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Figure S1 A-L Fold change invasion for candidate genes from individual groups relative to
mCherry of the respective cohort. Hits within individual groups were pooled and their fold
change invasion was calculated relative to the negative control, mCherry, of the corresponding
cohort. Standard deviation (SD) (green dashed line), 2X SD (red dashed line), and 3X SD (purple
dashed line) was obtained across hits within each group. We identified hits that showed a fold-

change invasion significantly higher than 3X SD of mCherry within the corresponding group.
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Figure S2 A-F Validation of hits from individual groups by using 2D migration and invasion,
and 3D invasion identifies SNAI2, IMPAD1, and KDELR?2 as drivers of invasion. A-E The hits
that demonstrated a fold-change invasion significantly higher than 3X SD in Fig S1 were validated
by using 2D migration and invasion, and 3D invasion assays. In addition to the positive control
SNAI2, we identified IMPAD1 and KDELR?2 as the only hits that showed a significant increase in
invasion across all three assays (red bars). F P-values for all experiments in A-E was calculated by
Student’s T-test by using three experimental replicates. SNAI2, IMPADI, and KDELR?2 are the only

three hits showing p-value<0.05 across all three platforms (shown in blue).
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Figure S3 IMPAD1 and KDELR2 amplification correlates with significantly worse disease-
free survival. A, B High IMPAD1 mRNA (A — KM Plotter) and protein (B — Human Protein Atlas
Dataset) expression shows a worse disease-free survival compared to low IMPAD1 expression. C,
D High KDELR2 mRNA (C — KM Plotter) and protein (D — Human Protein Atlas Dataset)
expression shows a worse disease-free survival compared to low KDELR2 expression. E IMPADI1
and KDELR2 mRNA alterations demonstrate worse disease-free survival as compared to samples
with no alterations. Median survival is mentioned in the tables below each graph. F, G Metastatic
cells from KP murine cell panel show high IMPADI mRNA (F) and protein (G) expression
compared to non-metastatic cells. H, I Metastatic cells from KP cell panel show high KDELR?2

mRNA (H) and protein (I) expression compared to non-metastatic cells.
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Figure S4 IMPAD1 is sufficient to drive lung cancer invasion in vifro and metastasis in vivo. A
Doxycycline-inducible overexpression of human IMPADI in invasive 344SQ cells measured by RNA and
protein. B, C IMPADI overexpression promotes cellular invasion by transwell assay (scale bar: 100uM) (B)
and motility by wound healing assay (scale bar: 200uM) (C) upon 24-hour induction. D Constitutive
overexpression of human IMPADI in non-invasive 393P cells measured by RNA and protein. E, F IMPAD1
overexpression promotes 2D migration and invasion by transwell assays (E), as well as 3D invasion in
collagen and matrigel (1.5 mg/ml) measured as % invasive structures (F) (scale bar: 100uM). G Doxycycline-
inducible overexpression of human IMPADI in non-invasive 393P cells measured by RNA and protein. H, I
IMPADI1 overexpression promotes cellular invasion by transwell assay (scale bar: 100uM) (H) and motility by
wound healing assay (scale bar: 200uM) (I) upon 24-hour induction. J Constitutive overexpression of human
IMPADI1 in non-invasive HCC827 cells measured by RNA and protein. K, L. IMPADI overexpression
promotes 2D migration and invasion by transwell assays (K), as well as 3D invasion in collagen and matrigel
(1.5 mg/ml) measured as % invasive structures (L) (scale bar: 100uM). M-O IMPAD1 overexpression does not
alter cellular proliferation in vitro as demonstrated by MTT assay and measured by the OD value in HCC827
(M), 344SQ (N), and 393P (O) cells. P 344SQ IMPADI primary tumors show IMPADI overexpression
compared to GFP control by IHC as quantified here. Q, R Primary tumor growth for non-metastatic 393P GFP
and IMPADI1 overexpressing cells injected subcutaneously into mice (Q) over time, and (R) at time of
euthanasia. S IMPAD1 overexpressing cells form significantly more lung metastatic nodules compared to GFP
control. T Representative lungs and their respective H&E sections showing increased metastases in lungs from
mice injected with IMPADI1 overexpressing cells compared to control (scale bar: 5SmM). U, V Analysis to
confirm overexpression of IMPADI1 in syngeneic tumors by (U) qPCR for RNA, and (V) IHC for protein also
showing quantification (scale bar: 50uM). W, X IMPADI1 expression does not alter EMT status of cancer cells
as depicted by no change in mRNA (W) or protein (X) levels of EMT markers upon IMPAD1 overexpression
in epithelial 393P cells. EMT markers were probed on the same blots as in Fig. 2A and IMPADI1 and Actin

