
Appendix 

Pulse Input Response Modeling 
The trapezoidal pulse-input assumption is applied scrupulously in our work, 

as the lack of broadband input restricts model applicability to only those of inputs 
exhibiting similar frequency content [1]. Additionally, only parametric modeling in 
the time-domain remains legitimate, provided that the number of parameters 
estimated does not exceed input excitation [2]. In contexts such as classical system 
identification, for example, where the goal of model-fitting involves learning the 
impulse response/transfer function of the underlying system to effectively predict 
the output for any given input, these obstacles can preclude progress [3]. In 
contrast, when it comes to modeling response dynamics following a particular 
therapy – in our case, FDA-approved tcVNS – that remains consistent across all 
administrations, modeling the input-output relationship for the specific input 
variability exhibited during practical device usage remains invaluable to future 
analysis and development. 

Notably, this response modeling approach parallels interrupted time series 
analysis (ITSA), a cross-disciplinary statistical method applied in fields such as 
public health [4], [5] and socioeconomics [6], [7] for quasi-experimental assessment 
of an intervention’s effects. A particular brand of methods utilizes time series 
modeling approaches (e.g., autoregressive integrated moving average with 
exogenous input (ARIMAX) models) and formulate the intervention problem 
similarly, where the intervention variable, 𝐼𝑡, can be modeled analogously to the 
input signal used in this work [8]. The advantages we highlight here and leverage in 
analysis are the unequivocal causality implications afforded through subsequent 
model simulation and comparison. 

As a final note on rationale, as elucidated in [9] and stated explicitly in terms 
of frequency spectrum in [10], modeling should be undertaken with application in 
mind [11]. We therefore argue that considering the pre-programmed nature of the 
tcVNS devices in use today, understanding their specific dynamic effects on human 
physiology remains a necessary step toward developing closed-loop tcVNS systems 
of the future [12]–[14]. Note here that this fixed-waveform tcVNS assumption is in 
no way a new deliberation, as prior work has also restricted modeling and analysis 
to the stimulation waveform delivered by the gammaCore tcVNS device [15]–[18]. 
And even in the transcutaneous auricular VNS (taVNS) case where alternate 
stimulation parameters (frequency and time length) have been explored [19], the 
input parameters vary during administration as they do here, i.e., the frequency of 
stimulation is kept fixed during the administration period, and the amplitude is 
modulated as we model here, where the device is turned on, the amplitude is kept 
fixed, and then the device is turned off at the conclusion of a fixed time period. Thus, 
our approach remains largely applicable to a broad array of tVNS researchers, and 
our results hold immediate significance in that they apply to the frequency and 
administration time length used by tcVNS devices today. 

 



SIMO Systems as Multiple SISO Systems 
Let 𝑆 represent a single-input multiple-output (SIMO) system given by the 

following two state-space equations: 
 

𝑥𝑆𝑘+1 = 𝑓(𝑥𝑆𝑘, 𝑢𝑘) 

𝑦𝑆𝑘 = 𝑔(𝑥𝑆𝑘, 𝑢𝑘) 

 
where 𝑥𝑆 ∈ ℝ

𝑛, 𝑢 ∈ ℝ, 𝑦𝑆 ∈ ℝ
𝑚. Assume that 𝑢 is not a function of 𝑦𝑆.  

The output equation, 𝑦𝑆𝑘 = 𝑔(𝑥𝑆𝑘, 𝑢𝑘), can be equivalently written as 𝑚 separate 

scalar output equations, i.e., ∀𝑖≤𝑚  𝑦𝑆𝑘𝑖
= 𝑔𝑖(𝑥𝑆𝑘, 𝑢𝑘), where 𝑖 denotes the 𝑖-th 

component of the vector equation. Thus, the dynamics described by 𝑆 can be 

equivalently expressed as 𝑚 single-input single-output (SISO) systems {𝑆𝑗}𝑗=1
𝑚

, 

where 𝑆𝑗  is given by  

 

𝑥𝑆𝑘+1 = 𝑓(𝑥𝑆𝑘, 𝑢𝑘) 

𝑦𝑆𝑗𝑘
= 𝑔𝑗(𝑥𝑆𝑘, 𝑢𝑘) 

 
Thus, by replicating the state dynamics, 𝑥𝑆𝑘+1 = 𝑓(𝑥𝑆𝑘 , 𝑢𝑘), for each of the 𝑚 systems 

and considering each component of 𝑔(∙) as its own output equation, a SIMO system 
can be expressed as multiple SISO systems.               ∎ 

Note that a key assumption made in the proof above is that 𝑢 is not a function 
of 𝑦𝑆. In practice, this can be assessed by inspecting the cross correlations between 
𝑢𝑖  and 𝑦𝑗  for 𝑖 > 𝑗. 

