One 

part served as the starting point of the training set. The other part served both as the pool of culture 

conditions for selection, and as the benchmark dataset. The initial training set consisted of 15 randomly 

selected culture conditions where each antibiotic and biocide were selected at least once.  In each 

iteration, we trained a GP using the current training set, selected a candidate culture condition from the 

pool and moved it to the training dataset, then evaluated the prediction performance of the retrained GP 

on the benchmark set. Note that the size of the benchmark was reduced at each iteration. We run 50 times 

the whole process with a different random seed at each time. 

Two types of methods were used for comparison, random sampling and expert sampling (for details, see 

the section entitled Expert Sampling). Each sampling method was evaluated against random sampling 
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using the MAE of gene expression predictions in a given iteration.  

2.7 Cluster Analysis on 40 Culture Conditions 

We ran Principal Component Analysis (PCA) [15] and t-Distributed Stochastic Neighbor Embedding (t-

SNE) [16] on the gene expression profiles of all 40 conditions using prcomp and Rtsne respectively in 

the R programming language, and projected the first two dimensions.  

Hierarchical clustering was also performed on all 40 gene expression profiles (Fig. 3B). First, gene set 

enrichment analysis (GSEA) was conducted on all transcriptomic datasets using the GSEA v3.0 software 

with the default parameters. Only dysregulated GO-BP terms (i.e. gene ontology terms relating to 

biological processes) with normalized p-values <0.05, were selected for further analysis. The 

hierarchical agglomerative clustering of DEGs and BPs of all antibiotics and biocide-antibiotic pairs 

used the nearest point algorithm (the built-in function in R for hierarchical clustering was used). 

2.8 OPEX Accelerates Knowledge Discovery 

To test whether OPEX can accelerate knowledge discovery (Fig. 3C), we started with gene expression 

profiles of 15 culture conditions and predicted the gene expression profiles of the 30 unobserved culture 

conditions. With 15 measured and 30 predicted gene expression profiles, we run hierarchical clustering 

and evaluated the accuracy of the membership of the 30 conditions. Likewise, we run OPEX for 30 

iterations and evaluated the accuracy at each iteration. 

3. Experimental Methods 

3.1 Antimicrobials  

10 biocides and 4 antibiotics were used in this study. Biocides were selected based on their widespread 

use in hospitals and households [17], and antibiotics were selected based on their unique cellular targets 

(Supplementary table 1). Biocides used in this work were: benzalkonium chloride (MP Biomedicals), 

hydrogen peroxide (Macron), peracetic acid (Sigma Aldrich), sodium hypochlorite (Sigma Aldrich), 

glutaraldehyde (Amresco), chlorhexidine (Sigma-Aldrich), chlorhexidine gluconate (Spectrum), 
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povidone iodine (Sigma-Aldrich) and chlorophene (Sigma-Aldrich). Four antibiotics used for this work 

were: ampicillin (Roche-Diagnostics), kanamycin (Acros Organics), norfloxacin (Sigma-Aldrich), and 

rifampicin (Cayman Chemical). Antibiotic stocks were stored at -800℃ until used and biocides were 

prepared on the day of experiment. Working concentrations of biocides and antibiotics were: 

benzalkonium chloride (3.63 mg/L), isopropanol (2.7% v/v), ethanol (2.8% v/v), hydrogen peroxide (272 

µM), peracetic acid (9 µM), sodium hypochlorite (3.64 µM), glutaraldehyde (29 µM), chlorophene (0.25 

mM), chlorhexidine (1.48 µM), povidone iodine (12.5 µg/mL), ampicillin (0.80 µg/mL), kanamycin (4.0 

µg/mL), norfloxacin (0.024 µg/mL), rifampicin (8.0 µg/mL). 

3.2 Strains and Culture Conditions 

Escherichia coli MG1655 was used in all experiments, excluding the experiments performed to validate 

the genes involved in cross-protection and cross-vulnerability where wild type Keio strain BW25113 

and its derivative single gene knock out (KO) strains [18] were used. Since, KO strains had kanamycin 

resistance gene, which might influence the validation experiment, it was removed by a method described 

elsewhere [19]. 
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Supplementary Results 

4.1 Computational Results on Synthetic Datasets. 

4.1.1 Synthetic Datasets 

Seven datasets whose skewness in the distribution of the output varies from 1.17 to 7.86 were generated. 