blots are re-shown here.
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Figure S5 KDELR?2 is sufficient to drive lung cancer invasion in vifro and metastasis in vivo.
A KDELR2 overexpression promotes cellular motility by wound healing assay upon 24-hour
induction (scale bar: 200uM). B Doxycycline-inducible overexpression of mouse KDELR2 in non-
invasive 393P cells measured by RNA and protein. C-F KDELR2 overexpression promotes 2D
migration (C) and invasion (D) by transwell assay, 3D invasion in collagen and matrigel (1.5
mg/ml) measured as % invasive structures (E), and cellular motility by wound healing assay (scale
bar: 200uM) (F). G Doxycycline-inducible overexpression of mouse KDELR2 in non-invasive
HCC827 cells measured by RNA and protein. H, I KDELR2 overexpression promotes 2D
migration and invasion by transwell assays (H), as well as 3D invasion in collagen and matrigel
(1.5 mg/ml) measured as % invasive structures (I). J-L. KDELR2 overexpression does not alter
cellular proliferation in vitro as demonstrated by MTT assay and measured by the OD value in
HCC827 (J), 344SQ (K), and 393P (L) cells. All images other than wound healing assays have
scale bars: 100uM. M, N KDELR?2 expression does not alter EMT status of cancer cells as depicted
by no change in mRNA (M) or protein (N) levels of EMT markers upon 48-hour doxycycline
induction of KDELR?2 in epithelial 393P cells. EMT markers were probed on the same blots as in

Fig. 3A and KDELR?2 and Actin blots are re-shown here.
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Figure S6 IMPAD1 or KDELR2 expression is necessary for invasive ability of lung cancer cells. A, B
Knockdown of IMPADI1 with 3 different shRNAs show a significant decrease in 2D migration (A)
and invasion (B) of 344SQ cells as compared to scramble. C IMPADI repression by SHI,
SH2, and SH3 shRNAs in another metastatic KP cell line, 344P, measured by RNA and
protein. D, E Knockdown of IMPADI1 in 344P cells show a significant decrease in migration
(D) and invasion (E) as compared to control. F IMPAD1 knockdown 344P cells form
significantly less invasive structures compared to control in 3D matrix comprising of collagen and
matrigel (1.5 mg/ml) by day 6. G, H IMPAD1 expression does not alter EMT status of cancer cells as
depicted by no change in mRNA (G) or protein (H) levels of EMT markers upon knockdown of
IMPADI1 in mesenchymal-like 344SQ cells. EMT markers were probed on the same blots as in Fig. 4A and
IMPADI1 and Actin blots are re-shown here. I KDELR2 knockdown decreased invasion of 344SQ cells
as compared to scramble control. J KDELR2 repression by shA, shB, and shC in another
metastatic KP cell line, 344P, as measured by RNA and protein. K Knockdown of KDELR2 in 344P
cells show a significant decrease in invasion as compared to scramble control. L. KDELR2 knockdown
344P cells form significantly less invasive structures compared to scramble in 3D matrix comprising
of collagen and matrigel (1.5 mg/ml) by day 6. All images have scale bars: 100uM. M, N KDELR2
expression does not alter EMT status of cancer cells as depicted by no changein mRNA (M) or protein
(N) levels of EMT markers upon knockdown of KDELR2 in mesenchymal-like 344SQ cells. EMT
markers and KDELR2 blots were run in parallel but on separate gels as KDELR2 isprobed on
PVDF whereas EMT markers are probed on nitrocellulose membrane. KDELR2 and Actin are

