

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Meta-analysis of Anti- Saccharomyces Cerevisiae Antibodies as diagnostic markers of Behçet's disease

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033880
Article Type:	Original research
Date Submitted by the Author:	26-Aug-2019
Complete List of Authors:	Cheng, Linlin; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Li, Liubing Liu, Chenxi Yan, Songxin Li, Yongzhe
Keywords:	Behçet's disease, Anti-saccharomyces cerevisiae antibodies, autoimmune diseases, meta-analysis, autoantibodies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

-	1	Meta-analysis of Anti- Saccharomyces Cerevisiae Antibodies as diagnostic markers of
2	2	Behçet's disease
	3	Linlin Cheng, MD, ^a Liubing Li, MD, ^a Chenxi Liu, MD, ^a Songxin Yan, MS, ^a Yongzhe
2	4	Li, PhD ^{a*} .
-	5	^a Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking
(6	Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
	7	For correspondence: Yongzhe Li*
8	8	Email address: <u>yongzhelipumch@126.com</u>
Ç	9	
10	0	Abstract
1	1	Objective: To assess the diagnostic value of anti-saccharomyces cerevisiae antibodies
12	2	(ASCA) in Behçet's disease (BD) patients and explore their relationship with other
13	3	autoimmune diseases(AID).
14	4	Methods: Relevant studies investigating ASCA levels in BD patients were retrieved from
1:	5	PubMed, EMBASE, Web of Science, SOCPUS, and the Cochrane Library. Review
10	6	Manager 5.3, Meta-DiSc 1.4 and Stata/SE 12.0 were used to perform quality assessment,
17	7	meta-analysis, and sensitivity analysis. Subgroup analysis were performed disaggregated 1
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

18	by isotypes of ASCA. We also summarized the diagnostic performance of ASCA in AID
19	based on a comprehensive database search.
20	Results: Nine studies were included in the meta-analysis. All four types of ASCA were
21	useful to distinguish between gastrointestinal BD (GIBD) and healthy controls (HC).
22	ASCA-IgG was useful to differentiate between GIBD and HC [odds ratio (OR) 5.74 (95%
23	confidence interval (CI), 2.83-11.65); sensitivity 0.34 (95% CI, 0.27-0.41); specificity
24	0.93 (95% CI, 0.87–0.96)]; based on summary receiver operating characteristic curve, the
25	positive rate in Crohn's disease (CD) was higher than that in BD/GIBD, while patients with
26	negative results were more likely to be diagnosed as CD. However, it was difficult to
27	distinguish GIBD from intestinal tuberculosis (iTB) and ulcerative colitis (UC), and to
28	distinguish BD from UC and HC, with the area under the curve approximately 0.5 for all.

Conclusion: ASCA may not be a useful serologic marker of BD/GIBD. It does not play a
significant role in the differential diagnosis from intestinal diseases. The prevalence of
ASCA in AID suggests a common pathogenetic role in AID.

Key words: Behçet's disease; Anti-saccharomyces cerevisiae antibodies; autoimmune
 diseases; meta-analysis; autoantibodies

36 Strengths and limitations of this study

Behcet's disease is a non-marker autoimmune/inflammatory disease in which
autoantibodies play an important role.

39 We perform group analysis according to antibody subtypes of ASCA.

40 The control groups include healthy controls and differential diagnosis disease

C.C.Z

41 (inflammatory bowel disease)

42 Comprehensive summary of ASCA antibodies in autoimmune diseases is included.

43 Too much subgrouping may lead to potential heterogeneity

45 Introduction

Behçet's disease (BD) is a chronic systemic vascular inflammatory disease with a high propensity for recurrence. The etiopathogenesis of BD is yet to be elucidated. The condition is characterized by recurrent oral ulcers, genital ulcers, ophthalmitis, and skin lesions. It can also involve blood vessels, nervous system, digestive tract, joints, and other organs in the body. BD not only impairs the quality of life of patients but can also cause serious consequences and even death. Involvement of eyes, the central nervous system, and large blood vessels may lead to serious complications. The onset of BD typically occurs in Page 5 of 39

BMJ Open

53	the third or fourth decade of life; the condition is rarely seen in children or in individuals
54	older than 50 years [1]. BD has a typical geographical distribution consistent with the
55	historical "Silk Road"; therefore, the condition is also referred to as the "Silk Road Disease".
56	Its prevalence has considerably increased in the Mediterranean region, the Middle East and
57	the Far East; Turkey has the highest prevalence rate of BD (420/100,000) [2]. This peculiar
58	geographical distribution suggests a role of genetic factors in the pathogenesis of BD. An
59	increasing number of studies have shown a strong correlation between human leukocyte
60	antigen HLA-B51 and BD [3, 4]. However, a significant number of patients with BD test
61	negative for HLA-B51; in addition, the HLA-B51 positivity rate is lower in patients with
62	bone disease, especially in non-endemic areas; this indicates that other factors may play a
63	role in the pathogenesis of BD [5]. Due to the lack of specific laboratory tests, the diagnosis
64	of BD is typically challenging and is mainly based on clinical manifestations. The 1990
65	International Study Group (ISG) criteria [6] were earlier used for the clinical diagnosis of
66	BD; however, owing to its low sensitivity, the criteria were updated in 2013 and are now
67	referred to as the International Criteria for Behçet's Disease (ICBD) [7]. However, these
68	criteria do not include any laboratory tests, and are based on the clinician's judgment, which
69	is relatively subjective and may lead to misdiagnosis. Due to the non-specific clinical
70	characteristics, those with prominent involvement of a particular organ system are easily
71	misdiagnosed. Patients with gastrointestinal involvement as the main manifestation are

72	easily misdiagnosed as Crohn's disease (CD), ulcerative colitis (UC), or intestinal
73	tuberculosis (iTB); joint symptoms are misdiagnosed as rheumatoid arthritis or ankylosing
74	spondylitis; skin mucosal damage is misdiagnosed as polymorphic erythema, nodular
75	erythema, syphilis, or systemic lupus erythematosus. Likewise, nervous system damage is
76	misdiagnosed as infectious or allergic meningitis, cerebrospinal tumor, multiple sclerosis,
77	or psychosis. In addition, diagnosis is frequently delayed until the development of clinical
78	manifestations to qualify the criteria. Studies have shown that BD is often diagnosed after
79	a gap of several years from the first appearance of symptoms. For example, patients with
80	oral ulcers were diagnosed with BD after a mean delay of 3.77±4.43 years after the
81	appearance of oral ulcers [8]. The delay in diagnosis may have deleterious effects on the
82	patients.

Several recent studies have shown that anti-Saccharomyces Cerevisiae antibody (ASCA), directed against the phosphopeptidomannan part of the cell wall of the yeast, is an important serological marker of BD, especially in patients with gastrointestinal manifestations. However, patients with inflammatory bowel disease such as Crohn's disease (CD) also have a high prevalence rate of ASCA [9, 10, 11, 12, 13, 14]. Thus, comprehensive quantitative analysis to assess the relevance of ASCA as a routine laboratory test for diagnosis for BD is a key imperative. We performed a meta-analysis of relevant studies to assess the diagnostic relevance of ASCA as a marker of BD.

BMJ Open

91	
92	Methods
93	Literature search
94	A comprehensive literature search was performed in 5 biomedical databases, i.e., PubMed,
95	EMBASE, Web of Science, SOCPUS, and the Cochrane Library. The key words used were
96	Behçet's disease and anti-Saccharomyces Cerevisiae antibody. Search range was "all fields"
97	or "all text". No restrictions were imposed with respect to time of publication, region, or
98	ethnicity of the study population. All documents were updated to January 2019.
99	
100	Eligibility and exclusion criteria
101	The inclusion criteria were: (1) studies that evaluated the diagnostic accuracy of ASCA in
102	BD; (2) availability of adequate data pertaining to the prevalence rate or serum levels of
103	ASCA in patients with BD; (3) studies with healthy population and/or disease controls; (5)
104	meeting abstracts or letters to the editor were also included.
105	The exclusion criteria were: (1) studies with incomplete data; (2) review articles; (3) non-
106	English articles; (4) in case of studies with overlapping study population, studies with
107	smaller sample size were excluded. Two investigators independently performed the
	6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	108
5	100
6 7	109
8	107
9	
10 11	110
12	
13	
14 15	111
16	
17	112
18 10	112
20	113
21	115
22	114
23 24	114
25	115
26 27	115
27 28	114
29	110
30 21	117
32	11/
33	110
34 25	118
36	110
37	119
38	
39 40	120
41	
42	121
43 44	
45	122
46	
47 48	123
49	123
50	
51	124
53	
54 55	
55 56	
57	
58	
59 60	

8 literature search, screened the titles and abstracts, followed by full-text review of eligible
9 studies.

11 Data extraction and quality assessment

Two independent investigators reviewed the full-text articles, extracted the data, and assessed the study quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) through Revman 5.3; the included items were evaluated as yes, no, or uncertain. Inter-researcher disagreements were resolved by consensus, or by a third investigator. Data pertaining to the following variables were extracted: publication year, article type, first author's name, country, isotypes of ASCA detected, age and sex, research design, sample size, experimental method, trade names of experimental materials, cut-off values, diagnostic critera, and serum titers and/or prevalence rate of ASCA in BD, gastrointestinal BD (GIBD), healthy controls (HC), patients with Crohn's disease (CD), ulcerative colitis (UC), and intestinal tuberculosis (iTB). The data were either obtained directly from the article, calculated, or requested from the author via e-mail.

4 Statistical analysis

Page 9 of 39

BMJ Open

125	We used Stata/SE 12.0, Review Manager 5.3, and Meta-DiSc 1.4 for data analysis.
126	Subgroup analysis was performed disaggregated by the isotypes of ASCA and different
127	disease controls. Heterogeneity among the included studies was evaluated using the
128	Cochran's Q-statistic as well as the I ² -statistic. P value > 0.10 for the Q-statistic, or $I^2 < 50\%$
129	was considered indicative of lack of significant heterogeneity and the fixed effects model
130	(FEM) was used for the analysis; in case of significant heterogeneity, the random effects
131	models (REM) was used for analysis. We analyzed the pooled diagnostic odds ratio (DOR),
132	sensitivity, specificity, positive likelihood ratio (LR+), and negative likelihood ratio (LR-),
133	and their corresponding 95% confidence intervals (CI). The area under the summary
134	receiver operating characteristic (SROC) curve was used to assess the overall diagnostic
135	performance of ASCA. Sensitivity analysis was performed using Stata/SE 12.0 to evaluate
136	stability of the results after sequential exclusion of one study at a time.
137	Studies for which adequate data was not available or for whom adequate control group
138	information was not available (especially meeting abstracts and letters to the editors) were
139	also reviewed but not included in the meta-analysis.
140	

141 Patient and public involvement

The present study is a meta-analysis and systematic review based on published data, patient and public are not involved in the study design, conduct, data analysis and result dissemination

Results

147 Literature search and characteristics of studies

A total of 599 documents were retrieved on database and manual search. Forty-eight duplicate publications were excluded using the document management software. A total of 126 records were retained after screening of titles and/or abstracts; the excluded records included review articles, animal model studies, therapeutic or drug research, genetic research, book chapters, duplicate publications not recognized by software, and other irrelevant records. After full-text review for eligibility, 21 records were selected. Finally, we identified 14 [9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23] studies; of these, adequate data was available only for 9 studies and were included in the meta-analysis (Figure 1). Two studies were included after obtaining the relevant data by contacting the respective authors [12, 13]. In addition, we also verified 2 studies [18, 19] with overlapping study population; of these, only one study was included in the meta-analysis. Three studies [9, 11, 21] were presented as meeting abstracts without adequate data to allow the

BMJ Open

construction of a 2×2 table. One [10] article was a letter to the editor and only reported the
prevalence rate of ASCA antibody in patients with BD, without information about the
control group. One study [20] had employed a unique calculation method and could not be
included in the meta-analysis. Among the included studies, there were 326 cases of BD,
294 cases of GIBD, 520 cases of CD, 598 cases of UC, 112 cases of iTB, and 428 HCs
(Table 1 and Table S1).

There were 8 prognostic studies and 1 retrospective study [12]. The results of quality assessment including the risk of bias and applicability concerns pertaining to each domain are shown in Fig S1. The results indicated that the included studies were of high quality in general; however, 8 studies showed a high risk of bias with respect to patient selection (avoidance of inappropriate exclusion). Overall, none of the 9 included studies showed any major methodological bias or flaws, which indicates robustness of our meta-analysis.

175 Meta-analysis

2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
2J 2≬	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
52	
- J J	
54 5-	
55	
56	
57	
58	
59	
60	

1

We conducted a meta-analysis of 9 studies that involved detection of ASCA in patients 176 with BD and controls. Subsequently, we performed subgroup analysis based on different 177 178 controls and isotypes of ASCA. 179 180 1. Meta-analysis of prevalence rate of ASCA in various groups of patients using Meta-181 DiSc 1.4We analyzed the diagnostic accuracy of ASCA in BD (without gastrointestinal 182 involvement)/GIBD/HC/UC/CD/iTB using the Revman 5.3 diagnostic test accuracy 183 review model and Meta-DiSc 1.4. The results obtained with Meta-DiSc 1.4 are summarized 184 in Table 2; some of the results are presented separately (Figure S2A-F). In addition, AUC 185 are also showed separately by Revman 5.3 (Figure 2A–G). 186 When we compared BD and HC, we found limited overall diagnostic value, with the 187 exception of slightly higher ORs for IgA and IgG/IgA [IgA, 2.26 (95% CI 0.56–9.12); 188 IgG/IgA, 2.85 (95% CI 0.57–14.29)] and LR+ [IgA, 2.03 (95% CI 0.58–7.17); IgG/IgA, 189 190 2.08 (95% CI 0.67–6.41)]. However, both showed a high specificity (> 90%) and low 191 sensitivity (< 20%) (Table 2). 192

Overall, ASCA showed the highest diagnostic value in the GIBD vs. HC sub-group
analysis, with high OR and LR+. ASCA-IgG had the highest OR [5.46 (95% CI 2.58–

BMJ Open

2		
3 4 5	194	11.55)] and highest sensitivity [0.34 (95% CI 0.27–0.41)] in all groups (Figure S2A, B). In
6 7 8	195	addition, the diagnostic value of ASCA was apparently higher than that in BD vs. HC sub-
9 10 11	196	group analysis (Table 2).
12 13 14	197	When we compared GIBD and CD, both the OR and the LR+ were less than 1 (Table 2,
15 16 17	198	Figure S2C-F), which suggests that ASCA negative results are more likely to be diagnosed
18 19 20	199	as BD at the time of differential diagnosis.
21 22 23	200	The diagnostic value of ASCA was also limited when comparing GIBD and UC. Both the
24 25 26	201	OR and LR+ were approximately 2. Both IgG and IgA positivity increased the value of
27 28 29	202	LR+ [2.02 (95% CI 1.04–3.95)] (Table 2).
30 31 32	203	When comparing GIBD and iTB, although IgG/IgA increased the sensitivity [0.32 (95%
33 34 35	204	CI (0.24–0.41)], the OR and LR+ were both approximately 1, which suggests that either
36 37 38	205	IgG or IgA positivity may also increase the detection rate of ASCA in iTB, not just GIBD
39 40 41	206	(Table 2).
42 43 44	207	On ROC curve analysis for distinguishing between BD and HC, the AUC for most antibody
45 46 47	208	subtypes was slightly higher than 0.5 (or even lower than 0.5); of these, ASCA-IgG/IgA
48 49	209	had the highest diagnostic efficacy (Figure 2A). In the BD vs. CD analysis, the AUC of
50 51 52	210	ASCA was less than 0.5 (Figure 2B). The AUCs for BD vs. UC (Figure 2C), GIBD vs. CD
53 54	211	(Figure 2E), and GIBD vs. iTB analyses (Figure 2G) were approximately 0.5. The AUC
56 57 58		12

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
ו∠ ר<	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
+/ /0	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
22	
00	

229

for GIBD vs. UC analysis was at a general level (Figure 2F). The AUC was highest for the GIBD vs. HC analysis, especially for ASCA-IgG/IgA/IgM, although only one study was included (Figure 2D)

215

1 2

216 2.Meta-analysis of serum levels of ASCA in groups by Stata/SE 12.0

In order to increase the robustness of the meta-analysis, we also extracted the data 217 pertaining to serum levels of ASCA from five studies and performed meta-analysis using 218 the Continuous data module of Stata/SE 12.0. The FEM was used for the analysis and 219 weighted mean difference (WMD) was used as the effect measure. We used FEM for five 220 subgroups with I²<50% and p>0.1 (Figure 3A). WMD was used because the same unit was 221 222 used in these studies and there were only minor differences (less than three times) with respect to the serum levels of ASCA (Figure 3A). We found that ASCA-IgA in GIBD was 223 224 significantly greater than that in HC and UC, in contrast to ASCA-IgG. On the contrary, levels of ASCA-IgG in CD were apparently higher than that in BD. For subgroups with 225 $I^{2}>50\%$ and p<0.1, we chose the REM for analysis using the WMD. We found no 226 227 significant difference between GIBD and CD with respect to the serum levels of ASCA-IgA (Figure 3B). 228