In a highly skewed dataset, in most cases the output was close to zero and only several sharp peaks exist 

in the space. See Supplementary Figure 1, for a visualization of the datasets, distribution of the output 

of each dataset and statistics of the datasets. The data for the synthetic datasets is in Supplementary Data 

2. 

4.1.2 The Performance of OPEX on Synthetic Datasets 

We evaluated the performance of OPEX using seven synthetic datasets with respect to five factors 

including: skewness in the distribution of the output, the noise level in the measured output, frequency 

of exploration, initial dataset size, and batch size. We did not find such a systematic analysis of these 

factors in another study.  

The Effect of Skewness and Noise. Interestingly, the advantage of OPEX advantage concerning the 

baseline was inversely proportional to the skewness of the dataset (p-value < 10-3 by t-test; 

Supplementary Figure 2A). OPEX was found to be robust when noise is present in the training set, 

outperforming the baseline even at very high noise levels (for the entropy utility function, 16% better 

than the baseline at 90% white noise on the 1st synthetic dataset, p-value < 10-6 by t-test; Supplementary 

Figure 2B and Supplementary Figure 3).   

The Effect of Exploration. We increased the level of exploration in OPEX by switching to random 

sampling in some iterations and did not observe improvement in the OPEX’s performance on the 

synthetic datasets (Supplementary Figure 2C and Supplementary Figure 4).  

The Effect of Initial Dataset Size. Regarding the initial dataset size, there was a window where the 

benefit is maximized (Supplementary Figure 2D), and that window varied given the dataset skewness 
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(Supplementary Figure 5). When the dataset size was too small, the benefit of OPEX methods was 

generally limited until more samples were collected. When enough information is not initially available, 

we don’t expect OPEX to effectively drive experimentations. Similarly, when the initial dataset size was 

large relative to the size of the experimental space, the experimental space has been largely explored. 

Therefore, increasing the dataset size with more experiments does not impact the information content of 

the dataset regardless of the underlying method sampling method (e.g. OPEX vs. Random sampling). 

The Effect of Batch Size. The batch size (i.e. the number of experiments performed per iteration), also 

had a substantial effect on the efficiency of a method for larger batch sizes (batch size ≥16). The best 

and more robust performance was observed when we ran OPEX with adaptive sampling (Supplementary 

Figure 6A). OPEX with constrained sampling did not work on large batch sizes.  Finally, for OPEX with 

greedy sampling, smaller batch sizes generated better performance, as expected. There was a 28% 

average performance gain for OPEX using entropy on batch size of 2 versus batch size of 32 (p-value = 

1×10-8; Supplementary Figure 6C). This can be explained by the redundancy among points close to each 

other on the rank list. More skewed datasets were less sensitive to batch sizes (Supplementary Figure 7 

and Supplementary Figure 8). 

4.2 Computational Results on the RNA-Seq Dataset 

4.2.1 OPEX Performance on the Biocide-Antibiotic Transcriptional Profiling 

OPEX with entropy as the utility function, outperformed expert sampling and random sampling 

significantly for exploring the interaction between biocides and antibiotics (Supplementary Figure 9). 

The gap between the learning curves of OPEX and random sampling kept expanding until 23 more 

datapoints were collected and the MAE achieved by OPEX was 22% smaller than random sampling at 

that point. To reach the same prediction accuracy by random sampling, OPEX needed 50% fewer 

datapoints.  

Surprisingly, the performances of the three expert sampling strategies was worse than that of random 

sampling. Among the three expert sampling approaches, the one based on the chemical structure of 

antibiotics and biocides is slightly better than the other two (Supplementary Figure 10). When adding 
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more and more exploration, the performances of expert sampling strategies became close to that of 

random sampling but never surpassed (Supplementary Figure 10). 

4.2.2 Retrospective Analysis of the OPEX Strategy 

To analyze the effectiveness of OPEX in exploring the space of unexplored culture conditions, we plotted 

the distance between the gene expression profiles of consecutively selected datapoints (the consecutive 

distance) over 30 iterations. Not surprisingly, the consecutive distance fluctuated, and no pattern was 

observed in the case of random sampling (Fig. 2D). However, the consecutive distance for OPEX with 

an even tradeoff between exploration and exploitation increased gradually in the first 10 iterations (p-

value = 0.05), and finally kept decreasing (p-value < 10-6, Fig. 2E), indicating that OPEX can capture 

the similarity of gene expression profiles under different culture conditions. This, reveals the underlying 

strategy of OPEX in progressive exploration of the condition space, first at a coarse granularity and then 

on a finer granularity, which was confirmed by the fact that the distance in the first 15 iterations was above 

the median distance of all the 30 iterations, and the distance in the latter 15 iterations fell below the median. 