 

State-Space Parameters in Modal Form 
Model order, 𝑀, and input delay, 𝜏, represent model configuration variables 

(i.e., hyperparameters) that dictate structural aspects of the two equations, and 
thus, should be specified prior to final model estimation. Model order also dictates 
the number of free parameters necessitating estimation. Since state space models 
are not unique in representation (i.e., different 𝐴, 𝐵, 𝐶 can represent the same 
system) we narrowed our parameter search to 𝐴 matrices in modal form [20], 
leaving all elements in 𝐵, 𝐶, and 𝐾 free. 

Modal form entails a block diagonal matrix where each block on the diagonal 
corresponds to an eigenvalue or pair of eigenvalues of the system (if complex 
eigenvalues exist, these blocks correspond to complex conjugate pairs). For 
example, if a state space system was of order 4 with two distinct real eigenvalues 𝜆1, 
𝜆2 and a pair of complex conjugate eigenvalues, 𝜆3,4 = 𝜎 ± 𝑗𝜔, 𝐴 would be of the 

following form: 
 

𝐴 = [

𝜆1 0 0 0
0 𝜆2 0 0
0 0 𝜎 −𝜔
0 0 𝜔 𝜎

]  



 
To arrive at the total number of state space parameters, notice that 𝐴 ∈

ℝ𝑀×𝑀. For even-ordered matrices, the number of parameters to estimate is 2𝑀, 
corresponding to two parameters per row of 𝐴. This is due to the fact that even if an 
eigenvalue is estimated as purely real, the imaginary component had to remain free 
during this estimation to come to this conclusion. For odd-ordered matrices, one of 
the eigenvalues must be real, and therefore, the number of parameters in 𝐴 to 
estimate remains 2𝑀 − 1 (the imaginary component corresponding to the real 
eigenvalue is no longer a free parameter). Since the systems estimated in this paper 
were of SISO form, 𝐵, 𝐶, and 𝐾 were all of dimension 𝑀, and thus, 𝑝 ≤ 2𝑀 +𝑀 +
𝑀 +𝑀 = 5𝑀, where 𝑝 is the number of free parameters for state-space estimation. 
 

Optimizing Model Configuration using the AICc 
The AICc can be computed for our model estimation purposes as follows: 
 

𝐴𝐼𝐶𝑐 = 𝑁 𝑙𝑜𝑔 (
1

𝑁
∑𝜖2(𝑘|𝜃)

𝑁

𝑘=1

) + 2𝑝 + 𝑁(𝑙𝑜𝑔(2𝜋) + 1) +
2𝑝(𝑝 + 1)

𝑁 − 𝑝 − 1
 

 

where 𝜃 ∈ ℝ𝑝 represents the estimated parameters, and 𝜖(𝑘|𝜃) is the prediction 
error at timestep 𝑘 given the parameter estimate 𝜃. Minimizing the AICc coincides 
with an attempt to optimize the trade-off between the in-sample mean square error 
1

𝑁
∑ 𝜖2(𝑘|𝜃)𝑘  and model complexity, quantified by 𝑝. Thus, this method of 

minimizing the AICc over all possible configurations can be summarized by the 
relation 
 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑀≤ 10 ,   𝜏 ≤ 35

𝐴𝐼𝐶𝑐({𝑆𝑆 (𝑀, 𝜏)})  
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑆𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑀

∗, 𝜏∗) 

 
 
where 𝑆𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑀

∗, 𝜏∗) corresponds to the selected state-space configuration, and 
{𝑆𝑆(𝑀, 𝜏)} represents the set of all possible state-space configurations.  
 

Baseline Testing 
Mean-predictors are defined for each dataset as a predictor obeying the 

following discrete-time output equation: 
 

 

∀𝑘    �̂�𝑘 = 𝜇 ≜
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

  

 



where �̂�𝑘 represents the predicted output at timestep 𝑘, 𝑦𝑖 represents the true 
output datapoint at timestep 𝑖, and 𝜇 is defined as the mean output value. The naïve-
predictor is defined as: 
 

�̂�1 = 𝑦1,   ∀𝑘 > 1  �̂�𝑘 = 𝑦𝑘−1 
 
Notice that, by definition of the fit % included in the paper’s main text, the 

mean-predictor will always return 0%. Models with fit % less than 0% are hence 
usually considered inoperative, in the sense that the true dynamics of the output 
were likely left uncaptured, as guessing the mean at each time step would have 
produced better performance. Similarly, the naïve-test evaluates a separate null 
hypothesis that involves predicting that the next output value will remain 
equivalent to the present measurement; in particular, the naïve-test investigates 
whether one should reject the hypothesis that the time series could be better 
modeled as a discrete-time martingale (stochastic process where 𝔼[𝑦𝑘|{𝑦𝑖}𝑖=1