the same as Fig. 4G.
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Figure S7 IMPAD1 or KDELR2 expression is necessary for metastatic ability of lung
cancer cells. A Analysis of primary tumors to confirm knockdown of IMPAD1 by qPCR for RNA
(upper), and western blot for protein (lower). B 344SQ SH1 IMPADI1 knockdown primary tumors
show IMPADI1 repression by IHC (Scale bar: 20uM) as quantified. C Primary tumor growth
at time of euthanasia for 344SQ scramble, and the other two shRNA knockdown
cells (SH2 IMPADI1 and SH3 IMPADI) injected subcutaneously into mice. D IMPADI
knockdown cells show no change in lung metastatic nodules compared to scramble control.
E Representative lungs and their respective H&E stained sections showing metastases in lungs
from mice implanted with SH2 IMPADI1, and SH3 IMPADI cells compared to control
(Scale bar: 5mM). F Analysis of primary tumors to ascertain knockdown of IMPAD1 by qPCR
for RNA (upper), and western blot for protein (lower). G IMPADI1 knockdown does not alter
cellular proliferation in vitro in 344SQ cells as demonstrated by the MTT assay. H, I Analysis of
primary tumors to confirm knockdown of KDELR2 by qPCR for RNA (H), and IHC for protein
(I) (Scale bar: 50uM). J Primary tumor growth at time of euthanasia for 344SQ scramble, and
the other two shRNA knockdown cells (shB KDELR2 and shC KDELR2) implanted
subcutaneously into mice. K KDELR2 knockdown tumors form significantly less lung
metastatic nodules compared to scramble control. L Representative lungs and their
respective H&E stained sections showing metastases in lungs from mice injected with shB
KDELR2 and shC KDELR?2 cells compared to control. KDELR?2 staining of primary tumors by
IHC confirms KDELR2 knockdown (Scale bar: 50uM). M Analysis of primary tumors to
ascertain knockdown of KDELR2 by qPCR for RNA. N KDELR2 knockdown alters cellular

proliferation in vitro in 344SQ cells as demonstrated by the MTT assay.
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Figure S8 IMPAD1 and KDELR2 localize to the Golgi-ER pathway. A Fractionation assay with
393P and 344SQ cells overexpressing human IMPAD1 demonstrate that endogenous (mouse) and
exogenous (human) IMPADI is primarily in the membrane fraction. Integrin a6 was used as the
loading control for the membrane fraction. WCL — whole cell lysate, Cyto — cytoplasmic fraction,
Mem — membrane fraction, Nuc — nuclear and cytoskeletal fraction. B Co-immunofluorescence
with IMPADI (red) and Golgi marker, GM130 (green) in 393P control cells. Nucleus was counter-
stained with DAPI. Cells were treated with DMSO (upper) or Brefeldin-A (1uM 6 hours) (lower).
C, D Co-immunofluorescence with IMPADI1 (red) and Golgi marker, GM130 (green) in 344SQ (C)
and HCCS827 (D) cells with IMPADI overexpression or empty vector. Nucleus was stained with
DAPI. Cells were treated with DMSO (upper) or Brefeldin-A (IuM 6 hours) (lower). E
Fractionation assay with 344SQ cells expressing mouse KDELR2 demonstrate that KDELR?2 is
primarily in the membrane fraction. Integrin a6 was used as the loading control for the membrane
fraction. WCL —whole cell lysate, Cyto — cytoplasmic fraction, Mem — membrane fraction, Nuc —
nuclear and cytoskeletal fraction. Doxycycline induction — 48 hours. F i, ii Co-immunofluorescence
with FLAG (red) and ER marker, Calnexin (green) (i) or FLAG (red) and Golgi marker, GM130
(green)(i1) in 393P control cells. Nucleus was stained with DAPI. Cells were treated with DMSO