In more detail, the distance between adjacent points in the gene expression space increased in the first 10 

iterations and decreased afterwards, showing that OPEX explored the space on an increasingly higher 

level of granularity and then decreased the level of granularity. The impact of exploration percentage used 

by OPEX on the sampling strategy, is illustrated in Supplementary Figure 11. 

In the case of expert sampling based on structure similarity, the consecutive distance first fluctuated and 

increased sharply at the end (Supplementary Figure 12A). For the other two expert sampling approaches, 

the consecutive distance in the first 10 iterations was flat and then increased slightly and finally decreased 

slightly (Supplementary Figure 12B-C). Not surprisingly, it gets closer to the random sampling curve as 

additional exploration percentage is added (Supplementary Figure 12D-I).  

4.2.3 Sensitivity Analysis of the OPEX Method 

Here, we investigated the impact of the exploration frequency, skewness and noise level on the 

performance of OPEX evaluated using RNA-Seq dataset. 
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The Effect of Exploration. When the space to explore is of low complexity (e.g. convex fitness 

functions, few parameters/dimensions) following a single sampling strategy with zero percentage of 

exploration used by OPEX is sufficient, as it was the case with the synthetic dataset (Supplementary 

Figure 4). However, for a complex space as in the case of RNA-Seq data with 14 independent variables 

and thousands of genes to predict, OPEX with zero exploration can overfit (Supplementary Figure 11A-

B). Such model behavior was observed on expert sampling (Supplementary Figure 12), and when 

entropy or mutual information were used as the OPEX utility functions. OPEX tended to take a greedy 

approach with a bigger step (i.e. larger distance between gene expression profile of subsequently selected 

conditions) at the beginning for exploring the space and a gradual reduction of the step sizes later on 

(Supplementary Figure 11A-B). Conversely, OPEX with an even tradeoff between exploration and 

exploitation showed a smoother sampling strategy with a gradual increase of step size in the beginning 

and a decrease in later iterations (Fig. 2D and Supplementary Figure 11C-D). 

We evaluated the performance of OPEX with various levels of exploration. The learning curve of OPEX 

was sharper at the beginning when less exploration was used (Supplementary Figure 13A-B). When zero 

percentage of exploration was applied, the learning curve started to go up at around iteration 16. Our 

validation indicated that this sharp increase after iteration 16 was partly due to an outlier dominating the 

errors as the number of remaining conditions decreased (Supplementary Figure 14B-F). This outlier 

condition was peracetic acid + kanamycin. 

We analyzed the diversity of the selected condition at each iteration among all the OPEX runs. Shannon 

index was used to quantify the diversity of the sampled conditions at each iteration (Supplementary 

Figure 15A). The diversity of the selected condition at each iteration among all the OPEX runs for OPEX 

were very low compared to that of random sampling, which is indicative of the tendency of OPEX in 

selecting particular conditions at each iteration, suggesting that OPEX tended to sample this outlier 

condition (i.e. peracetic acid + kanamycin) regardless of the starting training datapoints. We confirmed 

this by visualizing the distribution of the culture conditions selected by OPEX at the last two iterations. 

At the 27th and 28th iteration, OPEX chose the peracetic acid + kanamycin condition 33 times among the 

50 OPEX runs (Supplementary Figure 15B-C). Note that for the initial dataset (i.e. 15 randomly selected 

conditions) the peracetic acid + kanamycin condition was only selected in 11 OPEX runs (amongst 50 
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total runs). The expected number of conditions that include a specific condition in 50 OPEX runs is 11.2.  

Thus, OPEX chose to sample peracetic acid + kanamycin condition at the end in 84% of the 39 OPEX 

runs (39=50-11). When adding 50% of exploration, the diversity was increased (Supplementary Figure 

15D-E) and the performance of OPEX was optimal (Supplementary Figure 14). Similarly, the diversity 

can be increased by adding more exploration in the case of expert sampling (Supplementary Figure 15F), 

but since the sampling strategy of expert sampling was not effective, the performance could not surpass 

that of random sampling (Supplementary Figure 10). 