BMJ Open

230	Heterogeneity and sensitivity analysis
231	We performed sensitivity analysis to assess the stability of the results. The results showed
232	that the studies by Krause et al (2002), Zhang et al (2018), Kocazeybe et al (2010), and
233	Fresko et al (2005) were the key contributors to the heterogeneity (Figure S3). Thus, the
234	results of related subgroup analysis are considered to be less stable. We further applied
235	REM to analyze these seven subgroups; the forest plot is shown in Figure S4.
236	Summary of the relationship of ASCA with autoimmune disease
237	We searched the database for the association between ASCA and AID. The sensitivity,
238	specificity, LR+, and LR- are summarized in Table 3.
239	
240	Discussion
241	The diagnosis of BD is typically challenging prior to the appearance of clinical symptoms
242	to qualify the diagnostic criteria. Currently, there are no specific laboratory biomarkers of
243	BD; however, some specific autoantibodies in the context of BD have been reported.
244	Therefore, identification of non-invasive specific diagnostic and prognostic biomarkers of
245	BD is of much clinical relevance and a key focus area of research.
	14

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
-TU /0	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1

246	Several recent studies have assessed the relation between ASCA and BD. Saccharomyces
247	cerevisiae, also known as the baker's or brewer's yeast, has long been utilized to ferment
248	the sugars in rice, wheat, barley, and corn to produce alcoholic beverages; it is also used in
249	the baking industry to raise dough. As a consequence, we are now commonly exposed to
250	yeast [24]. IgG and IgA antibodies against the phosphopeptidomannan of the S. cerevisiae
251	cell wall have been discovered as autoantibodies in the sera of patients with BD, especially
252	those with gastrointestinal involvement. This suggests a role of environmental stimuli in
253	the pathogenesis of BD. However, patients with gastrointestinal involvement, especially
254	those with Crohn's disease, also have a high prevalence rate of ASCA, which is a
255	controversial issue [25]. Moreover, a growing number of studies have assessed ASCA in
256	several systemic and organ-specific AID, which led to postulation of molecular mimicry
257	as a possible link between ASCA and AID, such as scleroderma, systemic lupus
258	erythematosus, primary Sjögren's syndrome, rheumatoid arthritis, autoimmune liver
259	disease, and spondyloarthritis (Table 3). Their correlation with elevated IgA suggests that
260	ASCA may be an indirect sign of enhanced mucosal immunity [26]. Therefore, detection
261	of ASCA may be a useful serologic marker of BD and other AID, especially those with
262	gastrointestinal involvement.

To the best of our knowledge, this is the second meta-analysis of evidence pertaining to autoantibodies in patients with BD after anticardiolipin antibodies [27]. ASCA have been

BMJ Open

265	widely researched in BD, Crohn's disease and other autoimmune disease; in order to
266	investigate the diagnostic value and possible pathogenetic role of ASCA in BD, we
267	included 9 studies to assess the diagnostic accuracy of ASCA in BD. Among these, some
268	studies included BD patients with various clinical manifestations. Some studies included
269	BD patients with systemic involvement symptoms including or excluding gastrointestinal
270	involvement, while others included only BD patients with gastrointestinal involvement.
271	Therefore, in order to reduce the impact of differences with respect to frequency
272	distribution of gastrointestinal symptoms in each study, we disaggregated patients with BD
273	into those with gastrointestinal involvement only and those without gastrointestinal
274	manifestations. The isotype antibodies of ASCA tested and the results presented by the
275	studies are also different. Studies had investigated IgG, IgA, either IgG or IgA, both IgG
276	and IgA, IgG, IgA and IgM, and even IgG subtypes IgG1-IgG4. Several studies have
277	shown a higher prevalence of ASCA among patients with BD/GIBD/CD; however, the
278	results of meta-analysis showed that ASCA is not a useful biomarker for the differential
279	diagnosis between GIBD and CD; however, ASCA negative results may be more likely to
280	be diagnosed as GIBD/BD when compared with CD. In addition, ASCA showed the
281	highest diagnostic value in the GIBD vs. HC sub-group analysis; all four types of ASCA
282	were found to help distinguish between GIBD and HC. However, we found limited
283	diagnostic value of ASCA in BD vs. HC and GIBD vs. UC sub-group analyses. Moreover,

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
45	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

284	it failed to distinguish between GIBD and iTB. Overall, use of ASCA-IgG in combination
285	with IgA helped improve the specificity of the diagnosis of BD in all groups. Moreover,
286	we used three different software (Meta-DiSc 1.4, Revman5.3, and Stata/SE 12.0) to
287	perform multiple analyses, which helped increase the credibility of our results. For example,
288	we used both data pertaining to prevalence rate and serum levels of ASCA. Combined with
289	the results of QUADAS-2, we found that the heterogeneity in this meta-analysis was
290	largely attributable to the following reasons (see Table 1, Figure S1). The first reason was
291	the different diagnostic criteria used in the included studies. Different criteria may have
292	different thresholds for diagnosis or place more weight on some symptoms than others.
293	Specifically, the 1990 ISG criteria requires the presence of oral ulceration plus any two of
294	the following: genital ulceration, typical eye lesions, typical skin lesions, or positive
295	pathergy test for diagnosis of BD [6]. In contrast, the 1987 Japan criteria require all four
296	characteristics for diagnosis of BD, i.e., oral ulceration, typical eye lesions, typical skin
297	lesions, and genital ulceration [28]. The ISG criteria and the Japanese criteria often fail to
298	classify some patients with BD; in addition, the Japanese criteria may also cause
299	misclassified diagnosis. This may have caused the different diagnostic sensitivity and
300	specificity for BD [29]. The second contributor to heterogeneity was differences with
301	respect to the characteristics of the study population. The clinical features and laboratory
302	findings tend to exhibit wide variability in different populations and clinical settings [30,

BMJ Open

303	31]. However, we could not perform subgroup analysis disaggregated by the type of
304	population, owing to the small sample size of various population groups after classification
305	according to isotypes of ASCA. Third, different investigation methods and cut-off values
306	also contributed to the heterogeneity. The two main methods used in the included studies
307	were ELISA and indirect immunofluorescence assay. Notably, although the kits were
308	manufactured by the same company, different cut-off values were used. Different values
309	for ELISA were used for Inova Diagnostic [13, 16, 18, 19, 22] and Euroimmune Leubeck
310	kits [9, 12]. Some studies performed testing through self-coated plates by purchasing
311	ELISA plates and antibodies; thus, the effect of human error and inadequate repeatability
312	cannot be ignored [17, 20].
313	In order to fully evaluate the value of ASCA for differential diagnosis of BD, we included
314	patients with CD, UC, and iTB as the comparison objects in our meta-analysis. However,
315	there are still some limitations of this meta-analysis. (1) Gray literature database, paper
316	database, and other language databases were not used for the literature search. (2) Our
317	primary goal was to assess the diagnostic efficacy of ASCA in BD, and therefore we did
318	not include all studies pertaining to ASCA in inflammatory bowel disease and iTB. (3)
319	Restricted by the number of included studies and the isotypes of ASCA, we could not
320	perform subgroup analysis disaggregated by different populations and diagnostic criteria.
321	(4) Some studies with incomplete data were excluded after lack of response from the author.
	18

2
3
1
-
5
6
7
8
Q
10
10
11
12
13
14
15
10
16
17
18
19
20
21
21
22
23
24
25
26
20
27
28
29
30
31
27
22
33
34
35
36
37
20
38
39
40
41
42
43
44
44
45
46
47
48
40
77
50
51
52
53
54
54
22
56
57
58

59

60

1

Our meta-analysis results, together with the review of ASCA in AID strongly suggest that 322 ASCA (especially its certain isotypes) may be helpful biomarkers for GIBD, especially 323 324 with respect to their possible predictive/pathogenic/diagnostic role in clinical settings [32]. 325 Furthermore, ASCA may be detectable years before the diagnosis of some AID as they 326 were retrospectively found in the preserved blood samples of soldiers who were affected by Crohn's disease years later [33]. However, due to its presence in several other AID, It. or elinical t. 327 ASCA may have a limited value for clinical diagnosis. 328 329

1		
2 3	220	
4	330	Compliance with Ethical Standards:
5 6	331	Funding: This research was supported by grants from the National Natural Science
7	332	Foundation of China Grants (81671618, 81871302), the CAMS Initiative for Innovative
8 9	333	Medicine (2017-I2M-3-001) the CAMS Initiative for Innovative Medicine (2017-I2M-
10	334	
11 12	554	
13	335	Ethical approval: This article does not contain any studies with human participants
14 15	336	performed by any of the authors.
13 16		
17	337	Author Statement: Study concept and design: Linlin Cheng, Yongzhe Li. Acquisition of
18 19	338	data: Linlin Cheng, Liubing Li, Chenxi Liu, Songxin Yan. Statistical analysis and
20	339	interpretation of data: Linlin Cheng, Liubing Li, Chenxi Liu. Drafting of the manuscript:
21 22	340	Linlin Cheng. Revision of manuscript: Yongzhe Li, Linlin Cheng, Liubing Li.
23	341	Supervision of work: Yongzhe Li, All authors read and approved the final manuscript.
24 25		
25 26	342	competing interests: None
27	5.2	
28 29	343	
30	545	
31 32	344	References
33		
34 25	345	1. Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behcet's disease: New
36	346	insights into pathophysiology, clinical features and treatment options. Autoimmun Rev 2018;1/(6):56/-/5.
37	34/	2. Davatchi F, Shahram F, Chams-Davatchi C, Shams H, Nadji A, Akhlaghi M, et al. Bencet's disease:
38 39	348 340	From East to West. Clin Kneumatol 2010;29(8):823-55.
40	349	5. Chajek-Shaui T, Pisanty S, Knoolei H, Matznei T, Olick M, Koli N, et al. HLA-D51 may serve as an immunogenetic marker for a subgroup of natients with Behcet's syndrome. The American journal of
41 42	351	minutogenetic marker for a subgroup of patients with beneet's syndrome. The American journal of medicine 1987-83(4):666-72
43	352	4 Mizuki N Ota M Yabuki K Katsuyama Y Ando H Palimeris GD et al Localization of the pathogenic
44 45	352	gene of Behcet's disease by microsatellite analysis of three different populations. Investigative
45 46	354	ophthalmology & visual science 2000;41(12):3702-8.
47	355	5. Yazici H, Seyahi E, Hatemi G, Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol
48 49	356	2018;14(2):107-19.
50	357	6. Criteria for diagnosis of Behcet's disease. International Study Group for Behcet's Disease. Lancet
51 52	358	1990;335(8697):1078-80.
52 53		
54		
55 56		20
57		_~
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7. Davatchi F, Assaad-Khalil S, Calamia KT, Crook JE, Sadeghi-Abdollahi B, Schirmer M, et al. The International Criteria for Behçet's Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 2014;28(3):338-47. 8. Alpsoy E, Donmez L, Bacanli A, Apaydin C, Butun B. Review of the chronology of clinical manifestations in 60 patients with Behcet's disease. Dermatology 2003;207(4):354-6. 9. Aslan M, Kocazeybek B, Celik A, Erzin Y, Hatemi I, Hatemi G, et al. Anti-Saccharomyces cerevisiae (ASCA) antibody levels in a subgroup of patients with ulcerative colitis, Crohn's disease, GI Behcet, and GI tuberculosis: Correlations with disease duration, activity, and extension. Int J Infect Dis 2010;14:e117-e8. 10. Filik L, Biyikoglu I. Differentiation of Behcet's disease from inflammatory bowel diseases: Anti-saccharomyces cerevisiae antibody and anti-neutrophilic cytoplasmic antibody. World J Gastroenterol 2008;14(47):7271. 11. Kocazeybek B, Aslan M, Erzin Y, Celik A, Hatemi I, Hatemi G, et al. Clinical utility of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces Cerevisiae antibodies for discriminating specific intestinal inflammations. Int J Infect Dis 2010;14:e118. 12. Zhang S, Luo J, Li J, Wu Z, Hu C, Li P, et al. Retrospective evaluation of the clinical utility of serological biomarkers in Chinese patients with inflammatory bowel disease: 2-year clinical experience. Clin Chem Lab Med 2017;55(6):865-75. 13. Zhang S, Luo J, Wu Z, Roggenbuck D, Schierack P, Reinhold D, et al. Antibodies against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD from intestinal tuberculosis and intestinal Behçet's disease. Clin Transl Gastroenterol 2018;9(2):e133. 14. Lidar M, Langevitz P, Barzilai O, Ram M, Porat-Katz BS, Bizzaro N, et al. Infectious serologies and autoantibodies in inflammatory bowel disease: insinuations at a true pathogenic role. Ann N Y Acad Sci 2009;1173:640-8. 15. Choi CH, Kim TI, Kim BC, Shin SJ, Lee SK, Kim WH, et al. Anti-Saccharomyces cerevisiae antibody in intestinal Behcet's disease patients: relation to clinical course. Dis Colon Rectum 2006;49(12):1849-59. 16. Fresko I, Ugurlu S, Ozbakir F, Celik A, Yurdakul S, Hamuryudan V, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Behcet's syndrome. Clin Exp Rheumatol 2005;23(4 Suppl 38):S67-70. 17. Kim BG, Kim YS, Kim JS, Jung HC, Song IS. Diagnostic role of anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic antibodies in patients with inflammatory bowel disease. Dis Colon Rectum 2002;45(8):1062-9. 18. Krause I, Monselise Y, Milo G, Weinberger A. Anti-Saccharomyces cerevisiae antibodies--a novel serologic marker for Behcet's disease. Clin Exp Rheumatol 2002;20(4 Suppl 26):S21-4. 19. Monselise A, Weinberger A, Monselise Y, Fraser A, Sulkes J, Krause I. Anti-Saccharomyces cerevisiae antibodies in Behcet's disease--a familial study. Clin Exp Rheumatol 2006;24(5 Suppl 42):S87-90. 20. Oshitani N, Hato F, Jinno Y, Sawa Y, Nakamura S, Matsumoto T, et al. IgG subclasses of anti Saccharomyces cerevisiae antibody in inflammatory bowel disease. Eur J Clin Invest 2001;31(3):221-5. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 39

BMJ Open

3	396	21. Prado LL, Augusto KL, Magalhães PF, Viana VT, Saad CGS, Gonçalves CR. THU0219 Anti-
4 5	397	saccharomyces cerevisae antibodies (ASCA) in active behÇet's disease: A marker of intestinal
6	398	involvement? Ann Rheum Dis 2013;71:229
7	399	22. Rhee SH, Kim YB, Lee ES. Comparison of Behcet's disease and recurrent aphthous ulcer according to
8 9	400	characteristics of gastrointestinal symptoms. J Korean Med Sci 2005;20(6):971-6.
10	401	23. Vaiopoulos G, Lakatos PL, Papp M, Kaklamanis F, Economou E, Zevgolis V, et al. Serum anti-
11	402	Saccharomyces cerevisiae antibodies in Greek patients with Behcet's disease. Yonsei Med J
12	403	2011;52(2):347-50.
14	404	24. Sicard D, Legras JL. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto
15 16	405	complex. C R Biol 2011;334(3):229-36.
17	406	25. Main J, McKenzie H, Yeaman GR, Kerr MA, Robson D, Pennington CR, et al. Antibody to
18	407	Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease. BMJ 1988;297(6656):1105-6.
19 20	408	26. Muratori P, Muratori L, Guidi M, Maccariello S, Pappas G, Ferrari R, et al. Anti-Saccharomyces
21	409	cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol 2003;132(3):473-6.
22	410	27. Zouboulis CC, Buttner P, Tebbe B, Orfanos CE. Anticardiolipin antibodies in Adamantiades-Behcet's
23 24	411	disease. Br J Dermatol 1993;128(3):281-4.
25	412	28. Mizushima Y, Inaba G, Mimura Y, Ono S. Diagnostic criteria for Behçet's disease in 1987, and
26	413	guideline for treating Behçet's disease1988. 391-3 p.
27	414	29. Chang HK, Lee SS, Bai HJ, Lee YW, Yoon BY, Lee CH, et al. Validation of the classification criteria
29	415	commonly used in Korea and a modified set of preliminary criteria for Behcet's disease: a multi-center
30 21	416	study. Clin Exp Rheumatol 2004;22(4 Suppl 34):S21-6.
32	417	30. Kramer M, Hasanreisoglu M, Weiss S, Kumova D, Schaap-Fogler M, Guntekin-Ergun S, et al. Single-
33	418	Nucleotide Polymorphisms in IL23R-IL12RB2 (rs1495965) Are Highly Prevalent in Patients with Behcet's
34 35	419	Uveitis, and Vary between Populations. Ocul Immunol Inflamm 2018:1-8.
36	420	31. Fedrigo A, Skare TL, Bortoluzzi AL, Nisihara R. ASCA (Anti-Saccharomyces cerevisiae Antibody) in
37	421	Patients with Scleroderma. J Clin Rheumatol 2019;25(1):24-7.
38 39	422	32. Rinaldi M, Perricone R, Blank M, Perricone C, Shoenfeld Y. Anti-Saccharomyces cerevisiae
40	423	autoantibodies in autoimmune diseases: from bread baking to autoimmunity. Clin Rev Allergy Immunol
41	424	2013;45(2):152-61.
42 43	425	33. Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, et al. Anti-Saccharomyces cerevisiae and
44	426	antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 2005;54(9):1232-6.
45 46	427	34. de Vries M, van der Horst-Bruinsma I, van Hoogstraten I, van Bodegraven A, von Blomberg BM,
40	428	Ratnawati H, et al. pANCA, ASCA, and OmpC antibodies in patients with ankylosing spondylitis without
48	429	inflammatory bowel disease. J Rheumatol 2010;37(11):2340-4.
49 50	430	35. Riente L, Chimenti D, Pratesi F, Delle Sedie A, Tommasi S, Tommasi C, et al. Antibodies to tissue
51	431	transglutaminase and Saccharomyces cerevisiae in ankylosing spondylitis and psoriatic arthritis. J
52	432	Rheumatol 2004;31(5):920-4.
53 54		
55		
56		22
J/		