(upper) or Brefeldin-A (1uM 6 hours) (lower).
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Figure S9 IMPAD1 and KDELR2 independently regulate Golgi-mediated secretion of proteases such as
MMPs to drive lung cancer invasion. A Schematic workflow for secretome-mediated invasion assay — 24
hour-conditioned media (CM) was collected from cells that were doxycycline-induced for 48 hours. This CM
with or without 6-hour BFA treatment was used to replenish the non-invasive parental 393P WT cells that were
plated in Boyden chambers. After 16 hours of incubation, cells that invaded through the chambers were
quantified to determine effect of the secretome on their invasiveness. B Number of 393P WT cells invaded
were quantified, which shows that IMPADI-mediated secretome is sufficient to drive invasion and this
phenotype is repressed upon abrogating the Golgi with BFA (1uM 6 hours). C Schematic workflow for
secretome-mediated invasion assay — 24 hour-conditioned media was collected from cells that were doxycycline-
induced for 48 hours. This CM was used to replenish the non-invasive parental 393P WT cells that were plated
in Boyden chambers. MMP inhibitor, Ilomastat 1uM, was added to the CM in the Boyden chamber. After 16
hours of incubation, cells that invaded were quantified to determine effect of the secretome on their
invasiveness. D Number of 393P WT cells that invaded that were quantified, which shows that IMPADI1-
mediated secretion of MMPs is sufficient to drive invasion. E, F Invasive structures formed upon IMPADI
overexpression in collagen/matrigel matrix (1.5mg/ml) is inhibited upon MMP inhibition with Ilomastat (1uM)
(day 5) in (E) mouse and (F) human cells. G, H Conditioned media from KDELR2 overexpressing cells
induced for 48 hours is sufficient to promote invasiveness of 393P WT cells. This phenotype is reversed
upon treatment with (G) BFA (1uM 6 hours), and (H) Ilomastat (1uM). I, J Invasive structures formed
upon KDELR2 overexpression in collagen/matrigel matrix (1.5mg/ml) is inhibited upon MMP inhibition with
Ilomastat (1uM) (day 5) in (I) mouse and (J) human cells. All images have scale bars: 100uM. K MMPs la,
2, and 9 upregulated upon 48 hours doxycycline-induced IMPAD1 expression in 393P cells. L. No change in MMP
mRNA levels upon IMPADI knockdown in 344SQ cells. M MMPs 1a, 2, and 9 upregulated upon doxycycline-
induced KDELR2 expression at 48 hours in 393P cells. N No change in MMP mRNA levels upon KDELR2
knockdown in 344SQ cells. O Ponceau staining on blot run for CM collected from IMPADI and

KDELR2 overexpressing and knockdown cells shows equal loading of the proteins.
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Figure S10 KDELR2 regulates p-Src signaling. A western blot showing increased Src
phosphorylation within two hours of KDELR2 induction with doxycycline. B KDELR2
overexpression confirmed by qPCR up until 24 hours of induction. C Changes in Src signaling

not attributed to increased IMPAD1 expression as shown by western blot.



Gene Sequence Purpose | Species
IMPAD1 | GTATATATAGAATTCATGGCCCCCATGGGCATCCG Cloning Mouse
Forward