The Effect Noise and Skewness. Finally, we visualized the performance of OPEX with respect to the 

noise level in the measured gene expression and skewness in the distribution of the expression levels for 

the 1,123 genes. OPEX performed well regardless of the noise level on most of the genes (969 out 1,123, 

86%, Supplementary Figure 16). The performance of OPEX increased slightly with skewness, which is 

different from what we observed on the synthetic datasets. This difference may be due to other factors 

impacting the topology of the space (e.g. number of genes and independent variables). We also 

performed gene ontology (GO) enrichment analysis on the list of 969 genes using DAVID [20]. The 

resulting enriched biological process GO terms were related to translation, glycolytic processes, cell 

division, peptidoglycan biosynthetic processes, and regulation of cell shape (with a threshold for the 

adjusted p-value of 0.01). No enriched biological process GO terms were observed for the 154 genes 

(14%) for which OPEX did not outperform the expert sampling.  

4.2.4. Peracetic Acid and Kanamycin Condition as an Outlier 

We investigated further why OPEX deprioritizes the selection of peracetic acid + kanamycin condition 

until later iterations while having a poor performance for predicting its gene expression profile. We 

hypothesized that the GP model predicted a gene expression profile for this condition that was similar 

to the ones in the training dataset. Thus, we visualized the predicted gene expression profile of those 

conditions with the measured gene expression profile for other conditions in 2d space by t-SNE 

(Supplementary Figure 17). The predicted gene expression was close to other conditions in which 

peracetic acid or kanamycin was present. Since the gene expression was predicted based on the culture 

conditions, it is reasonable that the model made such a prediction. However, the true gene expression 
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under the peracetic acid + kanamycin condition was close to another antibiotic (the cluster in the top 

right of Fig. 3A, the green cluster in Supplementary Figure 18), which suggests that the model could not 

determine the gene expression of that condition based on the antibiotic and biocide used. 

4.2.5 Validating OPEX on all 4,391 Genes 

We have shown the superior performance OPEX when evaluated using 1,123 genes which meet 

minimum sequencing coverage criteria (count per million >100, as described under RNA-Seq data 

analysis in Methods section of the main manuscript), following recommended guideline for RNA-Seq 

analysis. This raises a question on whether OPEX also performs well in the case that the set of inactive 

genes are unknown beforehand. Therefore, we also assessed the performance gain of OPEX compared 

to random sampling without removing any genes (i.e. used all 4,391 genes), and achieved similar results. 

OPEX needed approximately 40% datapoints to reach the same accuracy compared to random sampling 

(See Supplementary Table 2 and Supplementary Figure 19), similar to results of Fig. 2B where only 

1,123 were used. We compared OPEX runs that consider all 4,391 genes versus OPEX runs that rely on 

the 1,123 active genes and found that they provide similar improvement of performance relative to 

random sampling (Supplementary Figure 20 A-B). The performance of OPEX is slightly better when 

running OPEX on the 1,123 active genes only, evidenced by the gap between two curves in 

Supplementary Figure 20A (p-value=0.02) and Supplementary Figure 20B (p-value=4 × 10−9).  

However, the performance of OPEX on the active genes only is very close in two cases (Supplementary 

Figure 20C, p-value=0.02, and Supplementary Figure 20D, p-value=0.98). The relative improvement of 

MAE for OPEX compared to random sampling, is higher when OPEX making its prediction on all the 

genes (Supplementary Figure 19A versus Fig. 2B). This can be explained by the higher variance in the 

measurements among replicates when non-active genes are included (Supplementary Figure 21). 

4.2.6 OPEX Comparison to Other OED Approaches 

We compared the performance of OPEX with three alternative approaches, query by committee using 

different types of models, query by committee using bootstrapping, and D-optimal experimental design 

(see section 2.1 for more information in this file). The performance of each approach was evaluated 
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based on the average MAE of predictions for the expression of all the 4,391 genes (Supplementary Table 

1 and Supplementary Figure 19). OPEX with entropy as utility function reached a better performance 

compared to query by committee using different types of models (QBC-Mixed-Models) when compared 

based on the maximum percentage of data points saved relative to random sampling (13 versus 14 

iterations to reach MAE that random sampling achieves at iteration 27). With respect to the overall 

improvement of MAE relative to random sampling in all iterations, OPEX with entropy achieved 12.7% 

while QBC-Mixed-Models achieved 11.0% showing a slight advantage for OPEX with entropy (p-value 

= 9 × 10−9). OPEX with mutual information as the utility function performed similar to QBC-Mixed-

Models. The query by committee using bootstrap QBC-Bootstrap and D-Optimal methods did not show 

a consistent advantage over random sampling. The prediction performance of the four types of models 

from query by committee was ranked in this order: Support Vector Regression, Gaussian process, linear 

regression and feed-forward neural network (Supplementary Figure 22). 