𝑘−1] =

𝑦𝑘−1 [21]). If one fails to reject this hypothesis, then the models can be considered 
unsuccessful in gleaning relevant dynamical information, and the modeling 
approach should be revisited. These simplistic approaches should not be 
downplayed, however, as results from practical forecasting applications have 
repeatedly demonstrated that mean and naïve-predictors often outperform models 
of additional complexity [22].  
 

Further Details on Simulated Model Response Analysis 
Although residual terms improve the modeling and prediction process by 

considering inherent process noise, measurement noise, and ever-present 
unmodeled aspects of the data [1], when homing in on the input-output dependency 
itself, these terms are to be ignored, as we are more interested in how the 
biomarkers respond following the specific input under investigation. Hence, an 
advantage of this approach to response modeling and simulation is the dynamic 
disentanglement it offers, facilitating concentrated analysis on the specific 
contributions of the modeled input 𝑢.  

Notice that the same exact modeling process was applied to datasets from 
both active and sham subjects; thus, any differences identified within these plots 
hold value, as contrasting responses would suggest the presence of dynamic 
response signatures, consistent enough to quantify on a population level, that 
characterize the biomarker responses to tcVNS. By imposing Rubin causality 
through the control of initial conditions for both groups prior to simulated 
stimulation administration, thereby guaranteeing the equivalence of the “control 
time series” and the “treatment time series” prior to stimulus [8], stronger 
conclusions can be made regarding the modeled cause and effect between stimulus 
and response by analyzing the resultant biomarker trajectories. This contrasts what 
the resampled experimental responses afford, as the uncontrolled initial conditions 
leave less to be reliably learned from the data, bar evident trends and timing 
information. 



Illustration of Two Prevalent Hypotheses for tcVNS Mechanism of Action 
See Appendix figure 1, along with the explanation included in the main text.  

 

Monte-Carlo Validation of Delay Optimization Approach 
To investigate whether the consistency in reported delays could in fact be an 

artifact of the processing and optimization process, we conducted a Monte-Carlo 
validation experiment. Iterating over a set of specified model orders and input 
delays, known models were constructed through random sampling of the 𝐴, 𝐵, 𝐶, 
and 𝐾 matrices, replicating our processing and model optimization process 
thereafter. Specifically, the model orders, 𝑀, iterated over were 2, 4, 6, 8, and 10 
(model order was iterated over to experiment with processes of varying 
complexity); and the input delays, 𝜏, experimented with were 1, 5, 10, 15, 20, 25, 30, 
and 35. Five models were constructed for each combination of model order and 
input delay, specifying 𝐴 by uniformly sampling 𝑀 discrete-time eigenvalues from 
the unit circle (ensuring compliance, of course, with complex conjugates), while 𝐵, 
𝐶, and 𝐾 were determined by sampling each of the vector elements from the 
standard normal distribution.  

These models were then simulated forward four times, setting 𝑢 to be the 
trapezoidal pulse input used during modeling and 𝑒 to be Gaussian white noise. The 
resultant output data were then prepared for modeling as done for the HR and PPG 
amplitude time series in the main text (see figure 2). Modeling this input-output 
data as in the tcVNS-biomarker case (see figure 3), we observe a reassuring 
relationship between estimated and true input delay (see violin plots of Appendix 
figure 2). In particular, for 𝜏 ∈ [1, 25], the estimated delay distributions center 
themselves around the true delay; moreover, a noticeable positive trend exists 
between true delay and the median of the estimated delays. Based on this result, we 
find it justifiable to believe that the true latency (protocol delays included; see 
Discussion) we seek to estimate of tcVNS effects on HR and PPG amplitude falls 
somewhere within the interval 𝜏 ∈ [15, 25], as the box plots reported in the main 

 

Appendix figure 1. Illustration of the two prevalent hypotheses for the dominant mechanism 
action underlying tcVNS effects on downstream physiology. 



text (see figure 5) visualize distributions that lie somewhere within this true delay 
interval, according to Appendix figure 2. 
 

Data and Code Sharing Statement 
The HR and PPG amplitude time series that support the findings of this study 

are available upon reasonable request from the authors. The time series 
preparation, state-space modeling, and subsequent analysis code is made publicly 
available at: https://github.com/asimgazi24/tcVNS_Response_Modeling 
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