IMPAD1 | CTATATATATAGAGCTCTCACTTATCGTCGTCATCCTTGTAATCATGTCCTGACTTTTCTAAATCCGG | Cloning Mouse
Reverse

IMPAD1 | GTATATATAACCGGTATGGCCCCCATGGGCATCCG Cloning Mouse
Forward

IMPAD1 | CTATATATATAACGCGTTCACTTATCGTCGTCATCCTTGTAATCATGTCCTGACTTTTCTAAATCCGG | Cloning Mouse
Reverse

IMPAD1 | GTATATATAGAATTCATGGCCCCCATGGGCATCCG Cloning Human
Forward

IMPAD1 | CTATATATATACTCGAGTCACTTATCGTCGTCATCCTTGTAATCATTTATGTCCTGTCTTTTCTAGATC | Cloning Human
Reverse

IMPAD1 | ATGTGGATGCCTCTGACAAG Seq Mouse
Forward

IMPAD1 | CTTCTCATTGTAGGAAGAACGG Seq Mouse
Reverse

IMPAD1 | GAACACGTGGATGCAGCTGAT Seq Human
Forward

IMPAD1 | CATTGTAGGAAGAGCGGGCTT Seq Human
Reverse

IMPAD1 | CCGCAAGATGTTCTACCTGCTC gPCR Mouse
Forward

IMPAD1 | GGATGTCCTCAGGAATCTTCCG gPCR Mouse
Reverse

IMPAD1 | AATGTGAAAGCCCGCTCTTC gPCR Human
Forward

IMPAD1 | TGAAGAGCGACCTGTTTGAC gPCR Human
Reverse

IMPAD1 | ATTCCCTAGCATATTCCAGGC shRNA - Mouse
SH1 mature

antisense
IMPAD1 | TTACATACTGTTAAGTACGGG shRNA - Mouse
SH2 mature
antisense

IMPAD1 | TTCTCATTGTAGGAAGAACGG shRNA - Mouse
SH3 mature

antisense




KDELR2 | GTATTGCGAATTCATGAACATCTTCCGGCT Cloning Mouse
Forward

KDELR2 | TACAGCGTCGACTTAAACCTTATCGTCGTC Cloning Mouse
Reverse

KDELR2 | CGATACCTTCCGAGTGGAGTTC gPCR Mouse
Forward

KDELR2 | CCAGGTAGATGGAGAAGGTCCA gPCR Mouse
Reverse

KDELR2 | ACCTTCCGAGTGGAGTTTCTGG gPCR Human
Forward

KDELR2 | ATAGCCACGGACTCCAGGTAGA gPCR Human
Reverse

KDELR2 | TATCGTGATTTCCATCATAGG shRNA - Mouse
shA mature

antisense
KDELR2 | ATCTTCAGCAGTAGGATGACG shRNA - Mouse
shB mature
antisense

KDELR2 | TTTCATGTAGATCAGGTACAC shRNA - Mouse
shC mature

antisense
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Supplementary Materials

Candidate gene selection. We exploited microarray data collected from the KP GEM models that
harbor a gain-of-function mutation in Kras, and a dominant negative mutation in p53 (KRAS-A*:;
p53RI72HAGH) "Cell lines were derived from the KP mice that could be distinguished based on their
metastatic ability when they were re-implanted into the syngeneic 129/Sv mice. 393P cell lines
were non-invasive, whereas 344SQ cell lines were highly invasive. Tumors from the 393P cells
did not metastasize, whereas tumors from 344SQ cells metastasized to the lungs, heart, kidney,
etc. The dataset that was used for human data was from the TCGA lung adenocarcinoma cohort
for genes that showed >1.5-fold amplification.

In vitro screen and data analysis. The 393P cell lines overexpressing individual ORFs were
individually plated in quadruplicates in the tumor invasion 96-Well Plates. Randomly selected
groups of 20 cell lines were seeded per plate. The plates were prepared according to manufacturer
instructions (pre-warmed to room temperature (RT) for 10 minutes in 5% CO2. 75ul of warm,
serum free media was added to rehydrate plates for 2 hours in). Serum free media was removed
after rehydration, and cells were prepared and counted, using 15,000 cells per well, using 4
replicates per gene. 10% FBS RPMI was added to basal chamber. Invasion plates incubated for 28
hours followed by two washes with deionized water and stained with calcein AM. Cells were
stained for 1 hour and fluorescence was counted on a Victor Il plate reader. The fluorescence
readings produced 4 raw readings per gene in each cohort. Readings were taken for 230 genes
across 12 pools. The statistical analysis to identify the hits was performed by two different methods
in order to minimize statistical variation and validate results. To determine the approximate
expression level for each gene, while limiting the impact of experimental fluctuations, the average
raw reading was calculated for each gene excluding outliers. To determine the threshold for
assigning scoring genes, statistical fluctuations in the relative expression of each gene was
examined relative to mCherry in each group. First, fold changes were calculated for each gene as
the ratio of the gene’s average reading to the average mCherry reading from the same group. To
determine the amount of statistical fluctuation in fold change the standard deviation (SD) of fold
change values across all genes/groups was calculated (5.89). To determine whether or not a gene’s
fold change was significant for the degree of statistical fluctuation in fold changes across all
cohorts, each gene’s fold change versus mCherry was converted into the number of standard
deviations (method 1). To do this, first, for each pool, the standard deviation fold change across
all pools (5.89) was converted to a raw reading basis by multiplying the standard deviation by each
pool’s average mCherry reading. This established ‘normalized,” pool-specific standard deviation
values reflective of statistical fluctuations in fold change across all pools. Second, the number of
standard deviations was calculated for each gene as the ratio of the difference between the average
reading for the gene and that of mCherry to the group-specific standard deviation. The number of
standard deviations report the relative expression level of each gene versus an expression level
equivalent to 1 standard deviation above the average expression over mCherry. To determine the
final list of hits the number of standard deviations were used. It was observed that the distribution
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of this metric generally followed a Gamma distribution, with most genes reporting a metric near 0
(170 out of 230) and showing positive skew. An approximate Gamma distribution was fit to the
metric values for each gene with an Alpha value of 1.07 and a Beta value of 0.29. The final hit list
was comprised of genes with a metric value in excess of the 90th percentile of the fit Gamma
distribution (0.70).