4.3 Experimental Results  

4.3.1 Exposure to Biocides and Cross-protection to Antibiotics  

Our fitness measurements demonstrated that biocide treated E. coli cells, in majority of cases, exhibited 

cross-protection in antibiotics, excluding a couple of cases of cross-vulnerability.  In 29 out of 40 

treatment conditions, biocide treatment increased the fitness in antibiotic, while in 4 cases, treatment 

reduced the fitness. Cross-protection between biocides and antibiotics has been brought up to attention 

by researchers [21-23] and regulatory agencies [24-26] before. Biocides are regularly used as a sanitizer 

in hospitals, houses and food industries, and such study could help guide regulations to reduce the 

emergence of antimicrobial resistance.  

Interestingly, pre-exposure to all biocides conferred protection against the antibiotic rifampicin (Fig. 

3B), which was also the group that formed a cluster in the t-SNE/PCA analysis for transcriptomics of 

biocide/antibiotic pairs (Fig. 3A and Supplementary Figure 16). The highest fitness value was observed 

for the povidone iodine/kanamycin combination, and the lower for chlorophene/norfloxacin. These two 

extreme cases were selected for further investigations.  
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4.3.2 Three distinct clusters for all conditions 

We examined cross-resistance of wild-type E. coli to each of the four antibiotics after pre-exposure to 

one of the ten biocides. Although there are 40 pairs of biocides and antibiotics, the gene expression (GE) 

profile was often dominated by only one factor (biocide or antibiotic). The dominating factor can be 

explained using three rules as evident by the three clusters in Fig. 3A. First, the alcohol biocides (Ethanol, 

Isopropanol and Chlorhexidine) had a dominating effect on GE profile regardless of the antibiotic they 

are paired with. Second, apart from the alcohols, in the majority of cases, rifampicin had a dominating 

effect on GE profile regardless of the biocide that it was paired. Third, the choice of biocide determined 

GE profile except when Rifampicin was used. This is evident by the proximity of points related to each 

biocide Benzalkonium chloride, Chlorhexidine, Chlorophene, Ethanol, Glutaraldehyde, H2O2, 

Isopropanol and Peracetic acid on the t-SNE plot (Fig 3A). The same clusters were also detected by the 

PCA plot (Supplementary Figure 17). The kanamycin/ peracetic acid pair is particularly interesting since 

it did not follow the general pattern. We further asked whether these clustering patterns can be explained 

based on Biological processes (BPs), especially w.r.t. to clustering of kanamycin/ peracetic acid pair. 

Enrichment of BPs was performed using the GSEA, and subsequently, hierarchical clustering was 

performed, which demonstrated that in the majority of cases, clustering on GE profiles and BPs follow 

a similar trend and kanamycin/ peracetic acid pair remains with the rifampicin cluster (Supplementary 

Figure 23).   
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Supplementary Tables 

Supplementary Table 1. Mode of actions of biocides and antibiotics 

S.No. Biocide Key mode of action Reference 

1 Ethanol Lipid and protein denaturation [27] 

2 Isopropanol Lipid and protein denaturation [28] 

3 Chlorophene Lipid and protein denaturation [29] 

4 Glutaraldehyde Alkylation of hydroxyl, carbonyl, and amino group, 

affecting protein, DNA, cell membrane 

[30] 

5 Peracetic acid Oxidation [31] 

6 H2O2 Oxidation [31] 

7 Sodium hypochlorite Oxidation [32] 

8 Chlorhexidin Positively charged. Binds with negatively charged cell 

and membrane and damages them, causes cytoplasm 

solidification 

[33] 

9 Benzalkonium chloride Cationic surfactant. Binds with negatively charged cell 

membrane and damages it. Denatures protein. 