3	433	36. Mundwiler ML, Mei L, Landers CJ, Reveille JD, Targan S, Weisman MH. Inflammatory bowel disease
4 5	434	serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther 2009;11(6):R177.
6	435	37. Wallis D, Asaduzzaman A, Weisman M, Haroon N, Anton A, McGovern D, et al. Elevated serum anti-
7	436	flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational
o 9	437	study. Arthritis Res Ther 2013;15(5):R166.
10	438	38. Krause I, Blank M, Cervera R, Font J, Matthias T, Pfeiffer S, et al. Cross-reactive epitopes on beta2-
11 12	439	glycoprotein-I and Saccharomyces cerevisiae in patients with the antiphospholipid syndrome. Ann N Y
13	440	Acad Sci 2007;1108:481-8.
14	441	39. Gonzalez T, Malagon C, Guarnizo P, Mosquera AC, Chila-Moreno L, Romero-Sanchez C.
15 16	442	Autoantibodies and Gastrointestinal Symptoms in Colombian Children with Juvenile Idiopathic Arthritis.
17	443	Curr Rheumatol Rev 2018;14(2):163-71.
18	444	40. Czaja AJ, Shums Z, Donaldson PT, Norman GL. Frequency and significance of antibodies to
19 20	445	Saccharomyces cerevisiae in autoimmune hepatitis. Dig Dis Sci 2004;49(4):611-8.
21	446	41. Papp M, Norman GL, Vitalis Z, Tornai I, Altorjay I, Foldi I, et al. Presence of anti-microbial antibodies
22	447	in liver cirrhosisa tell-tale sign of compromised immunity? PLoS One 2010;5(9):e12957.
23 24	448	42. Sakly W, Jeddi M, Ghedira I. Anti-Saccharomyces cerevisiae antibodies in primary biliary cirrhosis.
25	449	Dig Dis Sci 2008;53(7):1983-7.
26 27	450	43. Shor DB, Orbach H, Boaz M, Altman A, Anaya JM, Bizzaro N, et al. Gastrointestinal-associated
27	451	autoantibodies in different autoimmune diseases. Am J Clin Exp Immunol 2012;1(1):49-55.
29	452	44. Yazici D, Aydin SZ, Yavuz D, Tarcin O, Deyneli O, Direskeneli H, et al. Anti-Saccaromyces
30 31	453	Cerevisiae antibodies (ASCA) are elevated in autoimmune thyroid disease ASCA in autoimmune thyroid
32	454	disease. Endocrine 2010;38(2):194-8.
33	455	45. Mankai A, Thabet Y, Manoubi W, Achour A, Sakly W, Ghedira I. Anti-Saccharomyces cerevisiae
34 35	456	antibodies are elevated in Graves' disease but not in Hashimoto's thyroiditis. Endocr Res 2013;38(2):98-
36	457	104.
37	458	46. Dai H, Li Z, Zhang Y, Lv P, Gao XM. Elevated levels of serum IgA against Saccharomyces cerevisiae
38 39	459	mannan in patients with rheumatoid arthritis. Cell Mol Immunol 2009;6(5):361-6.
40	460	47. Dai H, Li Z, Zhang Y, Lv P, Gao XM. Elevated levels of serum antibodies against Saccharomyces
41 42	461	cerevisiae mannan in patients with systemic lupus erythematosus. Lupus 2009;18(12):1087-90.
43	462	48. Mankai A, Sakly W, Thabet Y, Achour A, Manoubi W, Ghedira I. Anti-Saccharomyces cerevisiae
44	463	antibodies in patients with systemic lupus erythematosus. Rheumatol Int 2013;33(3):665-9.
45 46	464	49. Sakly W, Mankai A, Sakly N, Thabet Y, Achour A, Ghedira-Besbes L, et al. Anti-Saccharomyces
47	465	cerevisiae antibodies are frequent in type 1 diabetes. Endocr Pathol 2010;21(2):108-14.
48	466	50. Alunno A, Bistoni O, Carubbi F, Valentini V, Cafaro G, Bartoloni E, et al. Prevalence and significance
49 50	467	of anti-saccharomyces cerevisiae antibodies in primary Sjogren's syndrome. Clin Exp Rheumatol 2018;36
51	468	Suppl 112(3):73-9.
52		
53 54	469	
55		
56		23
57 58		
59		

1 2		
3		
4 5	470	Figure 1 Schematic illustration of the literature search and study-selection criteria for the
6 7	471	meta-analysis
8		
10	472	
12		
13 14	473	Figure 2 AUC of diagnostic accuracy of ASCA when comparing BD and HC (A), BD
15 16		
17 18	474	and CD (B), BD and UC (C), GIBD and HC (D), GIBD and CD (E), GIBD and UC (F),
19	475	and GIBD and iTB (G)
20 21		
22 23	476	
24 25		
26	477	Figure 3 A. Forest plot of serum levels of ASCA in GIBD/CD/UC/HC using FEM; B.
27		
29 30	478	Forest plot of serum levels of ASCA in GIBD/BD/HC/CD using REM
31 32		
33 34	479	
35		
36 37	480	Fig S1 Results of quality assessment of the included studies based on the QUADAS-1
38 39	481	tool
40	-01	
41 42	400	
43 44	482	
44 45		
46 47	483	Figure S2 Forest plot of A. pooled diagnostic OR of ASCA-IgG when comparing GIBD
48	101	and HC: P. pooled consistivity of ASCA. IgG when comparing GIPD and HC: C. pooled
49 50	404	and ITC, B. pooled sensitivity of ASCA-igO when comparing OIDD and ITC, C. pooled
51 52 53	485	diagnostic OR of ASCA-IgG when comparing GIBD and CD; D. pooled diagnostic OR
55 54	486	of ASCA-IgA when comparing GIBD and CD; E. pooled diagnostic OR of ASCA-
55 56		24
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	487	IgG+IgA when comparing GIBD and CD; F. pooled diagnostic OR of ASCA-IgG/IgA
5 6		
7	488	when comparing GIBD and CD
8 9		
10	489	
11 12		
13		
14 15	490	Figure S3 Results of sensitivity analysis showing sources of heterogeneity
16		
17	491	Figure S4 Forest plot of diagnostic OR of ASCA in 6 subgroups using the random effect
18 19		
20	492	model after sensitivity analysis.
21 22		
23	402	
24 25	493	
26		
27 20	494	
20 29		
30	405	Table 1 Characteristics of studies included in the meta-analysis of Anti-Saccharomyces
31 32	495	Table T Characteristics of studies included in the incla-analysis of Anti-Saccharomyces
33	496	Cerevisiae antibodies in Behcet's disease, its main differential diagnoses, and healthy
34 35	170	
36	497	controls
37 38		
39 40	498	/:no sample; IIF: indirect immunofluorescence assay; NR: not reported; SD: standard deviation; *: all without
40 41	499	gastrointestinal manifestations; #: lack of corresponding data; 1990 ISG criteria: the 1990 criteria of Behçet's Disease
42	500	International Study Group; 1987 Japan criteria: the 1987 criteria by the Behçet's Disease Research Committee of
45 44	501	Japan; BD: Behçet's disease; GIBD: gastrointestinal Behçet's disease; CD: Crohn's disease; UC: ulcerative colitis; iTB:
45	502	intestinal tuberculosis; HC: healthy control
46 -47-		
48 40		Sample size
49 70	ear and author	Count Type Type of article Design BD GIB CD UC iTB HC Methods Brands of experimental Cut-off Diagnostic criteria
-51 -2918	Shulan Zhang [13]	China IgG: IgA: IgG/IgA: IgG/IgA: IgG+IgA Original article case-control / 71 171 208 57 70 ELISA Inova Diagnostic 25 NR
52 <u>53</u>		
54		
55 56		25
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	P	a	a	IE
j		-	9	
	1			
	2			
	3		1.5	
	4	20	17	
	5			
20	8	1	G	e
	7 ~	11	0	р
Ì	8	,1	0	Б
20	9 9(6	C	h
	י 1	1		
	1	2	20)0
	1	3		
	1	4	5	c
	20 1	5	5	5
	1	6	20	0
	1	7	_	
	1	8		
20	1	<u>9</u>	в	y
	2	0		
	2	1		
	2	2		
	2	3		
	2	4		
	2	5		
	2	6		
	2	7		
	2	8		
	2	9		
	3	0		
	3	1		
	3	2		
	3	3		
	3	4		
	3	5		
	3	6		
	3	/		
	3	8		
	3	9		
1	4	0		
1	4	1		
1	4	2		
1	4	ک م		
1	4	4		
1	4	5		
1	4	6		
	4	1		

3 2017 Shulan Zhang [12] 4	China	IgG; IgA; IgG/IgA; IgG+IgA	Original article	Retrospective study	/	34	128	140	31	/	ELISA	Euroimmun, Luebeck	20	NR
5 3 1 George Vaiopoulos [23]	Greece	IgG; IgA	Original article	case-control	58	4#	/	/	/	56	ELISA	Inova Diagnostic	NR	1990 ISG criteria
7 2010 B. Kocazevbek [11]	Turkey	ΙσG/ΙσΑ	conference Abstract	case-control	/	13	63	102	10	165	IIF	Euroimmun Luebeck	NR	NR
3	Turkey	190/19/1	conterence rissuaet	cuse control	,	15	05	102	10	105		Euronninui, Eurocek	THC .	
Chang Hwan Choi [15]	Korea	IgG	Original article	case-control	30*	106	/	/	/	45	IIF	Euroimmun, Luebeck	1:1000	1987 Japan criteria
11													28 for InG:	
1 2 2005 I. Fresko [16] 1 3	Turkey	IgG; IgA; IgG/IgA; IgG+IgA	Original article	case-control	85	8	24	25	/	21	ELISA	Inova Diagnostic	25 for IgA	1990 ISG criteria
2005 Seung-Ho Rhee [22] 15	Korea	IgG	Original article	case-control	/	16	/	/	/	4	ELISA	Inova Diagnostic	25	1987 Japan criteria
16 ₂₀₀₂ I. Krause [18] 17	Israel	IgG; IgA; IgG/IgA; IgG+IgA	Original article	case-control	27*	/	/	/	/	10	ELISA	Inova Diagnostic	25	1990 ISG criteria
18 02 Byeong Gwan Kim [17] 19	Korea	IgG+IgA+IgM	Original article	case-control	/	36	85	77	14	20	ELISA	plate: Sigma Chemical antibody: Biosoft	ROC curve	1987 Japan criteria
20														
21 503														
22 000														
<i>·</i> · ·														

Table 2. Summary of subgroup meta-analysis of ASCA by Meta-DiSc 1.4

505 / indicates that the number of included studies was less than three and the ROC curve could not be drawn by Meta-DiSc

506 1.4. BD: Behçet's disease; GIBD: gastrointestinal Behçet's disease; CD: Crohn's disease; UC: ulcerative colitis; iTB:

intestinal tuberculosis; HC: healthy control

Subgroup	Antibody	Number of studies	Diagnostic OR	F2(%)	Pooled sensitivity	P(%)	Pooled specificity (95% CI)	I ² (%)	LR+(95% CI)	I²(%)	LR-(95% CI)	I²(%)
			(95% CI)		(95% CI)							
BD vs. HC	ASCA-IgG	3	0.91(0.15-5.64)	56.10	0.11(0.06-0.18)	91.40	0.91(0.82-0.96)	0	0.86(0.18-4.12)	50.10	0.98(0.81-1.18)	70.60
	ASCA-IgA	2	2.26(0.56-9.12)	0	0.16(0.10-0.25)	0	0.94(0.79-0.99)	38.40	2.03(0.58-7.17)	0	0.90 (0.79-1.03)	0
	ASCA-IgG+IgA	2	1.13(0.19-6.64)	0	0.03(0.01-0.08)	55.60	0.97(0.83-1.00)	0	0.66(0.09-4.91)	0.40	1.02(0.93-1.11)	0
	ASCA-IgG/IgA	2	2.85(0.57-14.29)	40.90	0.27(0.19-0.37)	87.20	0.88(0.71-0.96)	0	2.08(0.67-6.41)	17.60	0.76(0.47-1.22)	76.80
GIBD vs. HC	ASCA-IgG	3	5.46(2.58-11.55)	0	0.34(0.27-0.41)	83.70	0.93(0.87-0.96)	0	4.17(2.13-8.17)	0	0.75(0.58-0.97)	76.10
	ASCA-IgA	2	2.62(1.24-5.51)	0	0.27(0.17-0.38)	0	0.88(0.79-0.94)	0	2.19(1.13-4.23)	0	0.83(0.71-0.98)	0
	ASCA-IgG+IgA	2	5.27(1.43-19.33)	0	0.14(0.07-0.24)	0	0.97(0.91-0.99)	0	4.61(1.30-16.31)	0	0.88(0.80-0.98)	0
	ASCA-IgG/IgA	3	2.82(1.50-5.33)	0	0.30(0.21-0.41)	0	0.92(0.88-0.95)	78.30	2.25(1.31-3.86)	0	0.81(0.70-0.94)	0
GIBD vs. CD	ASCA-IgG	3	0.48(0.28-0.83)	0	0.18(0.11-0.26)	0	0.71(0.66-0.76)	88.60	0.58(0.38-0.89)	0	1.18(1.06-1.32)	35.40
	ASCA-IgA	3	0.91(0.56-1.46)	0	0.28(0.20-0.38)	0	0.69(0.64-0.74)	76.60	0.93(0.67-1.30)	0	1.03(0.90-1.18)	0
	ASCA-IgG+IgA	3	0.58(0.30-1.11)	0	0.12(0.06-0.19)	19.10	0.83(0.78-0.87)	85.20	0.63(0.36-1.11)	0	1.08(0.99-1.170	0
	ASCA-IgG/IgA	4	0.57(0.28-1.15)	50.20	0.33(0.24-0.41)	0	0.56(0.51-0.61)	72.30	0.74(0.56-0.97)	39.90	1.31(0.97-1.75)	66.40
GIBD vs. UC	ASCA-IgG	3	1.77(1.07-2.92)	0	0.18(0.11-0.26)	0	0.89(0.86-0.92)	0	1.63(0.99-2.68)	0	0.92(0.84-1.01)	0
	ASCA-IgA	3	2.12(1.38-3.26)	0	0.28(0.20-0.38)	0	0.84(0.80-0.88)	0	1.80(1.24-2.62)	0	0.85(0.75-0.96)	0
	ASCA-IgG+IgA	3	2.15(1.16-4.00)	0	0.12(0.06-0.19)	19.10	0.94(0.92-0.96)	0	2.02(1.04-3.95)	0	0.94(0.88-1.01)	20.10
	ASCA-IgG/IgA	4	2.02(1.38-2.98)	0	0.33(0.24-0.41)	0	0.82(0.78-0.85)	44.90	1.68(1.23-2.31)	0	0.84(0.74-0.95)	0
GIBD vs. iTB	ASCA-IgG	2	1.08(0.53-2.16)	0	0.17(0.10-0.26)	7.50	0.84(0.75-0.91)	32.70	1.06(0.56-2.00)	0	0.99(0.87-1.12)	0
					26							