The results from the screen were also analyzed in another way in order to minimize the statistical
variation seen between cohorts (method 2). To do this, the standard deviation of the gene calculated
as mentioned above, was compared to that of the mCherry in its respective cohort instead of
comparing the standard deviations of the genes across that of mCherry across all groups. Those
genes that had fold-change invasion greater than 3X SD of mCherry were denoted as hits. We
combined the data from methods 1 and 2, and those genes that were designated as hits by both the
methods were further validated.

Migration and invasion assay. Boyden chamber with cells plated in serum-free media added to
well with complete media in the lower chamber and cells were incubated at 37 °C for 16 hours.
Inserts were stained with crystal violet and cells that migrated or invaded were quantified by using
ImageJ software. Data was plotted as number of cells migrated or invaded.

3D invasion assay. For inducible cells were replenished everyday with RPMI media with 2%
matrigel and 2uM doxycycline. Spheroids with invasive structures were imaged with an inverted
microscope and quantified and plotted as %invasive structures.

Plasmids and reagents. EcoRI-Xhol was used for cloning IMPAD1 or KDELR2 into pTRIPZ
vector. Impadl (SH1-TRCNO0000173584, SH2-TRCN0000174471, SH3-TRCNO0000175469)
Kdelr2 (shA- TRCN0000093585, shB-TRCNO0000093586, shC-TRCN0000093588). Impad1 and
Kdelr2 shRNA constructs were from GE-Dharmacon (now Horizon Discovery). Sequence for
mature antisense are mentioned in Supplemental Table 1.

gRT-PCR. Cells were lysed in TRIzol (Ambion) and RNA was isolated from cells by using
Direct-zol RNA miniprep plus kit (Zymo #R2072). cDNA was obtained by RT-PCR with 2ng/uL
RNA and gScriptTM (030497, Quanta Bio). g°PCR was performed with primers specific for
cDNAs (Supplemental Table 1) and SYBR® Green PCR Master Mix (Life technologies).

Western blot. Cells and tumor tissues were lysed in RIPA buffer (Cell Signaling). Protein lysates
were run by SDS-PAGE and then transferred to membrane. Protein was transferred to
nitrocellulose or PVDF (only for KDELR2) membranes. 5% milk in TBST (10 mM Tris, 100 mM
NaCl, and 0.1% Tween 20) was used for blocking for 1 hour at RT, except for KDELR2 where
blocking was done with 5% BSA in TBST. Then probed with primary antibody overnight at 4 °C.
The primary antibodies used were: human IMPAD1 (Abcam mouse #69311, 1:1000), mouse
IMPAD1 (R&D Systems sheep #AF7028, 1:1000), b-Actin (Abcam mouse), mouse KDELR2
(Abcam Rabbit #199689, 1:500), GFP (Abcam Rabbit #290, 1:1000). The secondary antibodies
used were anti-mouse (Cell Signaling Technology #7076, 1:2000), anti-sheep (Santa Cruz #2770,
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1:2000), anti-rabbit (Cell Signaling Technology #7074, 1:2000). All secondary antibodies were
incubated for 1 hour and RT in 2.5% milk/TBS-T, except for KDELR2, which was 2.5%
BSA/TBST. Blots were visualized using an ECL detection system (LF-Q0101, 27B09) from
Abfrontier (Seoul, Republic of Korea).