[34] 

10 Povidone Iodine Iodination of membrane lipids, oxidation of cytoplasmic 

and membrane proteins 

[35] 

S.No. Antibiotic Key mode of action  

1 Ampicillin Cell wall synthesis inhibitor, inhibits transpeptidase [36] 

2 Rifampicin Transcription inhibitor, binds and inhibits RNA pol [36] 

3 Kanamycin Translation inhibitor, binds and inhibits 30S rRNA [37] 

4 Norfloxacin Cell division inhibitor, binds and inhibits DNA gyrase 

and topoisomerase iv 

[38] 
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Supplementary Table 2. OPEX Compared to Other OED Approaches. The predictive performance 

was evaluated using the maximum percentage of data saved using the given OED method compared to 

random sampling. The QBC-Bootstrap and D-Optimal methods performed better or worse than random 

depending on the iteration as showcased by their zero performance. GP: gaussian process; LR: linear 

regression; SVR: support vector regression; FNN: feedforward neural network. All 4,391 genes were 

used in for evaluations here.  

OED Method Utility Function Predictive Model Performance 

1. OPEX Entropy GP 48% (13 vs 27) 

2. OPEX Mutual Information GP 44% (14 vs 27) 

3. QBC-Mixed-Models Variance Among Committee GP 44% (14 vs 27) 

4. QBC-Bootstrap Variance Among Committee GP 0% (not better) 

5. D-Optimal Determinant of Fisher Information LR 0% (not better) 
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Supplementary Figures 

 

Supplementary Figure 1: Visualization of the seven synthetic datasets that have similar topology but 

different skewness in the distribution of the output (gene expression dimension). Panel a to g corresponds 

to dataset 1 to 7 and the skewness is 1.17, 2.07, 3.05, 4.13, 5.29, 6.55 and 7.86, respectively. Panel h to 

n is the histogram of the output for the seven datasets (every dataset consists of 6400 datapoints). Panel 

o shows the distribution of the output for the datasets. Panel p shows the mean and standard deviation of 

the output versus the skewness of each dataset. In panel k, each box represents an interquartile range 

which consists of data points between the 25th and 75th percentiles. The whiskers extend to the 

maximum and minimum values but no further than 1.5 times of the interquartile range for a given 

whisker. The horizontal line within each box represents the median. 
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Supplementary Figure 2: A. The performance of OED methods after sampling 150 additional 

datapoints versus the skewness of the synthetic dataset. The performance of an OED method was 

evaluated by the difference in MAE between an OED method and random sampling normalized by the 

MAE by the OED method. Other variables in the setting: noise level = 20%, start size = 300, exploration 

frequency = 1/3, batch size = 3. B-D. The performance of the OED methods versus other parameters as 

the x axis of each panel describes when tested on the dataset whose skewness is 1.1 in panel A. 

Parameters other than the parameter investigated in a panel and exploration frequency are the same as 

that in panel A. The number of datapoints for each box in the boxplot is 50. Each box represents an 

interquartile range which consists of data points between the 25th and 75th percentiles. The whiskers 

extend to the maximum and minimum values but no further than 1.5 times of the interquartile range for 

a given whisker. The horizontal line within each box represents the median. 
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Supplementary Figure 3: The effect of noise on the performance of the OED methods 

compared to random sampling on synthetic datasets 2-7 (A- F), whose skewness are 2.07, 3.05, 

4.13, 5.29, 6.55 and 7.06, respectively. The setting for other hyper-parameters are as follows: 

starting size=300, exploration frequency=1/6, batch size=3, the number of iterations=50. The 

error bar denotes standard deviation (number of datapoints=50). The bar represents the mean 

of 50 runs. 
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Supplementary Figure 4 A-F: The effect of exploration frequency on the performance of the OED 

methods compared to random sampling on synthetic datasets 2-7, whose skewness are 2.07, 3.05, 4.13, 

5.29, 6.55 and 7.06, respectively. The y-axis is the MAE of random sampling minus the MAE of OPEX 

divided by the MAE of random sampling. A positive value means OPEX is more effective. The setting 

for other hyper-parameters are as follows: starting size=300, noise level=20, batch size=3, the number 

of iterations=50. The error bar denotes standard deviation (number of datapoints=50). The bar represents 

the mean of 50 runs. 
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Supplementary Figure 5: The effect of starting size on the performance of the OED methods 

compared to random sampling on datasets 2-7 (A-F), whose skewness are 2.07, 3.05, 4.13, 5.29, 