1 2								
3		ASCAJgA	2 14	51(0.75-3.04)	0 0 21(0 14-0 30)) 63.90	0 85(0 76-0 92)	4 30 1 39(0 75-2 59) 0 0 93(0 82-1 06) 0
4 5		ASCA-IgG+IgA	2 1.0)1(0.43-2.39)	0 0.10(0.05-0.18)) 19.30	0.90(0.81-0.95)	0 1.01(0.44-2.34) 0 1.00(0.91-1.10) 0
5 6	_	ASCA-IgG/IgA	3 1.0	04(0.62-1.74)	0 0.32(0.24-0.41)) 19.10	0.68(0.58-0.77)	10.40 1.03(0.70-1.52) 0 0.99(0.82-1.8) 0
7	-							
8	508							
9 10								
11	509	Table 3	Summa	ry of the d	liagnostic p	erforma	nce of A	SCA in AID.
12 13				-				
14	510	SEN: set	nsitivity; Sl	PE: specificit	y; LR+: positiv	e likelihoo	d; LR-: neg	ative likelihood
15				1 .				
forence 18	Au	toimmune disease	Туре	SEN (%)	SPE (%)	LR+	LR-	Supplementary information
19 20 [31]		Scleroderma	IgG	43.24	98.25	24.65	0.58	African descendants showed higher positivity rates for ASCA- _IgG. ASCA-IgA was less frequently detected in patients with
21 22			IgA	16.22	94.74	3.08	0.88	severe disease
23			IgG	0-11.63	89.74–98.72	1.13-3.00	0.97–0.98	ASCA IgA levels were significantly increased in patients with
24								HLA-B27-associated SpA, particularly in AS and uSpA
[3 4 , 5 35, 36, 37] 26	An	kylosing spondylitis	IgA	1.28-23.26	91.03-100.00	2.59-3.71	0.84-0.99	
27			8					ASCA positivity may be associated with peripheral involvement
28								and uvents.
30 ^[38]	Antip	hospholipid syndrome	IgG/IgA	20.00	95.00		/	
32 [39] 33	Juven	ile Idiopathic Arthritis	IgA	0-50.00	94.74	9.50	0.53	
34			IgG	16.42-27.53	100.00	1	0.84	
35 [26, 40, 41] 50	Au	toimmune hepatitis	IgA	11.94	94.74	2.27	0.93	
37 38			IgG/IgA	18.52	84.00	1.16	0.97	
39			IgG	10.57-18.95	97.50-100.00	7.58	0.83-0.89	
40 [26, 41, 42]	Prin	nary biliary cirrhosis	IgA	11.58-18.70	94.74–98.75	3.55-9.26	0.86-0.90	
42			IgG/IgA	20.26-24.21	84.00-96.25	1.27-6.46	0.79-0.95	
43			IgG	28.00	100.00	/	0.72	
44	Drimor	u colorocing cholongitic		22.00	04.74	6.08	0.72	
46 ^[20, 41]	Primar	y scierosing cholangitis	IgA	32.00	94.74	0.08	0.72	
47 48			IgG/IgA	30.51	84.00	1.91	0.83	
49			IgG	13.75-69.57	97.96–100	6.74	0.30-0.88	Patients with more complicated disease course showed a trend for greater seroreactivity towards ASCA.
50 [1 4 ₁ 25, 26, 34,		Crohn's disease						
52 ^{43]}		cronn's discuse	IgA	19.30-71.43	94.74-100.00	9.91–29.40	0.50-0.71	
53 54								ASCA was detected in 25% of first-degree relatives of patien ts with Crohn's disease
55								
56					27			
57 58								
59								
60		For peer	review o	nly - http://k	omjopen.bmj	i.com/site	/about/gu	iidelines.xhtml

2											
3 [43]		Cryoglobulinemia	IgG	7.10	99.50	/	/				
5		Crows' diason	IgG	5.70-12.50	94.17-99.50	2.15-3.76	0.91-0.93	ASCA was	elevated in	Graves' disease but not in	n Hashimoto'
6 7		Graves disease	IgA	8.40-16.67	94.17–96.88	2.69–2.86	0.88-0.95	_		thyroiditis	
8			IgG	10.13-20.00	89.74-91.45	0.99–2.34	0.87-1.00	ASCA Ica	lavala stran	aly correlated with C rea	ativa protain
9		Rheumatoid arthritis	IgA	17.72-40.00	91.03-94.74	1.97-7.60	0.63-0.90	- e	vels and er	ythrocyte sedimentation r	ate
10			IgM	13.33	94.74	2 53	0.01	-			
12			Igivi	15.55	74.74	2.33	0.91				
13 14			IgG	4.50–57.50	91.45–99.50	6.72–9.38	0.46-0.73	ASCA IgG ively lower,	levels in SI indicating	LE patients during remiss a possible correlation wit	sion were rel th disease ac
[43, 47, 48] 15	Sys	temic lupus erythematosus	IgA	7.50-12.07	94.74–99.38	1.43–19.31	0.88-0.98			vity	
16 17			IgG/IgA	31.90	96.25	8.51	0.71	-			
17 18			IgG	20.98	98.09	10.98	0.81				
19 _[49]		Type 1 diabetes	IgA	9.82	98.73	7.71	0.91				
20 ^{°°} 21			IgG/IgA	24.55	97.45	9.64	0.77				
22			igorigit	21.00	57.15	2.01	0.77	1001 ···	•	· · · · · · · · · · · · · · · · · · ·	
23 [50]	Pri	imary Sjögren's syndrome	IgG/IgA	4.81	100.00	/	0.95	ASCA positiv	vity was as	sociated with pSS specific prological features	c clinical an
24 25 [43]		Vasculitides	IgG	6.50	99.50	/	/				
26											
27 28	511										
20	511										
30											
31	512	Table S1 Demog	ranhic ch	aracterist	ics of nati	ents and h	ealthy c	ontrols ir	cluded	in the	
32	512	Table ST Demog.	rapine en	iaracterist	ies of pati	cints and in			leiuucu		
33											
34 35	513				meta-ana	lysis					
36											
37	514	BD: Behçet's disease;	GIBD: gast	trointestinal	Behçet's dise	ase; CD: Croł	nn's disease	e; UC: ulcer	ative coliti	s; iTB:	
38	515	intestinal tuberculosis	: HC: health	v control: /:	No such grou	in included: F	Blank: no si	uch informa	tion in the	article	
39 40			,	j , - , - , - , - , - , - , - , - ,	0	T					
41			B	D	GIBD	CD		UC	iTB	НС	
42		Female, n (%)	/	1						1	
43		2017 Shulan Zhang	,			37 (28.9)	69	9 (49.3)		,	
44		2011 George Vaiopoulos	28 (4	48.3)	/	/		/	/		
45		2010 B. Kocazeybek	16 (8	86.6)	5(38.5) 47(44.3)	39 (61.9)	51	(50.0)	3 (30.0)	99 (60.0) 24 (53.3)	
46		2000 Chang Hwan Chor 2005 I. Fresko	20 (2	23.5)	2(25.0)	10 (41.7)	10) (40.0)	/	9 (42.9)	
47		2005 Seung-Ho Rhee	/	1	28(63.6)	/		/	/		
48		2002 I. Krause	20 (7	74.1)							
49 50		2002 Byeong Gwan Kim Median age at study (may	/	/	20	28		36	7		
50		min)	, 								
52		2018 Shulan Zhang	/	1				(5(10)		,	
53		2017 Shulan Zhang 2011 George Visionoulor	20 5 (1	17.70)	/	33 (69,13)	42	(/6,13)	/	/	
54		2011 George Valopoulos 2010 B. Kocazevbek	/	32.1	1 (23.22.41)	37.56 (24.91 50 21) 40.72 (27.28,54.16)	, SD 9.96	35.07 (24.58.45.56)	
55		2006 Chang Hwan Choi	38 (1	8,65)	37	/	, ,= (·	/	/	39 (16,69)	
56					28						
57					20						
58											
59											
60		For peer	review on	nly - http://k	omjopen.br	nj.com/site/	about/gu	idelines.xh	ntml		

	2005 I. Fresko	34.3 (32.0,36.7)	26.9 (24.1,29.6)	38.9 (34.6,43.2)	35.6 (33.0,38.3)	/	33.7 (30.4,37.0)
	2005 Seung-Ho Rhee	/	37.6	/	/	/	
	2002 I. Krause 2002 Byeong Gwan Kim	41.6 (36.9,46.2)	43.2	40.9	30.6	33.6	
516							
517							
518							
			29	1			
	For peer r	eview only - htt	p://bmjopen.b	omj.com/site/ab	out/guidelines.xl	html	
		-		-	-		

Figure 1 Schematic illustration of the literature search and study-selection criteria for the meta-analysis

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
5U E 1	
51 50	
52 52	
53	
55	
56	
57	

60

tudy	OR (95% CI)	% Weight
D vs HC ASCA-lgG/lgA		
002 I.Krause	 8.36 (0.93, 75.39) 	36.49
005 I.Fresko	1.53 (0.40, 5.86)	63.51
ubtotal (I-squared = 40.9%, p = 0.193)	2.85 (0.57, 14.29)	100.00
IBD vs CD ASCA-IgG		
018 Shulan Zhang	0.44 (0.23, 0.86)	67.87
JUS I.Fresko	0.39 (0.07, 2.36)	9.31
J17 Shulan Zhang	0.68 (0.22, 2.13)	22.83
ubtotal (I-squared = 0.0%, p = 0.796)	0.48 (0.28, 0.83)	100.00
IBD vs CD ASCA-IgG/IgA	0.40 (0.00, 0.70)	
J10 B. Kocazeybe	0.16 (0.03, 0.76)	14.60
No Shulah Zhang	0.36 (0.03, 1.05)	39.20
100 LFTesku	0.30 (0.07, 1.00)	13.75
ubtotal (Leguared = 50.2% p = 0.111)	0.57 (0.28, 1.15)	32.39
BD vs HC ASCA-IgA	5 70 (0 74 43 94)	15.68
018 Shulan Zhang	2.30 (0.95, 5.55)	84.32
ubtotal (I-squared = 0.0%, p = 0.424)	2.65 (1.18, 5.96)	100.0
IBD vs HC ASCA-lgG+lgA		
018 Shulan Zhang 🔶 🔶	4.94 (1.03, 23.73)	72.78
005 I.Fresko	 6.67 (0.51, 86.93) 	27.22
ubtotal (I-squared = 0.0%, p = 0.844)	5.36 (1.40, 20.45)	100.00
IBD vs UC ASCA-IgG		
11/ Shulan Zhang	1.20 (0.37, 3.91)	25.19
JUS I.Fresko		9.47
https://www.common.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/commons.com/com/com/com/com/com/com/com/com/com/	2.08 (1.00, 4.32)	65.34
lototal (Esquared = 0.0%, p = 0.741)	1.76 (0.96, 3.22)	100.00
IBD vs UC ASCA-IgG+IgA	1.02 (0.21 5.00)	22.20
NOS I Erecko	8 00 (0.62, 403,67)	22.39
118 Shulan Zhang	0.00 (0.02, 103.07)	62.04
ubtotal (I-squared = 0.0%, p = 0.393)	2.19 (1.03, 4.66)	100.00
OTE: Weights are from random effects analysis		
00965 1	104	

254x265mm (72 x 72 DPI)
to peet terier only

to beet terien only

to beet terren on on t

Reporting checklist for meta-analysis of observational studies.

Based on the MOOSE guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the MOOSEreporting guidelines, and cite them as:

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283(15):2008-2012.

			Page
		Reporting Item	Number
Title		7	
	<u>#1</u>	Identify the study as a meta-analysis of observational research	1
Abstract			
	<u>#2</u>	Provide a structured summary including, as applicable: background;	1-2
		objectives; data sources; study eligibility criteria, participants, and	
		interventions; study appraisal and synthesis methods; results; limitations;	
		conclusions and implications of key findings; systematic review registration	
		number (From PRISMA checklist)	
Background			
	<u>#3a</u>	Problem definition	3
	<u>#3b</u>	Hypothesis statement	4-5
	<u>#3c</u>	Description of study outcomes	n/a
		- Free	

Page 39 of 39

1 2		<u>#3d</u>	Type of exposure or intervention used	5
3 4		<u>#3e</u>	Type of study designs used	5
5 6 7		<u>#3f</u>	Study population	5
, 8 9	Methods			
10 11 12	Search strategy	<u>#4a</u>	Qualifications of searchers (eg, librarians and investigators)	6-7
14 15 16 17	Search strategy	<u>#4b</u>	Search strategy, including time period included in the synthesis and keywords	6
18 19 20	Search strategy	<u>#4c</u>	Effort to include all available studies, including contact with authors	7
22 23 24	Search strategy	<u>#4d</u>	Databases and registries searched	6
25 26 27 28	Search strategy	<u>#4e</u>	Search software used, name and version, including special features used (eg, explosion)	n/a
29 30 31	Search strategy	<u>#4f</u>	Use of hand searching (eg, reference lists of obtained articles)	n/a
32 33 34 35	Search strategy	<u>#4g</u>	List of citations located and those excluded, including justification	6
36 37 38 39	Search strategy	<u>#4h</u>	Method of addressing articles published in languages other than English	6
40 41 42 43	Search strategy	<u>#4i</u>	Method of handling abstracts and unpublished studies	6
44 45 46 47	Search strategy	<u>#4j</u>	Description of any contact with authors	7
48 49 50 51		<u>#5a</u>	Description of relevance or appropriateness of studies gathered for assessing the hypothesis to be tested	7
52 53 54 55		<u>#5b</u>	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	n/a
56 57 58		<u>#5c</u>	Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	n/a
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

	<u>#5d</u>	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	8
	<u>#5e</u>	Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results	7
	<u>#5f</u>	Assessment of heterogeneity	8
	<u>#5g</u>	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta- analysis) in sufficient detail to be replicated	8
	<u>#5h</u>	Provision of appropriate tables and graphics	n/a
Results			
	<u>#6a</u>	Graphic summarizing individual study estimates and overall estimate	26
	<u>#6b</u>	Table giving descriptive information for each study included	25
	<u>#6c</u>	Results of sensitivity testing (eg, subgroup analysis)	27
	<u>#6d</u>	Indication of statistical uncertainty of findings	n/a
Discussion			
	<u>#7a</u>	Quantitative assessment of bias (eg. publication bias)	16
	<u>#7b</u>	Justification for exclusion (eg, exclusion of non-English-language citations)	n/a
	<u>#7c</u>	Assessment of quality of included studies	16
Conclusion			
	<u>#8a</u>	Consideration of alternative explanations for observed results	n/a
	<u>#8b</u>	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	19
	<u>#8c</u>	Guidelines for future research	19
	<u>#8d</u>	Disclosure of funding source	19
Reproduced w	with per	mission from JAMA. 2000. 283(15):2008-2012. Copyright © 2000 American Medical	
Association. A	All righ	ts reserved. This checklist was completed on 26. August 2019 using	
https://www.g	goodrep	<u>oorts.org/</u> , a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Meta-analysis of anti- Saccharomyces cerevisiae antibodies as diagnostic markers of Behçet's disease with gastrointestinal involvement

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033880.R1
Article Type:	Original research
Date Submitted by the Author:	24-Feb-2020
Complete List of Authors:	Cheng, Linlin; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Li, Liubing; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Liu, Chenxi; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Yan, Songxin; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Li, Yongzhe; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Diagnostics, Epidemiology, Gastroenterology and hepatology, Immunology (including allergy)
Keywords:	Behçet's disease, Anti-saccharomyces cerevisiae antibodies, autoimmune diseases, meta-analysis, autoantibodies

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Meta-analysis of anti- Saccharomyces cerevisiae antibodies as diagnostic
5		
6		
7	2	markers of Bençet's disease with gastrointestinal involvement
8		
9		
10	3	
11		
12		
13		Linlin Chang MD & Linking Li MD & Changi Lin MD & Sangyin Van MS & Vangeha
14	4	Liniin Cheng, NID, " Liuding Li, NID, " Chenxi Liu, NID, " Songxin Yan, NIS, " Yongzne
15		
10	5	Li, PhD ^{a*} .
17	-	
10		
20	_	
20	6	*Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking
21		
22	7	Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
23	1	omon vieurear conege and chinese rieudemy of vieurear sciences, beijing, china
25		
26		
27	8	For correspondence: Yongzhe Li*
28		
29		
30	9	Email address: vongzhelipumch@126.com
31	-	JJ
32		
33	4.0	
34	10	
35		
36		
37	11	
38		
39		
40	10	
41	12	
42		
43		
44 45	13	
45 46		
40 47		
47 78	14	
40 40		
50		
51	45	
52	15	
53		
54		
55	16	
56		
57		
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 47

1

BMJ Open

2	
2	
3	
Λ	
4	
5	
5	
6	
0	
7	
'	
8	
9	
-	
10	
TT.	
17	
12	
12	
13	
11	
14	
15	
15	
16	
17	
18	
10	
19	
20	
20	
71	
∠ I	
22	
~~	
23	
24	
~-	
25	
20	
26	
77	
27	
າຊ	
20	
29	
27	
30	
31	
32	
-	
33	
24	
34	
25	
55	
36	
50	
37	
38	
39	
40	
40	
/1	
-+ I	
47	
74	
43	
44	
45	
45	
16	
40	
⊿7	
47	
48	
.0	
49	
50	
Г 1	
51	
57	
۲۷	
52	
55	
54	
<i>э</i> -т	
55	
56	
- -	
57	
E 0	
20	
•••	
50	
59	

Meta-analysis of anti- *Saccharomyces cerevisiae* antibodies as diagnostic markers of Behçet's disease with gastrointestinal involvement

19

20 Abstract

Objective: Due to common exposure to yeast in the alcoholic and baking industry, positive rate of anti-*Saccharomyces cerevisiae* antibodies (ASCA) is reportedly high in patients with Behçet's disease (BD) who have gastrointestinal symptoms (gastrointestinal BD [GIBD]). We performed a meta-analysis to assess the diagnostic value of ASCA in differentiating patients with BD from those with other chronic inflammatory bowel diseases.