Wound healing assay. Images were taken at 0 and 24 hours by using the inverted microscopy
(Leica Microsystems, Germany).

In vivo metastasis experiments. Mice injected with doxycycline-inducible cells were fed
625mg/kg of doxycycline feed starting 48 hours after implantation of cells. Multiple comparisons
ANOVA test was done for tumor growth over time curves to obtain significance for each time
point. No randomization or blinding performed as only the phenotypic testing of genes was done
in syngeneic mice. Mouse from 344SQ GFP cohort (Fig. 3E-J) was excluded based on PRISM
outlier statistics. Mice that had no tumor growth from 393P GFP and IMPAD1 cohorts (Fig. S4Q-
V) were excluded.

Immunohistochemistry. Formalin-fixed, paraffin-embedded tissues were cut into 4pm sections.
The primary antibodies used were: mouse IMPAD1 (R&D Systems Sheep #AF7028, 1:100),
FLAG (Abcam Rabbit #ab21536, 1:1000), KDELR2 (Invitrogen Rabbit #PA5-75397, 1:750).
Secondary antibodies used were: anti-sheep (Abcam Rabbit #ab6746, 1:300), anti-rabbit (Dako
Swine #E0353, 1:300).

Co-immunofluorescence staining for IMPAD1 and GM130. Primary antibody human IMPAD1
(Abcam mouse #69311, 1:100). Fluorophore-conjugated secondary antibodies: Alexa 546-
conjugated anti-mouse (Thermofisher Scientific Goat #A-11030, 1:200) and GM130 (BD
Pharminogen mouse #56027, 1:50).

Co-immunofluorescence staining for KDELR2 and Calnexin, or GM130. Primary antibody
FLAG (Sigma-Aldrich Mouse #F1804, 1:1000). Fluorophore-conjugated secondary antibodies:
Alexa 546-conjugated anti-mouse (Thermofisher Scientific Goat #A-11030, 1:200), Calnexin
(Invitrogen mouse #MA3-027-A488, 1:100), and GM130 (BD Pharminogen mouse #56027, 1:50).

Secretome-mediated invasion assay for Golgi secretion. Doxycycline-induced control and
experimental cells were plated in 60mm plates after 24-hour induction. Conditioned media was
collected from these cells after 24 hours, where cells were treated with DMSO or 1uM BFA for
the last 6 hours. 393P WT parental cells were suspended in the conditioned media and plated in
invasion Boyden chambers (BD-Biosciences #354480). 50,000 cells were used per chamber.
RPMI with 20% FBS was added to the lower chamber wells and the cells were incubated for 16
hours at 37 OC. Inserts were stained with crystal violet and cells that invaded were quantified by
using ImageJ software. Data was plotted as number of cells invaded.

Secretome-mediated invasion assay for MMP secretion. Doxycycline-induced control and
experimental cells were plated in 60mm plates after 24-hour of pre-induction. Conditioned media
was collected after 24 hours of induction and 50,000 393P WT parental cells were plated in the

3
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invasion Boyden chamber per well (BD-Biosciences #354480), suspended in the conditioned
media. DMSO or 1uM llomastat was added to the invasion Boyden chambers. RPMI with 20%
FBS was added to the lower chamber wells and the cells were incubated for 16 hours at 37 OC.
Inserts were stained with crystal violet and cells that invaded were quantified by using ImageJ
software. Data was plotted as number of cells invaded.

Conditioned media western blot. MMP1 antibody (Genetex Rabbit #GTX100534, 1:1000).
MMP2 antibody (Cell Signaling Technology Rabbit #87809, 1:1000). MMP9 antibody (Invitrogen
Rabbit #MA5-32705, 1:1000).
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