6.55 and 7.06, respectively. The setting for other hyper-parameters are as follows: noise 

level=20, batch size=3, minimum distance=0.2, exploration frequency=1/6, the number of 

iterations=50. The error bar denotes standard deviation (number of datapoints=50). The bar 

represents the mean of 50 runs. 
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Supplementary Figure 6: Performance of adaptive sampling, constrained sampling and greedy 

sampling on the data whose skewness is 1.1. The setting for other hyper-parameters are as follows: 

starting size=300, noise level=20, exploration frequency=1/6, the number of total additional datapoints 

sampled=160. For Panel B, the minimum distance between datapoints in a batch is 0.2. As the batch 

size, k, goes beyond 16, we cannot select k points with pairwise distances greater than 0.2 hence the x-

axis is from 2 to 16 in Panel B. The number of datapoints for each box in the boxplot is 50. Each box 

represents an interquartile range which consists of data points between the 25th and 75th percentiles. 

The whiskers extend to the maximum and minimum values but no further than 1.5 times of the 

interquartile range for a given whisker. The horizontal line within each box represents the median. 
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Supplementary Figure 7 A-F: the effect of batch size on the performance of the OPEX compared to 

random sampling on datasets 2-7, whose skewness are 2.07, 3.05, 4.13, 5.29, 6.55 and 7.06, respectively. 

The setting for other hyper-parameters are as follows: starting size=300, noise level=20, minimum 

distance=0.2, exploration frequency=1/6, the number of total additional datapoints sampled=160. The 

utility function used by OPEX was entropy. adaptive, greedy, and hybrid represents adaptive sampling, 

greedy sampling and hybrid sampling, respectively. The number of datapoints for each box in the boxplot 

is 50. Each box represents an interquartile range which consists of data points between the 25th and 75th 

percentiles. The whiskers extend to the maximum and minimum values but no further than 1.5 times of 

the interquartile range for a given whisker. The horizontal line within each box represents the median. 
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Supplementary Figure 8: It is the same as Supplementary Figure 8 except that the utility function is 

mutual information used by OPEX. 
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Supplementary Figure 9: The performance of OPEX on real dataset with 50% exploration frequency. 

It is the same as Figure 2 B & C, except that the utility function used here is entropy. 
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Supplementary Figure 10: The performance of three expert sampling approaches. We used expert 

sampling to sample one datapoint every k iterations and used random sampling otherwise to introduce 

exploration. The percentage of exploration in the legends is equal to k/(k+1). E.g. 67%=2/(2+1). (A) 

Structure similarity means that the culture condition that was most dissimilar to all the observed 

conditions was selected in each iteration. The similarity between two culture conditions is quantified by 

the structure similarity between the biocides used in the two conditions and the antibiotics used.  (B) 

Mechanism similarity means the mechanism of each antibiotic and biocide was considered when 

selecting the most dissimilar culture condition. (C) Dominance of antibiotic means the more dominant 

an antibiotic is, the later a culture condition that has that antibiotic condition was selected.  
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Supplementary Figure 11: The distance between the GE profiles of selected datapoints in every two 

adjacent iterations by OPEX with various percentages of exploration. The number on the top left corner 

in each panel represents the percentage of exploration used by OPEX. We sampled one datapoint every 

k iterations based on the entropy or mutual information and used random sampling otherwise to introduce 

exploration. The percentage of exploration in the legend is equal to k/(k+1). E.g. 66%=2/(2+1). 0% means 

always selecting a datapoint based on entropy or mutual information. The number of datapoints for each 

box in the boxplot is 50. Each box represents an interquartile range which consists of data points between 

the 25th and 75th percentiles. The whiskers extend to the maximum and minimum values but no further 

than 1.5 times of the interquartile range for a given whisker. The horizontal line within each box 

represents the median. 
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Supplementary Figure 12: The distance between the select datapoints in every two adjacent iterations 

by expert sampling with various percentage of exploration. The number on the right in each row of 

panels represents the percentage of exploration used. We sampled one datapoint every k iterations based 

on expert sampling and used random sampling otherwise to introduce exploration. The percentage of 

exploration in the legend is equal to k/(k+1). E.g. 66%=2/(2+1). The number of datapoints for each box 

in the boxplot is 50. The definition of box plot is defined the same way as in Supplementary Figure 11. 
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Supplementary Figure 13: The performance of OPEX which used mutual information (A) or entropy 