27 Methods: The meta-analysis is compliant with the PRISMA and MOOSE checklist.

Relevant studies that investigated ASCA levels in BD patients were retrieved from PubMed, EMBASE, Web of Science, SCOPUS, and the Cochrane Library on July 12, 2019; the search was rerun on February 12, 2020. Stata/SE 12.0 and Meta-DiSc 1.4 were used to perform the meta-analysis and sensitivity analysis, disaggregated by isotypes of ASCA.

Results: Nine studies were included in the meta-analysis. The results revealed a strong
 association between ASCA and GIBD, especially ASCA-IgG [odds ratio (OR)=5.50 (95%)

Page 4 of 47

2	
3	
4	
5	
6	
7	
, 8	
٥ ٥	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
22	
56	
57	
58	
59	
60	

35	CI 2.58–11.55, p=0.000) and ASCA-IgG+IgA [OR=5.36 (95% CI 1.40–20.45), p=0.014].
36	The positivity rate of ASCA in GIBD was significantly higher than that in ulcerative colitis:
37	IgA [OR=2.13 (95% CI 1.30-3.50), p=0.003]; IgG+IgA [OR=2.19 (95% CI 1.03-4.66),
38	p=0.042]; IgG/IgA [OR=2.03 (95% CI 1.30-3.17), p=0.002]. However, the frequency of
39	ASCA-IgG was significantly higher in patients with Crohn's disease than GIBD [OR=5.36
40	(95% CI 1.40–20.45), p=0.009]. There was no significant difference in ASCA positivity
41	between BD without gastrointestinal involvement and healthy controls and between GIBD
42	and intestinal tuberculosis (p>0.05).
43	Conclusion: ASCA may play a role in the pathogenesis of gastrointestinal involvement.
44	Negative result of IgG favors the diagnosis of GIBD/BD when differentiated from Crohn's
45	disease. ASCA-IgA showed moderate diagnostic performance in distinguishing GIBD and
46	ulcerative colitis and the diagnostic performance was better in combination with IgG.
47	However, ASCA may not be a useful serologic marker distinguishing GIBD and intestinal
48	tuberculosis.
49	Key words: Behçet's disease; Anti-Saccharomyces cerevisiae antibodies; autoimmune
50	diseases; meta-analysis; autoantibodies
51	
52	

53		
54	Str	rengths and limitations of this study
55	•	In addition to the healthy controls, we included patients with other gastrointestinal
56		diseases that are considered in the differential diagnosis of gastrointestinal Behcet's
57		disease in clinical settings (such as ulcerative colitis, Crohn's disease, and intestinal
58		tuberculosis), in order to improve the clinical awareness of ASCA.
59	•	Inclusion of both categorical data (positivity rate) and continuous data (serum
60		concentration) pertaining to anti-Saccharomyces cerevisiae antibodies (ASCA)
61		increases the reliability of the results of meta-analysis.
62	•	We separately performed meta-analysis of IgG, IgA, and IgG+IgA, which provides
63		insights into their ability to differentiate BD from other gastrointestinal diseases.
64	•	Comprehensive summary of evidence linking ASCA and autoimmune diseases
65		provides preliminary insights into the pathogenicity of Saccharomyces cerevisiae.
66	•	Analysis of too many subgroups contributed to potential heterogeneity due to the small
67		number of studies included in each subgroup.
68		
69		
		4
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

71 Introduction

Behcet's disease (BD) is a chronic systemic vascular autoimmune/inflammatory disease with a high propensity for recurrence; the pathogenetic mechanisms of this disease are not well elucidated [1]. Virtually no specific histological or laboratory features of BD have been identified. Therefore, the diagnosis of BD is typically challenging as it is mainly based on clinical features [2, 3]. The diagnosis is frequently delayed until the development of clinical manifestations that qualify the diagnostic criteria. The estimated duration between the onset of symptoms and the fulfilment of diagnostic criteria is approximately 4 years [4].

Moreover, patients with prominent involvement of a particular organ system are easily misdiagnosed. For example, patients who have gastrointestinal symptoms as the main manifestation are liable to be misdiagnosed as having Crohn's disease (CD), ulcerative colitis (UC), or intestinal tuberculosis (iTB). These features make formulating disease criteria difficult, causing deleterious effects on the patients.

Several recent studies (but not all) have reported the diagnostic value of anti-*Saccharomyces cerevisiae* antibody (ASCA) in BD. *Saccharomyces cerevisiae*, also known as the baker's or brewer's yeast, has long been utilized to ferment the sugars in

BMJ Open

cereals to produce alcoholic beverages; it is also used in the baking industry to raise dough. As a consequence, we are now commonly exposed to yeast [5]. IgG and IgA antibodies against the phosphopeptidomannan of the S. cerevisiae cell wall have been discovered as autoantibodies in the sera of patients with BD, especially those with gastrointestinal involvement. This suggests a role of environmental stimuli in the pathogenesis of BD. However, patients with inflammatory bowel disease such as Crohn's disease (CD) also have a high prevalence rate of ASCA due to their similarities [6, 7, 8, 9, 10, 11]. In this context, identification of ASCA as a diagnostic marker for BD is a key imperative. The objectives of this study were to summarize the findings pertaining to the relevance of ASCA in BD and other gastrointestinal diseases and to perform a meta-analysis to assess its diagnostic accuracy for BD. Methods Study design The Preferred Reporting Items for Systematic Reviews and Meta-Analysis Diagnostic Test Accuracy (PRISMA-DTA) guidelines [12] (Table S1) and Meta-analysis of Observational

Studies in Epidemiology (MOOSE) [13](Table S2) were followed throughout the literature

search process to structure and design the framework for the review [14]. Besides, a

predefined protocol was registered with PROSPERO (Registration No.CRD42020115245).

109 Literature search

A comprehensive literature search was performed to identify studies pertaining to ASCA as biomarkers for BD in 5 biomedical databases, i.e., PubMed, EMBASE, Web of Science, SCOPUS, and the Cochrane Library on July 12, 2019. The search terms for Behçet's disease were: Behcet, triple symptom complex, triple symptom complices, Adamantiades Behcet and old silk route disease; the search terms for Saccharomyces cerevisiae were: S. cerevisiae, Saccaromyces cerevisiae. Saccharomyces capensis, *Saccharomyces* diastaticus, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum, brewer yeast or baker yeast, mannan, manna, polymannan, glucomannan, yeast mannan, dicoman, humamil, ASCA. Combination of keywords using "AND" was used to retrieve studies in the range of "all fields" or "all text". The search was rerun on February 12, 2020 to ensure inclusion of recent studies. No restrictions were imposed with respect to time of publication, region, or ethnicity of the study population. In addition, the reference list of obtained articles was also examined to identify possible relevant studies.

Eligibility and exclusion criteria

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
30	
30	
20	
22	
37	
25	
36	
30 27	
20	
20	
39 40	
40	
41 40	
4Z 42	
45	
44 45	
45 46	
40	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

The inclusion criteria were: (1) studies that evaluated the diagnostic accuracy of ASCA in 125 126 BD; (2) availability of adequate data pertaining to the prevalence rate or serum levels of ASCA in patients with BD; (3) studies with healthy population and/or disease controls; (4) 127 meeting abstracts or letters to the editor were also included. 128 The exclusion criteria were: (1) studies with incomplete data; (2) review articles; (3) non-129 English articles; (4) in case of studies with overlapping study population, studies with 130 smaller sample size were excluded. Two investigators independently performed the 131 literature search, screened the titles and abstracts, followed by full-text review of eligible 132 2.02 studies. 133 134 Data extraction and quality assessment 135 Two independent investigators reviewed the full-text articles, extracted the data, and 136 assessed the study quality using the modified version (nine-star scoring system) of the 137 Newcastle-Ottawa Scale (NOS) for case-control studies and the Quality Assessment of 138 Diagnostic Accuracy Studies (QUADAS-2) and; For NOS, studies with higher NOS scores 139 (\Rightarrow) were considered as higher quality (low risk of bias). For QUADAS-2, the included 140 items were evaluated as yes, no, or uncertain. Inter-researcher disagreements were resolved 141

Page 10 of 47

by consensus, or by a third investigator. Data pertaining to the following variables were

BMJ Open

extracted: publication year, article type, first author's name, country, isotypes of ASCA detected, age and sex, research design, sample size, experimental method, trade names of experimental materials, cut-off values, diagnostic criteria, and serum titers and/or prevalence rate of ASCA in BD, gastrointestinal BD (GIBD), healthy controls (HC), patients with Crohn's disease (CD), ulcerative colitis (UC), and intestinal tuberculosis (iTB). The data were either obtained directly from the article, calculated, or requested from the author via e-mail.

Statistical analysis

Pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated to evaluate the association between ASCA and BD (without gastrointestinal involvement)/GIBD/CD/UC/iTB using Stata/SE 12.0. Meta-DiSc 1.4 was used to calculate the sensitivity, specificity, AUC values, and the area under the summary receiver operating characteristic (SROC) curve to assess the overall diagnostic performance of ASCA. Heterogeneity among the included studies was evaluated using the Cochran's Q-statistic. P values > 0.10 were considered indicative of lack of significant heterogeneity. We chose the random effects models (REM) since REM tends to generalize findings beyond the included studies by assuming that the selected studies are random samples from a larger

Page 11 of 47

BMJ Open

population [15]. Subgroup analysis was performed disaggregated by the isotypes of ASCA and different disease controls. The isotypes of ASCA were classified and defined as follows: IgG, IgA, IgG/IgA (positive results of either IgG or IgA), and IgG+IgA (positive results of both IgG and IgA). In order to increase the robustness of the meta-analysis, we also extracted the data pertaining to serum levels of ASCA from five studies and performed meta-analysis using the Continuous data module of Stata/SE 12.0. The REM was used for the analysis and weighted mean difference (WMD) was used as the effect measure if the same unit was used in these studies and there were minor differences with respect to the serum levels of ASCA. Sensitivity analysis was performed using Stata/SE 12.0 to evaluate stability of the results after sequential exclusion of one study at a time. Patient and public involvement The present study was a meta-analysis and systematic review based on published data. Patients and public were not involved in the study design, conduct, data analysis, and result dissemination. Relationship between ASCA and autoimmune disease

We searched the PubMed for studies pertaining to the relationship between ASCA and autoimmune diseases. The two search terms used were autoimmune disease and *Saccharomyces cerevisiae*. We performed an interval statistic of four indicators of ASCA– sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) based on the included studies sorted by diseases.

Results

186 Literature search and characteristics of studies

A total of 625 documents were retrieved on database and manual search. Fifty-one duplicate publications were excluded using the document management software. A total of 127 records were retained after screening of titles and/or abstracts; the excluded records included review articles, animal model studies, therapeutic or drug research, genetic research, book chapters, duplicate publications not recognized by software, and other irrelevant records. After full-text review for eligibility, 22 records were selected. Finally, we included 9 available studies with adequate data in the meta-analysis (Figure 1). Two studies were included after obtaining the relevant data by contacting the respective authors [9, 10]. In addition, we also verified 2 studies [16, 17] with overlapping study population; of these, only 1 study was included in the meta-analysis. Three studies [6, 8, 18] were

BMJ Open

presented as meeting abstracts without adequate data to allow the construction of a 2×2 table. One article^[7] was a letter to the editor and only reported the prevalence rate of ASCA antibody in patients with BD, without information about the control group. One study [19] had employed a unique calculation method and could not be included in the meta-analysis. Among the included studies, there were 326 cases of BD, 294 cases of GIBD, 520 cases of CD, 598 cases of UC, 112 cases of iTB, and 428 HCs (Table 1 and Table S3).

Quality assessment

There were 8 case-control studies and 1 retrospective study [9]. The results of quality assessment by NOS including the selection of the study groups, the comparability of the groups and the ascertainment of the exposure of interest for case-control studies are shown in Table 2, and by QUADAS-2 including the risk of bias and applicability concerns pertaining to each domain are shown in Figure S1. The results indicated that the included studies were of high quality in general. Overall, none of the 9 included studies showed any major methodological bias or flaws, which indicates robustness of our meta-analysis.

Meta-analysis

1	
2	
2	
4	
5	
ر ۲	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
DQ EV	
59	
60	

215	Association between ASCA and BD (without gastrointestinal involvement), GIBD and
216	other intestinal diseases

217	Data pertaining to correlation between ASCA and BD (without gastrointestinal
218	involvement)/GIBD/CD/UC/iTB are listed in Table 3. No substantial heterogeneity
219	(p>0.1 for all) was observed by using REM to calculate the OR. The results revealed a
220	strong association between all detection types of ASCA and GIBD, especially for ASCA-
221	IgG [OR=5.50 (95% CI 2.58–11.55, p=0.000) and ASCA-IgG+IgA [OR=5.36 (95% CI
222	1.40–20.45), p=0.014]. When comparing GIBD and UC, of the positivity rate for ASCA
223	in GIBD was significantly higher than that for UC: IgA [OR=2.13 (95% CI 1.30–3.50),
224	p=0.003], IgG+IgA [OR=2.19 (95% CI 1.03–4.66), p=0.042], and IgG/IgA [OR=2.03
225	(95% CI 1.30–3.17), p=0.002]. Conversely, the frequency of only ASCA-IgG in patients
226	with CD was significantly higher than that in the GIBD [OR=5.36 (95% CI 1.40–20.45),
227	p=0.009]. Further, on stratified analysis according to detection method, ASCA-IgG was
228	associated with GIBD using both the ELISA method (OR = $3.83, 95\%$ CI $1.37-10.70, p$
229	= 0.010) and the immunoprecipitation method (IIF) (OR = 8.17, 95% CI 2.73–24.43, p =
230	0.000) (Figure 2). However, no significant difference was observed with respect to
231	ASCA positivity between BD without gastrointestinal involvement and HC and between
232	GIBD and iTB (p>0.05).
233	Diagnostic ability of ASCA for GIBD

Page 15 of 47

1

2	
3	
1	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
∠ I ⊃⊃	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
25	
20	
30	
37	
38	
39	
40	
41	
42	
42 42	
45	
44	
45	
46	
47	
48	
<u>40</u>	
79 50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

234	The overall sensitivity for ASCA-IgG in patients with GIBD detected by IIF was 0.44,
235	which is much higher than that of ELISA [0.20 (95%CI 0.12–0.31)] (Table 4). Combined
236	detection of IgG and IgA by ELISA increased the sensitivity to 0.33 (95% CI 0.23–0.44).
237	However, we observed a low level of sensitivity of ASCA-IgG/IgA by IIF, which may be
238	attributable to the inclusion of only one study with few GIBD patients (n=13).
239	Difference in serum levels of ASCA in GIBD and other intestinal diseases
240	Serum levels of ASCA-IgA observed in GIBD were significantly greater than that in HC
241	[WMD=7.02 (95% CI 2.23–11.81), p=0.004) and UC [WMD=5.28 (95% CI 0.39–10.17),
242	p=0.034] in contrast to ASCA-IgG (p>0.05) (Figure 3). On the contrary, serum levels of
243	ASCA-IgG in CD were significantly greater than that in GIBD [WMD=-11.04 (95% CI -
244	16.745.34), p=0.000] (Figure 3). However, we found no significant difference in serum
245	levels of ASCA between BD without gastrointestinal symptoms and HC (p>0.05) (Figure
246	3).
247	
248	Heterogeneity and sensitivity analysis
249	We performed sensitivity analysis to assess the stability of the results. The results showed
250	that the studies by Krause et al (2002), Zhang et al (2018), Kocazeybe et al (2010), and
251	Fresko et al (2005) were the key contributors to the heterogeneity (Figure S2). Thus, the

results of related subgroup analysis are considered to be less stable.

