Supporting Information for:

Aβ_{5-x} peptides: N-terminal truncation yields tunable Cu(II) complexes

Nina E. Wezynfeld,^a Aleksandra Tobolska,^{a,b} Mariusz Mital,^c Urszula E. Wawrzyniak,^a Magdalena Z. Wiloch,^d Dawid Płonka,^c Karolina Bossak,^d Wojciech Wróblewski,^a Wojciech Bal^{c*}

^a Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

^b Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

^c Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland

^d Charge Transfer Processes in Hydrodynamic Systems group, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

*E-mail: wbal@ibb.waw.pl (W. Bal)

Figure S1. The pH dependence of UV-vis spectra recorded at 25 °C for 0.9 mM Cu(II) and 1.0 mM A $\beta_{5.9}$, at pH values color coded on the graphs.

Figure S2. The pH dependence of UV-vis spectra recorded at 25 °C for 0.9 mM Cu(II) and 1.0 mM $A\beta_{5-12}$, at pH values color coded on the graphs.

Figure S3. The pH dependence of UV-vis spectra recorded at 25 °C for 0.9 mM Cu(II) and 1.0 mM A β_{5-12F} , at pH values color coded on the graphs.

Fig. S4. Fluorescence spectra (top) and the respective curves (bottom) for 20 μ M A β_{5-12} (A.) or 20 μ M A β_{5-12} /Cu(II) (B.) titrated with NaOH at pH values color coded as present on the graph. The titration curves were generated by averaging spectral intensities over the 300-310 nm range for better signal-to-noise ratios.

Figure S5. The pH dependence of UV-vis spectra recorded at 25 °C for 0.9 mM Cu(II) and 1.0 mM A β_{5-16} , at pH values color coded on the graphs.

Figure S6. The pH dependence of CD spectra recorded at 25 °C for 1.8 mM Cu(II) and 1.0 mM A β_{5-16} , at pH values color coded on the graphs.

Figure S7. The pH dependence of UV-vis spectra recorded at 25 °C for 1.8 mM Cu(II) and 1.0 mM A β_{5-16} , at pH values color coded on the graphs.

Figure S8. Species distribution calculated for 0.9 mM Cu(II) and 1.8 mM A β_{5-16} , on the basis of constants presented in Tables 1 and 2.

Fig. S9. CD titration spectra (A.) and a resulting titration curve (B.) for Cu(II) complexes of A β_{5-9} with A β_{1-16} for 1 mM A β_{5-x} and 0.8 mM Cu(II) at pH 7.4. The increasing A β_{1-16} concentrations are color-coded from blue to yellow. The control spectrum of 1 mM A β_{1-16} and 0.8 mM Cu(II) at pH 7.4 is present as a grey line. The directions of changes are marked by an arrow. The titration curves were generated by averaging spectral intensities over the given wavelength ranges for better signal-to-noise ratios.

Figure S10. CV recorded in 0.5 mM A β_{5-12F} solution in the absence (dashed lines) or the presence of 0.40 mM Cu(II) (solid lines) in 96 mM KNO₃ 4 mM HNO₃, pH 7.4, $\nu = 100$ mV/s over 0.5 to -0.8 V (A.) and 0.2 to 1.4 V (B.) potential range.

Figure S11. DPV recorded in 0.5 mM A β_{5-9} , A β_{5-12} , A β_{5-16} solutions in the absence (dashed lines) or in the presence of 0.40 mM Cu(II) and 5 mM imidazole in 96 mM KNO₃, 4 mM HNO₃, pH 7.4.