(B) as the utility function. The effect of the tradeoff between exploration and exploitation on the 

performance of OPEX was visualized. We sampled one datapoint every k iterations based on the entropy 

or mutual information and used random sampling otherwise to introduce exploration. The percentage of 

exploration in the legends is equal to k/(k+1). E.g. 67%=2/(2+1). 
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Supplementary Figure 14: All the panels in this Figure were associated with one OPEX run randomly 

picked (summary of all OPEX runs is in Supplementary Figure 15). A. The learning curve of OPEX 

which used 0% exploration. B-F. The histogram of the average MAE of predicted gene expression for 

all the remaining conditions at different iterations.  
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Supplementary Figure 15: All the panels were based on 50 simulations. A. The Shannon index 

represents the diversity amongst conditions selected at a specific iteration in 50 OPEX runs. The curves 

before the iteration 0 are about the 10 conditions randomly selected as part of the starting training set. 

The other 5 conditions in the starting training set are the control and antibiotic only conditions. The 

percentage of explration is defined the same way as in Supplementary Figure 13. B&C. The histogram 

of the conditions selected as the 27th/28th iteration D-F. The Shannon index of the conditions selected 

at each iteration by OPEX and expert sampling. The curves before iteration 0 is defined the same as in 

panel A.  
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Supplementary Figure 16: Each point represents a single gene in all four plots. The vertical axis 

represents the relative difference between EN/MI and Random sampling with respect to the average 

MAE of GE predictions for unobserved conditions at iteration 15. Higher difference in MAE is 

associated with better performance of OPEX when compared to random sampling.  For A&B, the 

horizontal axis represents the noise of GE amongst replicates. For C&D the horizontal axis represents 

the skewness related to the distribution of GE values of a given gene in all conditions. 
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Supplementary Figure 17: This Figure is same as the Fig. 3A except that the GE profile of the peracetic 

acid and kanamycin condition was predicted by GP models trained on all other conditions. That 

condition is highlighted by red box which was originally in the cluster named rifampicin in Fig. 3A. 

 

Supplementary Figure 18: A visualization of the culture conditions in the first two principal 

components. The input is gene expression profiles when running PCA. The membership of each 

condition was color coded. 
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Supplementary Figure 19: The prediction performance of different optimal experimental design 

approaches. A. OPEX. B. At each iteration four types of model, feed forward neural network, linear 

regression, Support Vector Regression and linear regression, are trained. The one which has the largest 

variance among the prediction by the four models is selected among all the unobserved culture 

conditions. When generating the learning curve, the GP model is used to get a fair comparison with the 

result in A. For the prediction performance of each type of model, see Supplementary Figure 22.  C: 

When building a committee, 4 different datasets are created from the training set at each iteration and 

four GP models are trained. To get a more diversified bootstrapping dataset, the size of the starting 

training set is 20, whereas it is 15 in other panels. Finally, the most uncertain one among the committee 

is selected. D. A linear model is trained and the next culture condition is selected through D-optimal 

experimental design. Note that all the genes were used when generating the learning curves.  
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Supplementary Figure 20:  The performance of OPEX variants, where all 4,391 genes (cyan) or only 

the high-CPM 1,123 genes (red) are taken into account when selecting the batch at each iteration. All 

plots show the relative difference in MAE between OPEX and random sampling. (A-B). MAE measured 

all genes, (C-D) MAE measured only active genes. The shadow envelope around each curve represents 

95% confidence interval. 
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Supplementary Figure 21: The average variance in the measured gene expression among the three 

replicates for each culture condition. Only the genes that have a count per million larger than 100 in half 

of all the datapoints were used (A) (1,123 genes in total). All the 4,391 genes are used (B). The number 

of datapoints for each box in the boxplot is 50. Each box represents an interquartile range which consists 

of data points between the 25th and 75th percentiles. The whiskers extend to the maximum and minimum 

values but no further than 1.5 times of the interquartile range for a given whisker. The horizontal line 

within each box represents the median. 

 

 

Supplementary Figure 22: The prediction performance of four types of machine learning models. FNN: 

feed forward neural network; GP: Gaussian process; LR: linear regression; SVR: Support Vector 

Regression. When evaluating the performance of a type of model, a model was trained using 15 randomly 

selected conditions and the mean absolute error in the predicted gene expression profile on the remaining 

culture conations was recorded. An error bar represents standard deviation of 50 runs  
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