Summary of the relationship of ASCA with autoimmune disease

Sixteen studies reporting the relevance of ASCA and autoimmune diseases were included in the summary. The sensitivity, specificity, LR+, and LR- of ASCA for different autoimmune diseases are summarized in Table 5. Although the diagnostic results of ASCA reported by different studies vary, the summary revealed an overall association between ASCA and autoimmune diseases especially in patients with scleroderma, juvenile idiopathic arthritis, Crohn's disease, and systemic lupus erythematosus with high SEN (>40%), high SPE (>95), high LR+ (>5) (Table 5).

Discussion

Serological markers in BD. The diagnosis of BD is typically challenging prior to the appearance of clinical symptoms necessary to qualify the diagnostic criteria. Currently, there are no specific laboratory biomarkers of BD; however, some specific autoantibodies in the context of BD have been reported. Therefore, identification of non-invasive specific diagnostic and prognostic biomarkers of BD is of much clinical relevance and a key focus area of research. Page 17 of 47

BMJ Open

ASCA in BD and autoimmune diseases. Several recent studies have investigated the relationship of ASCA with BD or other autoimmune diseases. Saccharomyces cerevisiae has long been utilized in alcoholic and baking industry, and for the production of vaccines owing to its antigenic component. However, during long-term and ubiquitous presence, even the commensal and classically non-pathogenic microbiota can trigger autoimmunity due to loss of immune tolerance towards the resident bacterial flora, like in gastrointestinal tract [20, 21]. The reported similarity of sequences involving the eukaryotic microorganism and self-antigens suggest a mechanism of molecular mimicry and also the plausibility of shared epitopes in different autoimmune diseases. The production of ASCA by the subsequent activation of the humoral immune response may lead to a direct pathogenic role through a costimulatory CD80/86-CD28-mediated effect [20]. Moreover, healthy family members but not spouses of BD patients were also found to have increased levels of ASCA, which indicated a role of genetic factors in addition to environmental stimuli [17, 21]. A large number of studies have assessed the role of ASCA in the context of several systemic and organ-specific autoimmune diseases, such as BD, scleroderma, systemic lupus erythematosus, primary Sjögren's syndrome, and rheumatoid arthritis (Table 5). The results suggest that the relation of ASCA with BD or other autoimmune diseases may represent a potential pathogenic mechanism between ASCA and autoimmunity; this underlines the importance of ASCA as a valuable serologic marker for autoimmune diseases including BD.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠0 21	
∠ । วว	
∠∠ วว	
∠3 24	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

290	Results of the meta-analysis. To the best of our knowledge, this is the second meta-
291	analysis of evidence pertaining to autoantibodies in patients with BD after anticardiolipin
292	antibodies [22]. ASCA have been widely researched in BD, Crohn's disease and other
293	autoimmune disease; in order to investigate the diagnostic value and possible pathogenetic
294	role of ASCA in BD, we included 9 studies in this meta-analysis. Among these, some
295	studies included BD patients with systemic involvement including or excluding
296	gastrointestinal involvement, while others included only BD patients with gastrointestinal
297	involvement. Therefore, in order to reduce the impact of differences with respect to
298	frequency distribution of gastrointestinal symptoms in each study, we disaggregated
299	patients with BD into those with gastrointestinal involvement only and those without
300	gastrointestinal manifestations. The isotype antibodies of ASCA tested and the results
301	presented by the studies are also different. The meta-analysis revealed a strong association
302	of ASCA with GIBD and not with BD with no gastrointestinal involvement; this suggests
303	the role of ASCA in the pathogenesis of gastrointestinal involvement. ASCA showed a
304	moderate diagnostic performance as a biomarker for the differential diagnosis between
305	GIBD and CD, and the negative result of ASCA-IgG may slightly favor the diagnosis of
306	GIBD/BD when compared with CD, especially with concomitant positive HLA-B51 tests
307	[23]. In addition, ASCA-IgA showed a moderate diagnostic value for distinguishing GIBD
308	and UC and would perform better with concomitant detection of IgG. However, ASCA
309	failed to distinguish between GIBD and iTB. Besides, the concomitant evaluation of both

Page 19 of 47

BMJ Open

continuous data (sensitivity and specificity) and discontinuous data (serum levels) helped
increase the credibility of our results.

Heterogeneity. Combined with the results of QUADAS-2, we found that the heterogeneity in this meta-analysis was largely attributable to the following reasons (see Table 1, Figure S1). 1) The different diagnostic criteria used in the included studies. Different criteria may have different thresholds for diagnosis or place more weight on some symptoms than others. Specifically, the 1990 ISG criteria requires the presence of oral ulceration plus any two of the following: genital ulceration, typical eye lesions, typical skin lesions, or positive pathergy test for diagnosis of BD [2]. In contrast, the 1987 Japan criteria require all four characteristics for the diagnosis of BD, i.e., oral ulceration, typical eye lesions, typical skin lesions, and genital ulceration [24]. The ISG criteria and the Japanese criteria often fail to classify some patients with BD; in addition, the Japanese criteria may also cause misclassified diagnosis. This may have caused the different diagnostic sensitivity and specificity for BD [25]. 2) Differences in demographic characteristics of included studies. The clinical features and laboratory findings tend to exhibit wide variability in different populations and clinical settings [26, 27]. However, we failed to perform subgroup analysis disaggregated by ethnicity owing to the small sample size in each subgroup. 3) Different antibody assays and cut-off values. Commercial kits and in-house tests from different laboratories have variable performance, which may affect the diagnosis and management

2	
3	
4	
5	
6	
7	
א	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
44	
43	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
20	
59	
60	

1

of patients. We found that different methods and cut-off values were adopted by the studies 329 included in this meta-analysis. Notably, there was significant association between ASCA-330 IgG and GIBD using both methods; however, it seems that IIF has a higher sensitivity than 331 ELISA. Nonetheless, further investigations with larger study population are required to 332 provide more definitive evidence. Although previous studies have shown that IIF has a 333 better performance, ELISA provides the titer change of serum antibodies and could have 334 an equal performance to IIF by changing cut-off values to optimize the overall diagnostic 335 performance [28]. 336

Limitations of the meta-analysis. In order to fully evaluate the value of ASCA for 337 differential diagnosis of BD, we included patients with CD, UC, and iTB as the comparison 338 objects in our meta-analysis. However, there are still some limitations of this meta-analysis. 339 (1) Gray literature database, paper database, and other language databases were not used 340 for the literature search. Quite a few non-English studies were excluded due to incomplete 341 data or unavailability of full text. (2) Our primary goal was to assess the diagnostic efficacy 342 343 of ASCA in BD, and therefore we did not include all studies pertaining to ASCA in inflammatory bowel disease and iTB. (3) Restricted by the number of included studies and 344 345 the isotypes of ASCA, we could not perform subgroup analysis disaggregated by different populations and diagnostic criteria. (4) Some studies with incomplete data were excluded 346 after lack of response from the author. (5) There are some inherent statistical shortcomings 347

Page 21 of 47

BMJ Open

using Meta-DiSc during the separate pooling of sensitivity and specificity, as the betweenstudy variance is not included. More advanced methods are not implemented [29]. Conclusion. Our meta-analysis results, together with the review of ASCA in autoimmune diseases strongly suggest that ASCA (especially its certain isotypes) may be helpful biomarkers for GIBD. especially with respect their possible to predictive/pathogenic/diagnostic role in clinical settings [20]. Furthermore, ASCA may be detectable years before the diagnosis of some autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who were affected by Crohn's disease years later [30]. However, due to its presence in several other autoimmune diseases, ASCA may have a limited value for clinical diagnosis. iez oni

Compliance with Ethical Standards:

Contributorship statement: Study concept and design: Linlin Cheng, Yongzhe Li. Acquisition of data: Linlin Cheng, Liubing Li, Chenxi Liu, Songxin Yan. Statistical analysis and interpretation of data: Linlin Cheng, Liubing Li, Chenxi Liu. Drafting of the manuscript: Linlin Cheng. Revision of manuscript: Yongzhe Li, Linlin Cheng, Liubing Li. Supervision of work: Yongzhe Li. All authors read and approved the final manuscript.

competing interests: None.

Funding: This research was supported by grants from the National Natural Science Foundation of China Grants (81671618, 81871302), the CAMS Initiative for Innovative Medicine (2017-I2M-3-001, 2017-I2M-B&R-01)

Ethical approval: This article does not contain any studies with human participants performed by any of the authors.

Data availability statement: All data relevant to the study are included in the article or uploaded as supplementary information. N.C.

References

> 1. Yazici H., Seyahi E., Hatemi G., Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14:107-19.

- 2. Criteria for diagnosis of Behcet's disease. International Study Group for Behcet's
- Disease. Lancet. 1990;335:1078-80.
 - 3. Davatchi F., Assaad-Khalil S., Calamia K.T., Crook J.E., Sadeghi-Abdollahi B.,
 - Schirmer M., Tzellos T., Zouboulis C.C., Akhlagi M., Al-Dalaan A., Alekberova Z.S.,
- Ali A.A., Altenburg A., Arromdee E., Baltaci M., Bastos M., Benamour S., Ben
- Ghorbel I., Boyvat A., Carvalho L., Chen W., Ben-Chetrit E., Chams-Davatchi C.,
- Correia J. A., Crespo J., Dias C., Dong Y., Paixão-Duarte F., Elmuntaser K., Elonakov
 - A.V., Graña Gil J., Haghdoost A.-A., Hayani R.M., Houman H., Isayeva A.R.,
- Jamshidi A.R., Kaklamanis P., Kumar A., Kyrgidis A., Madanat W., Nadji A., Namba
 - K., Ohno S., Olivieri I., Vaz Patto J., Pipitone N., De Queiroz M.V., Ramos F.,
- Resende C., Rosa C.M., Salvarani C., Serra M.J., Shahram F., Shams H., Sharquie
- K.E., Sliti-Khanfir M., Tribolet De Abreu T., Vasconcelos C., Vedes J., Wechsler B.,
- Cheng Y.K., Zhang Z., Ziaei N. The International Criteria for Behcet's Disease

1		
2		
5 4	390	(ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the
5	391	new criteria. Journal of the European Academy of Dermatology and Venereology.
6	392	2014;28:338-47.
7	393	4. Alpsoy E., Donmez L., Bacanli A., Apaydin C., Butun B. Review of the chronology of
8 9	394	clinical manifestations in 60 patients with Behcet's disease. Dermatology.
10	395	2003:207:354-6
11	396	5 Sicard D Legras I L Bread beer and wine: yeast domestication in the
12 13	390	Saccharomyces sensu stricto complex. C R Biol. 2011:334:229-36.
14	398	6 Aslan M Kocazevbek B Celik A Erzin Y Hatemi I Hatemi G Yazici H Anti-
15	300	Saccharomyces cerevisiae (ASCA) antibody levels in a subgroup of natients with
16 17	400	ulgerative colitics Crohn's disease. GL Poheat and GL tuberculesis: Correlations with
17	400	disease duration activity and extension. International Journal of Infectious Diseases
19	401	disease duration, activity, and extension. International journal of Infectious Diseases.
20	402	
21	403	7. Filik Levent, Biyikoglu Ibrahim. Differentiation of Behcet's disease from
23	404	inflammatory bowel diseases: Anti-saccharomyces cerevisiae antibody and anti-
24	405	neutrophilic cytoplasmic antibody. World Journal of Gastroenterology. 2008;14:7271.
25	406	8. Kocazeybek B., Aslan M., Erzin Y., Celik A., Hatemi I., Hatemi G., Yazici H. Clinical
26 27	407	utility of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces
28	408	Cerevisiae antibodies for discriminating specific intestinal inflammations. International
29	409	Journal of Infectious Diseases. 2010;14:e118.
30 21	410	9. Zhang Shulan, Luo Jing, Li Ji, Wu Ziyan, Hu Chaojun, Li Ping, Deng Chuiwen, Zhang
32	411	Fengchun, Oian Jiaming, Li Yongzhe, Retrospective evaluation of the clinical utility of
33	412	serological biomarkers in Chinese patients with inflammatory bowel disease: 2-year
34	/13	clinical experience. Clinical Chemistry and Laboratory Medicine (CCLM)
35 36	413	2017:55:865-75
37	414	10 Zhang Shulan Lua Jing Wu Ziyan Pagganhuak Dirk Sahiaraak Patar Painhald
38	415	Dirk Li Ji Zang Viaofang, Zhang Eangahun, Oian Jiaming, Li Vangzha, Antihadias
39 40	416	Dirk, Li Ji, Zeng Alaoreng, Zhang Fengehun, Qian Jianing, Li Fongzhe. Antibodies
40 41	417	against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD
42	418	from intestinal tuberculosis and intestinal Behçet's disease. Clinical and Translational
43	419	Gastroenterology. 2018;9:e133.
44 45	420	11. Lidar M., Langevitz P., Barzilai O., Ram M., Porat-Katz B. S., Bizzaro N., Tonutti E.,
45 46	421	Maieron R., Chowers Y., Bar-Meir S., Shoenfeld Y. Infectious serologies and
47	422	autoantibodies in inflammatory bowel disease: insinuations at a true pathogenic role.
48	423	Ann N Y Acad Sci. 2009;1173:640-8.
49 50	424	12. Mcinnes M. D. F., Moher D., Thombs B. D., Mcgrath T. A., Bossuyt P. M., Clifford
50	425	T., Cohen J. F., Deeks J. J., Gatsonis C., Hooft L., Hunt H. A., Hyde C. J., Korevaar D.
52	426	A., Leeflang M. M. G., Macaskill P., Reitsma J. B., Rodin R., Ruties A. W. S.,
53	427	Salameh J P Stevens A Takwoingi Y Tonelli M Weeks L Whiting P Willis B
54 55	<u>، _ ,</u> ۵۶۶	H Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic
56	720	In Treferred Reporting terms for a systematic review and meanarysis of Diagnostic
57		
58 50		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

429	Test Accuracy Studies: The PRISMA-DTA Statement. Jama. 2018;319:388-96.
430	13. Stroup D. F., Berlin J. A., Morton S. C., Olkin I., Williamson G. D., Rennie D.,
431	Moher D., Becker B. J., Sipe T. A., Thacker S. B. Meta-analysis of observational
432	studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational
433	Studies in Epidemiology (MOOSE) group. Jama. 2000;283:2008-12.
434	14. Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gotzsche P. C., Ioannidis J. P.,
435	Clarke M., Devereaux P. J., Kleijnen J., Moher D. The PRISMA statement for
436	reporting systematic reviews and meta-analyses of studies that evaluate healthcare
437	interventions: explanation and elaboration. Bmj. 2009;339:b2700.
438	15. Cheung M. W., Ho R. C., Lim Y., Mak A. Conducting a meta-analysis: basics and
439	good practices. Int J Rheum Dis. 2012;15:129-35.
440	16. Krause I., Monselise Y., Milo G., Weinberger A. Anti-Saccharomyces cerevisiae
441	antibodiesa novel serologic marker for Behcet's disease. Clin Exp Rheumatol.
442	2002;20:S21-4.
443	17. Monselise A., Weinberger A., Monselise Y., Fraser A., Sulkes J., Krause I. Anti-
444	Saccharomyces cerevisiae antibodies in Behcet's diseasea familial study. Clin Exp
445	Rheumatol. 2006;24:S87-90.
446	18. Prado L.L., Augusto K.L., Magalhães P.F., Viana V.T., Saad C.G.S., Gonçalves C.R.
447	THU0219 Anti-saccharomyces cerevisae antibodies (ASCA) in active behÇet's
448	disease: A marker of intestinal involvement? Annals of the Rheumatic Diseases.
449	2013;71:229
450	19. Oshitani N., Hato F., Jinno Y., Sawa Y., Nakamura S., Matsumoto T., Seki S.,
451	Kitagawa S., Arakawa T. IgG subclasses of anti Saccharomyces cerevisiae antibody in
452	inflammatory bowel disease. Eur J Clin Invest. 2001;31:221-5.
453	20. Rinaldi M., Perricone R., Blank M., Perricone C., Shoenfeld Y. Anti-Saccharomyces
454	cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.
455	Clin Rev Allergy Immunol. 2013;45:152-61.
456	21. Seibold F. ASCA: genetic marker, predictor of disease, or marker of a response to an
457	environmental antigen? Gut. 2005;54:1212-3.
458	22. Zouboulis C. C., Buttner P., Tebbe B., Orfanos C. E. Anticardiolipin antibodies in
459	Adamantiades-Behcet's disease. Br J Dermatol. 1993;128:281-4.
460	23. El-Lateef H. M. A. Behect disease in pediatrics; a solitary sign can be enough.
461	Pediatric Rheumatology. 2019;17.
462	24. Mizushima Y., Inaba G., Mimura Y., Ono S. Diagnostic criteria for Behçet's disease
463	in 1987, and guideline for treating Behçet's disease1988. 391-3 p.
464	25. Chang H. K., Lee S. S., Bai H. J., Lee Y. W., Yoon B. Y., Lee C. H., Lee Y. H., Song
465	G. G., Chung W. T., Lee S. W., Choe J. Y., Kim C. G., Chang D. K. Validation of the
466	classification criteria commonly used in Korea and a modified set of preliminary
467	criteria for Behcet's disease: a multi-center study. Clin Exp Rheumatol. 2004;22:S21-6.
	2

2		
3	468	26. Kramer M., Hasanreisoglu M., Weiss S., Kumova D., Schaap-Fogler M., Guntekin-
4 5	469	Ergun S., Ozdek S., Gurelik G., Ergun M. A., Goldenberg-Cohen N., Cohen Y. Single-
6	470	Nucleotide Polymorphisms in IL23R-IL12RB2 (rs1495965) Are Highly Prevalent in
7	471	Patients with Behcet's Uveitis and Vary between Populations Ocul Immunol Inflamm
8	471	2018·1-8
9 10	472	27 Eadrige A. Share T. L. Dorteluzzi A. L. Nisihare D. ASCA (Anti Seecheromyood
11	473	27. Fedrigo A., Skale T. L., Boltoluzzi A. L., Nisiliara K. ASCA (Anti- Saccharolityces
12	474	cerevisiae Antibody) in Patients with Scieroderma. Journal of Clinical Rheumatology.
13	475	2019;25:24-7.
14	476	28. Holle J. U., Hellmich B., Backes M., Gross W. L., Csernok E. Variations in
16	477	performance characteristics of commercial enzyme immunoassay kits for detection of
17	478	antineutrophil cytoplasmic antibodies: what is the optimal cut off? Ann Rheum Dis.
18	479	2005;64:1773-9.
20	480	29. Wang Junfeng, Leeflang Mariska. Recommended software/packages for meta-
21	481	analysis of diagnostic accuracy. Journal of Laboratory and Precision Medicine. 2019;4.
22	482	30. Israeli E., Grotto I., Gilburd B., Balicer R. D., Goldin E., Wiik A., Shoenfeld Y. Anti-
23 24	483	Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of
25	184	inflammatory bowel disease Gut 2005:54:1232-6
26	404	31 Zhang Shulan Luo Jing Wu Ziyan Roggenbuck Dirk Schierack Peter Reinhold
27	465	Dirk Li Li Zong Visefong Zhang Fengehun Oien Liaming Li Vengzhe Antibedies
28	486	Dirk, Li Ji, Zeng Xiaoleng, Zhang Fengchun, Qian Jiaming, Li Yongzhe. Antibodies
30	487	against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD
31	488	from intestinal tuberculosis and intestinal Behçet's disease. Clin Transl Gastroenterol.
32	489	2018;9:e133.
33 34	490	32. Zhang Shulan, Luo Jing, Li Ji, Wu Ziyan, Hu Chaojun, Li Ping, Deng Chuiwen,
35	491	Zhang Fengchun, Qian Jiaming, Li Yongzhe. Retrospective evaluation of the clinical
36	492	utility of serological biomarkers in Chinese patients with inflammatory bowel disease:
37	493	2-year clinical experience. Clin Chem Lab Med. 2017;55:865-75.
38 39	494	33. Vaiopoulos G., Lakatos P. L., Papp M., Kaklamanis F., Economou E., Zevgolis V.,
40	495	Sourdis J., Konstantopoulos K. Serum anti-Saccharomyces cerevisiae antibodies in
41	496	Greek patients with Behcet's disease Yonsei Med J 2011:52:347-50
42	/97	34 Kocazevbek B. Aslan M. Erzin V. Celik A. Hatemi I. Hatemi G. Vazici H
43 44	409	Clinical utility of perinuclear antineutronhil cytoplasmic antihodies and anti-
45	490	Social antity of permutical antihediog for discriminating apositio integrinal
46	499	Saccharomyces Cerevisiae antibodies for discriminating specific intestinat
47 48	500	inflammations. Int J Inflect Dis. 2010;14:e118.
40 49	501	35. Choi C. H., Kim T. I., Kim B. C., Shin S. J., Lee S. K., Kim W. H., Kim H. S. Anti-
50	502	Saccharomyces cerevisiae antibody in intestinal Behcet's disease patients: relation to
51	503	clinical course. Dis Colon Rectum. 2006;49:1849-59.
52 53	504	36. Fresko I., Ugurlu S., Ozbakir F., Celik A., Yurdakul S., Hamuryudan V., Yazici H.
54	505	Anti-Saccharomyces cerevisiae antibodies (ASCA) in Behcet's syndrome. Clin Exp
55	506	Rheumatol. 2005;23:S67-70.
56		
57 58		
59		2.

1 2

3	507	37. Rhee S. H., Kim Y. B., Lee E. S. Comparison of Behcet's disease and recurrent
4 5	508	aphthous ulcer according to characteristics of gastrointestinal symptoms. J Korean
6	509	Med Sci. 2005:20:971-6.
7	510	38 Kim B G Kim Y S Kim J S Jung H C Song I S Diagnostic role of anti-
8	511	Saccharomyces cerevisiae mannan antibodies combined with antineutronbil
9 10	512	cytonlasmic antibodies in patients with inflammatory howel disease. Dis Colon
11	512	Rectum 2002:45:1062-9
12 12	515	30 De Vries M. Van Der Horst Bruinsma I. Van Hoogstraten I. Van Bodegraven A
15 14	514	Von Blomberg B M Ratnawati H Diikmans B nANCA ASCA and OmnC
15	516	antibodies in patients with ankylosing spondylitis without inflammatory bowel disease
16 17	517	I Rheumatol 2010:37:2340-4
18	517	40 Riente I. Chimenti D. Pratesi F. Delle Sedie A. Tommasi S. Tommasi C.
19	510	40. Kiente L., Chimienti D., Fratesi F., Dene Sedie A., Tohimasi S., Tohimasi C., Dombardiori S. Migliorini D. Antibodios to tissue transglutaminase and
20	519	Social construction of the contraction of the contr
21	520	Saccharomyces cerevisiae in ankylosing spondynus and psoriatic artifitis. J
23	521	Rheumatol. 2004;31:920-4.
24	522	41. Mundwiler M. L., Mei L., Landers C. J., Reveille J. D., Targan S., Weisman M. H.
25 26	523	Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot
27	524	study. Arthritis Res Ther. 2009;11:R177.
28	525	42. Wallis Dinny, Asaduzzaman Arundip, Weisman Michael, Haroon Nigil, Anton
29	526	Ammepa, Mcgovern Dermot, Targan Stephan, Inman Robert. Elevated serum anti-
30 31	527	flagellin antibodies implicate subclinical bowel inflammation in ankylosing
32	528	spondylitis: an observational study. Arthritis Research & Therapy. 2013;15:R166.
33	529	43. Krause I., Blank M., Cervera R., Font J., Matthias T., Pfeiffer S., Wies I., Fraser A.,
34 35	530	Shoenfeld Y. Cross-reactive epitopes on beta2-glycoprotein-I and Saccharomyces
36	531	cerevisiae in patients with the antiphospholipid syndrome. Ann N Y Acad Sci.
37	532	2007;1108:481-8.
38 39	533	44. Gonzalez T., Malagon C., Guarnizo P., Mosquera A. C., Chila-Moreno L., Romero-
40	534	Sanchez C. Autoantibodies and Gastrointestinal Symptoms in Colombian Children
41	535	with Juvenile Idiopathic Arthritis, Curr Rheumatol Rev. 2018:14:163-71.
42 43	536	45 Muratori P. Muratori I. Guidi M. Maccariello S. Pappas G. Ferrari R. Gionchetti
44	537	P Campieri M Bianchi F B Anti-Saccharomyces cerevisiae antibodies (ASCA) and
45	538	autoimmune liver diseases. Clin Exp. Immunol. 2003:132:473-6
46 47	530	46 Craia A I Shums Z Donaldson P T Norman G I Frequency and significance of
47 48	535	antibodies to Saccharomyces cerevisiae in autoimmune henetitis. Dig Dis Sci
49	540	2004.40.611.8
50	541	2004,47.011-0.
51 52	542	47. Papp M., Norman G. L., Vitans Z., Tornar I., Anorjay I., Foldi I., Odvardy M., Shufis
53	543	Z., Dinya I., Orosz P., Lomoay B., Jr., Par G., Par A., Veres G., Csak I., Osztovits J.,
54	544	Szalay F., Lakatos P. L. Presence of anti-microbial antibodies in liver cirrhosisa tell-
55 56	545	tale sign of compromised immunity? PLoS One. 2010;5:e12957.
57		
58		2
59		

Page 27 of 47

2		
3 4	546	48. Sakly W., Jeddi M., Ghedira I. Anti-Saccharomyces cerevisiae antibodies in primary
5	547	biliary cirrhosis. Dig Dis Sci. 2008;53:1983-7.
6	548	49. Main J., Mckenzie H., Yeaman G. R., Kerr M. A., Robson D., Pennington C. R.,
7 8	549	Parratt D. Antibody to Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease.
9	550	Bmj. 1988;297:1105-6.
10	551	50. Shor D. B., Orbach H., Boaz M., Altman A., Anaya J. M., Bizzaro N., Tincani A.,
11	552	Cervera R., Espinosa G., Stojanovich L., Rozman B., Bombardieri S., Vita S. D.,
12	553	Damoiseaux J., Villalta D., Tonutti E., Tozzoli R., Barzilai O., Ram M., Blank M.,
14	554	Agmon-Levin N Shoenfeld Y Gastrointestinal-associated autoantibodies in different
15	555	autoimmune diseases. Am I Clin Exp Immunol 2012:1:49-55
16 17	556	51 Vazici D. Avdin S. Z. Vavuz D. Tarcin O. Devneli O. Direskeneli H. Akalin S.
18	550	Anti Saccaromycas Ceravisiae antibodies (ASCA) are elevated in autoimmune thyroid
19	557	Anti-Saccaromyces Cerevisiae antibodies (ASCA) are elevated in autoininune thyroid
20	558	disease ASCA in autoimmune thyroid disease. Endocrine. 2010;38:194-8.
21	559	52. Mankai A., Thabet Y., Manoubi W., Achour A., Sakly W., Ghedira I. Anti-
23	560	Saccharomyces cerevisiae antibodies are elevated in Graves' disease but not in
24	561	Hashimoto's thyroiditis. Endocr Res. 2013;38:98-104.
25	562	53. Dai H., Li Z., Zhang Y., Lv P., Gao X. M. Elevated levels of serum IgA against
26 27	563	Saccharomyces cerevisiae mannan in patients with rheumatoid arthritis. Cell Mol
28	564	Immunol. 2009;6:361-6.
29	565	54. Dai H., Li Z., Zhang Y., Lv P., Gao X. M. Elevated levels of serum antibodies against
30 21	566	Saccharomyces cerevisiae mannan in patients with systemic lupus erythematosus.
32	567	Lupus. 2009;18:1087-90.
33	568	55. Mankai A., Sakly W., Thabet Y., Achour A., Manoubi W., Ghedira I. Anti-
34 25	569	Saccharomyces cerevisiae antibodies in patients with systemic lupus erythematosus
35 36	570	Rheumatol Int 2013:33:665-9
37	570	56 Sakly W Mankai A Sakly N Thabet V Achour A Ghedira-Beshes I Jeddi M
38	571	Ghedira I. Anti-Saccharomyces cerevisiae antibodies are frequent in type 1 diabetes
39 40	572	Endoor Dathal 2010:21:108-14
41	5/3	57 Alexand A. Distani O. Complete F. Malantini M. Cofere C. Dartalani F. Ciaconalli
42	574	57. Alunno A., Bistoni O., Carubbi F., Valentini V., Cararo G., Bartoloni E., Giacomelli
43	575	R., Gerli R. Prevalence and significance of anti-saccharomyces cerevisiae antibodies in
44 45	576	primary Sjogren's syndrome. Clin Exp Rheumatol. 2018;36 Suppl 112:73-9.
46	F 7 7	
47	577	
48		
49 50		
51		
52		
53 54		
54		

2		
3	579	Figure 1 PRISMA flow diagram illustrating the literature screening process and the
4	575	
5	580	criteria for inclusion of studies in the meta-analysis
0 7		
, 8	581	
9		
10	507	Figure 2 Forest plot of the association between the presence of $\Delta SC \Lambda_{-}$ laG and GIBD
11	302	rigure 2 rolest plot of the association between the presence of ASCA-1gO and OIDD
12		
13 14	583	stratified by detection methods
14		
16		
17	584	
18		
19		
20	585	Figure 3 Forest plot comparing serum levels of ASCA between BD without
21		
23	586	gastrointestinal symptom/GIBD and HC/CD/UC
24		
25		
26	587	
27 20		
20		
30	588	
31		
32		
33	589	
34 35		
36		
37	590	
38		
39		
40 41	591	
42		
43		
44	592	
45		
46 47		
48	593	
49		
50		
51	594	
5∠ 53		
54		
55	595	
56		
57		
58 50		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2															
3 4 5	Table 1 Characteristics of studies included in the meta-analysis of Anti- <i>Saccharomyces</i>														
6 7 8	597	С	erevisiae antiboo	lies in Behçe	et's disea	se,	its n	nain	diffe	erent	ial d	iagnos	es, and healthy		
9 10	598					con	trols	•							
11 12	599	/:no	sample: FLISA: enzy	me-linked immu	nosorbent a	5591	· HE·	indir	ect im	muno	fluore	scence a	ssay: NR: not report	ed.	
13 14	600	SD.	standard deviation: *:	all without gast	cointectinal	man	; III .	ione	#: 100	k of o	orreer	onding	data: 1000 ISG criter	io.	
15	601	SD.	000 aritaria of Bahaa	t'a Diagona Inter	ontional Stu	de (Troum	1005,	π. 1ac	n orite	wie 41	010111g (aritaria hu tha Dahaa	.1a.	
16 17 602 Disease Research Committee of Japan: BD: Beheet's disease: GIBD: gastrointestinal Beheet's disease: CD: Crohn's													n's		
18 19	603	disease; UC: ulcerative colitis; iTB: intestinal tuberculosis; HC: healthy control													
<u>20</u> 21		Samile cize													
22 23	/ear and author	Count ries	Туре	Type of article	Design	BD	GIBD	CD	UC	iТВ	нс	Methods	Brands of experiment materials	al Cut-off	Diagnostic criteria
_ <u>_</u> 24 229	18 Shulan Zhang [31]	China	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	/	71	171	208	57	70	ELISA	Inova Diagnostic	(U/ml) 25	NR
26 2 ₂ 7 28	17 Shulan Zhang [32]	China	lgG; lgA; lgG/lgA; lgG+lgA	Original article	Retrospective study	1	34	128	140	31	/	ELISA	Euroimmun, Luebeck	20	NR
29 ²⁰¹¹ 30	George Vaiopoulos [33]	Greece	lgG; lgA	Original article	case-control	58	4#	1	/	/	56	ELISA	Inova Diagnostic	NR	1990 ISG criteria
31 201 32	LO B. Kocazeybek. [34]	Turkey	IgG/IgA	conference Abstract	case-control	/	13	63	102	10	165	IIF	Euroimmun, Luebeck	NR	NR
2808 34	6 Chang Hwan Choi [35]	Korea	lgG	Original article	case-control	30*	106	1	1	/	45	IIF	Euroimmun, Luebeck	1:1000	1987 Japan criteria
35 36 37	2005 I. Fresko [36]	Turkey	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	85	8	24	25	1	21	ELISA	Inova Diagnostic	28 for IgG; 25 for IgA	1990 ISG criteria
38 38	5 Seung-Ho Rhee [37]	Korea	lgG	Original article	case-control	/	16	/	/	1	4	ELISA	Inova Diagnostic	25	1987 Japan criteria
39 40	2002 I. Krause [16]	Israel	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	27*	1	1	/	/	10	ELISA	Inova Diagnostic	25	1990 ISG criteria
41 2402 43	Byeong Gwan Kim [38]	Korea	lgG+lgA+lgM	Original article	case-control	1	36	85	77	14	20	ELISA	plate: Sigma Chemical antibody: Biosoft	ROC curve	1987 Japan criteria
44 45	604														
46 47	605														
49 50	606														
51 52	607														
53 54 55	608														
56															
57 58							2:								
59 60 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml												.xhtml			
NOS item / Study ID	2018 Shulan Zhang	2017 Shulan Zhang	2011 George Vaiopoulo s	2010 B. Kocazeyb ek	2006 Chang Hwan Choi	2005 I. Fresko	2005 Seung-Ho Rhee	2002 I. Krause	2002 Byeon Gwa Kim						
--	-------------------------	-------------------------	----------------------------------	---------------------------	-------------------------------	-------------------	--------------------------	-------------------	-----------------------------						
s the case definition adequate?	₩	*	*		*	₩	*	*	*						
Representativeness of the cases	₩	*				₩									
Selection of controls	₩		₩	₩	*	₩	*	*	*						
Definition of controls	*	*	*	₩	*	₩	*	*	₩						
Study controls for the most important factor (i.e., age)	₩		₩			₩			₩						
Study controls for the second important factor (i.e., sex)	₩		₩			₩			₩						
Was the measurement method of ASCA described?	₩	*	*	₩	₩	₩	*	₩	*						
Same method of ascertainment for cases and controls	₩	*	*	₩	*	₩	*	*	₩						
Non-response rate	₩	*	*	*	*	₩	*	*	₩						
Total Score	9	6	8	5	6	9	6	6	8						
611 ★ was awarded when th	ne respect	tive inforr	nation was	available.	2										
612															
613															
614															
615															
616															
617															
			2												

613	8 Table	e 3. Associatio	n between the pr	resence of A	SCA and BD (with	out gastrointes	tinal
619	9		symptom)/GIB	D and other	intestinal diseases		
620	0 BD: Beh	çet's disease witho	ut gastrointestinal sym	nptom; GIBD: ga	strointestinal Behçet's di	sease; CD: Crohn's	disease;
62:	1	UC:	ulcerative colitis; iTE	3: intestinal tube	rculosis; HC: healthy con	trol	
		Subgroup	Antibody	Number of studies	Diagnostic OR	Significance test (p)	
					(95% CI)		
		BD vs. HC	ASCA-IgG	4	1.00 (0.28–3.53)	0.997	
			ASCA-IgA	2	2.50 (0.63–9.96)	0.194	
			ASCA-IgG+IgA	2	1.06 (0.17–6.78)	0.954	
			ASCA-IgG/IgA	2	2.88 (0.62–13.44)	0.179	
		GIBD vs. HC	ASCA-IgG	3	5.50 (2.58–11.55)	0.000	
			ASCA-IgA	2	2.65 (1.18–5.96)	0.018	
			ASCA-IgG+IgA	2	5.36(1.40-20.45)	0.014	
		CIDD	ASCA-IgG/IgA	3	2.90 (1.47-5.74)	0.002	
		GIBD VS. CD	ASCA-IgG	3	0.48(0.28-0.83)	0.009	
			ASCA-IgA	3	0.91(0.30-1.40)	0.085	
			ASCA-IgG+IgA	3	0.58(0.30–1.11)	0.100	
			ASCA-IgG/IgA	4	0.57 (0.28–1.15)	0.117	
		GIBD vs. UC	ASCA-IgG	3	1.78 (0.98–3.22)	0.057	
			ASCA-IgA	3	2.13 (1.30–3.50)	0.003	
			ASCA-IgG+IgA	3	2.19 (1.03–4.66)	0.042	
		CIDD 'TD	ASCA-IgG/IgA	4	2.03 (1.30–3.17)	0.002	
		GIBD vs. 11B	ASCA-IgG	2	1.08 (0.50–2.32)	0.854	
			ASCA-IgA	2	1.51(0.71-3.22)	0.290	
			ASCA-IgG+IgA	2	1.02(0.40-2.62)	0.972	
			ASCA-IgG/IgA	3	1.05 (0.58–1.87)	0.883	
62	2						
623	3						
624	4						
62	5						
62	6						
				2			
		-		3	/·. / I / · · · ·		
		For peer re	view only - http://b	omjopen.bmj.c	om/site/about/guidel	ines.xhtml	

	Table 4 Pooled se	ensitivity and specific	ity of ASCA-IgG and	IgG/IgA for d	liagnosis of
628		GIBD assess	ed by ELISA and IIF		
629	ELISA: c	enzyme-linked immunosorber	nt assay; IIF: indirect immun	ofluorescence assa	у
	Methods	EL	ISA	Ι	IF
	Diagnostic accuracy	Pooled sensitivity (95% CI)	Pooled specificity (95% CI)	Sensitivity	Specificity
	ASCA-IgG	0.20 (0.12–0.31)	0.93 (0.86–0.98)	0.44	0.91
	ASCA-IgG/IgA	0.33 (0.23–0.44)	0.85 (0.76–0.91)	0.15	0.96
630		(2	6		
631					
632					
C 22					
033					
634					
634 635					
634 635 636					
634 635 636 637					
634 635 636 637 638					

1	
2	
3	
4	

640

Table 5 Summary of the diagnostic performance of ASCA in autoimmune disease

6 7

SEN: sensitivity; SPE: specificity; LR+: positive likelihood; LR-: negative likelihood

8							
Reference	Autoimmune disease	Туре	SEN (%)	SPE (%)	LR+	LR-	Supplementary information
10		IgG	43.24	98.25	24.65	0.58	African descendants showed higher positivity rates for ASCA-
12 ^[27]	Scleroderma	IgA	16.22	94.74	3.08	0.88	IgG. ASCA-IgA was less frequently detected in patients with severe disease
13							
14 [39, 40, 41,	Ankylosing spondylitis	IgG	0-11.63	89.74–98.72	1.13-3.00	0.97-0.98	ASCA IgA levels were significantly increased in patients with HI A-B27-associated SpA particularly in AS and uSpA
13 _{42]} 16	r inky losning openary new	IgA	1.28-23.26	91.03-100.00	2.59-3.71	0.84-0.99	
-17 _[43]	Antiphospholipid syndrome	IgG/IgA	20.00	95.00	/	/	
-18 18 ^[44]	Juvenile Idiopathic Arthritis	IgA	0-50.00	94.74	9.50	0.53	
20		IgG	16.42-27.53	100.00	/	0.84	
24 5, 46, 47]	Autoimmune hepatitis	IgA	11.94	94.74	2.27	0.93	
22		IgG/IgA	18.52	84.00	1.16	0.97	
23		IgG	10.57-18.95	97.50-100.00	7.58	0.83-0.89	
24 [245], 47, 48]	Primary biliary cirrhosis	IgA	11.58-18.70	94.74–98.75	3.55-9.26	0.86-0.90	
26		IgG/IgA	20.26-24.21	84.00-96.25	1.27-6.46	0.79-0.95	
_27		IgG	28.00	100.00	/	0.72	
28 26 ^{45,47}]	Primary sclerosing cholangitis	IgA	32.00	94.74	6.08	0.72	
30		IgG/IgA	30.51	84.00	1.91	0.83	
-31 111 39 45		IøG	13 75-69 57	97 96-100	6 74	0 30-0 88	Patients with more complicated disease course showed a trend
$32_{49,50}$	Crohn's disease	IgA	19 30-71 43	94 74-100 00	9 91-29 40	0 50-0 71	for greater seroreactivity towards ASCA.
33	Cryoglobulinemia	IoG	7 10	99 50	/	/	
-35	ciyogioounnonnu	InG	5 70-12 50	94 17-99 50	2 15_3 76	0.91_0.93	ASCA was alayated in Crayer' disease but not in Hachimate's
50 , 51, 52]	Graves' disease	IgO	8 40 16 67	04.17 06.88	2.13-3.70	0.91-0.95	- thyroiditis
37		IgA	10.13.20.00	80.74.01.45	0.00.2.34	0.87 1.00	ASCA IgA layels strongly correlated with C reactive protein
38 3 9 40 531	Rheumatoid arthritis	Igo	17.72 40.00	01.02.04.74	1.07.7.0	0.67-1.00	levels and erythrocyte sedimentation rate
40			17.72-40.00	91.03-94.74	1.9/-/.00	0.03-0.90	
41		IgM	13.33	94.74	2.53	0.91	
42	Systemic lunus crythomatosus	IgG	4.50-57.50	91.45-99.50	6./2-9.38	0.46-0.73	ASCA IgG levels in SLE patients during remission were relatively lower, indicating a possible correlation with disease
4049, 54, 55 44	Systemic jupus erymematosus	lgA	7.50–12.07	94.74–99.38	1.43–19.31	0.88-0.98	activity
_45		IgG/IgA	31.90	96.25	8.51	0.71	
46		IgG	20.98	98.09	10.98	0.81	
47 ^[56]	Type I diabetes	IgA	9.82	98.73	7.71	0.91	
48 49		IgG/IgA	24.55	97.45	9.64	0.77	
50 ^[57]	Primary Sjögren's syndrome	IgG/IgA	4.81	100.00	/	0.95	ASCA positivity was associated with pSS specific clinical and serological features
51 ^[50]	Vasculitides	IgG	6.50	99.50	/	/	
53							
54	641						
55 56							
57							

58 59

Serum levels of ASCA								
Study ID	BMJ Open	™Bage 36	offeight7					
BD vs HC ASCA-IgA 2002 I.Krause 2005 I.FresVailopoulos 2011 George Vailopoulos Subtolai (-squared = 93.9%, p = 0.000)	++ •	5.80 (1.26, 10.34) 4.00 (0.79, 7.21) -6.61 (-9.47, -3.76) 0.95 (-7.10, 9.00)	32.06 33.78 34.16 100.00					
BD vs HC ASCA-IgG 1002 I Krause 2005 I Freev Valopoulos 2011 George Valopoulos 2010 J George Valopoulos 2010 J George Valopoulos	++••	9.90 (2.26, 17.54) 1.80 (-2.17, 5.77) 0.28 (-1.32, 1.89) 2.50 (-1.44, 6.43)	17.60 34.19 48.20 100.00					
GIBD vs HC ASCA-IgA 2005 I.Fresko 9018 Shulan Zhang Subtotal (I-squared = 0.0%, p = 0.863)	++0	7.48 (0.40, 14.55) 6.63 (0.12, 13.14) 7.02 (2.23, 11.81)	45.86 54.14 100.00					
HBD vs HC ASCA-IgG 2005 I.Fresko ©18 Shulian Zhang Subtotal (I-squared = 11.8%, p = 0.287)	o † •	6.68 (-0.48, 13.83) 2.15 (-2.11, 6.41) 3.46 (-0.56, 7.49)	28.99 71.01 100.00					
GIBD vs CD ASCA-IgA 005 I.Fresko 2017 Shulan Zhang 2018 Shulan Zhang 2018 Shulan Zhang 2016 Shulan Zhang 2010 Shulan Zhang 2010 Shulan Zhang	<u>_</u>	-51.03 (-95.72, -6.33) 26.57 (3.25, 49.89) -12.56 (-20.68, -4.44) -8.13 (-41.57, 25.31)	24.02 34.93 41.05 100.00					
GIBD vs CD ASCA-IgG 0051 Fresko 0017 Shulan Zhang 2018 Shulan Zhang 2018 Shulan Zhang 2018 Julan Zhang 25.9%, p = 0.260)	0+ ⁺ +	-18.53 (-33.65, -3.40) -5.13 (-14.44, 4.18) -12.26 (-17.38, -7.14) -11.04 (-16.74, -5.34)	12.63 28.18 59.20 100.00					
GIBD vs UC ASCA-IgA 2005 I Fresko 2015 Shulan Zhang 2015 Shulan Zhang 2015 Shulan Zhang Subtolai (- Squared = 0.0%, p = 0.437)	÷	4.67 (-3.23, 12.58) 20.61 (-3.27, 44.49) 4.56 (-1.89, 11.01) 5.28 (0.39, 10.17)	38.35 4.20 57.45 100.00					
Auch Neuro, Scolard y - http://bmj 2023 Shulan Zhang Southal (Laquared = 0.0%, p = 0.766) 1923 Weints we from random effects analysis	op on .bmj.co	om/site/about/gu 0.86 (-6.76, 8.48) 2.24 (-1.63, 6.11) 1.63 (-1.68, 4.94)	i beline 18.84 73.13 100.00					
14 -95.7	0	95.7						

Page 37 of 47

BMJ Open

Fig S1 Results of quality assessment of the included studies based on the QUADAS-1 tool

PRISMA-DTA Checklist

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
TITLE / ABSTRACT			
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	1
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Clinical role of index test	D1	State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).	4, 5
Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	4, 5
METHODS	-		
Protocol and	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide	5
registration		registration information including registration number.	CRD42020115245
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6, 7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6, 7
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	7
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	7
Diagnostic accuracy measures	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-lesion).	7, 8
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include, but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e)	7, 8

Page 43 of 47

2

PRISMA-DTA Checklist

		grouping and comparing tests, f) handling of different reference standards	
		Page 1 of 2	
Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
Meta-analysis	D2	Report the statistical methods used for meta-analyses, if performed.	7, 8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7-9
RESULTS			
Study selection	17	Provide numbers of studies screened, assessed for eligibility, included in the review (and included in meta-analysis, if applicable) with reasons for exclusions at each stage, ideally with a flow diagram.	9, 10
Study characteristics	18	For each included study provide citations and present key characteristics including: a) participant characteristics (presentation, prior testing), b) clinical setting, c) study design, d) target condition definition, e) index test, f) reference standard, g) sample size, h) funding sources	9, 10
Risk of bias and applicability	19	Present evaluation of risk of bias and concerns regarding applicability for each study.	10
Results of individual studies	20	For each analysis in each study (e.g. unique combination of index test, reference standard, and positivity threshold) report 2x2 data (TP, FP, FN, TN) with estimates of diagnostic accuracy and confidence intervals, ideally with a forest or receiver operator characteristic (ROC) plot.	10
Synthesis of results	21	Describe test accuracy, including variability; if meta-analysis was done, include results and confidence intervals.	10-12
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression; analysis of index test: failure rates, proportion of inconclusive results, adverse events).	12
DISCUSSION	-		
Summary of evidence	24	Summarize the main findings including the strength of evidence.	14
Limitations	25	Discuss limitations from included studies (e.g. risk of bias and concerns regarding applicability) and from the review process (e.g. incomplete retrieval of identified research).	16, 17
5 Conclusions	26	Provide a general interpretation of the results in the context of other evidence. Discuss implications for future research and clinical practice (e.g. the intended use and clinical role of the index test).	17
	-		
9 Funding	27	For the systematic review, describe the sources of funding and other support and the role of the funders.	18
0 1 <i>Adapted From:</i> McInnes MI 2 Accuracy Studies: The PRISN 3 4 5 6	DF, Moh	er D, Thombs BD, McGrath TA, Bossuyt PM, The PRISMA-DTA Group (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Statement. JAMA. 2018 Jan 23;319(4):388-396. doi: 10.1001/jama.2017.19163. For more information, visit: <u>www.prisma-statement.org</u> . For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	Diagnostic Test
1			

BMJ Open

Reporting checklist for meta-analysis of observational studies.

Based on the MOOSE guidelines.

10 11			Reporting Item	Page Number
12 13 14	Title			
15 16 17 18 19 20	Abstract	<u>#1</u>	Identify the study as a meta-analysis of observational research	1
21 22 23 24 25 26 27 28 29 30		<u>#2</u>	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number (From PRISMA checklist)	1-2
31 32 33	Background			
34 35		<u>#3a</u>	Problem definition	4
36 37		<u>#3b</u>	Hypothesis statement	4-5
38 39 40		<u>#3c</u>	Description of study outcomes	n/a
41 42 43 44 45 46 47				The study outcomes were reported in the section of Results an d Discussion.
48 49		<u>#3d</u>	Type of exposure or intervention used	4
50 51		<u>#3e</u>	Type of study designs used	4
52 53 54		<u>#3f</u>	Study population	4, 5
55 56	Methods			
57 58 59 60	Search	<u>#4a</u>	Qualifications of searchers (eg, librarians and For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtr	6, 7

Page	45 of 47		BMJ Open	
1	strategy		investigators)	
2 3 4 5 6 7 8 9 10 11 12 13	Search strategy	<u>#4b</u>	Search strategy, including time period included in the synthesis and keywords	5, 6
	Search strategy	<u>#4c</u>	Effort to include all available studies, including contact with authors	7
	Search strategy	<u>#4d</u>	Databases and registries searched	5, 6
14 15	Search	<u>#4e</u>	Search software used, name and version, including	n/a
16	strategy		special features used (eg, explosion)	The energy was part
17 18 19 20 21				ormed on website of databases
22 23	Search	<u>#4f</u>	Use of hand searching (eg, reference lists of obtained	6
24	strategy		articles)	
25 26	Search	#4a	List of citations located and those excluded including	6.7
27 28	strategy	<u>" 19</u>	justification	0, 1
29 30 31 32	Search	<u>#4h</u>	Method of addressing articles published in languages	6
33	Strategy			
34 35 36 37	Search strategy	<u>#4i</u>	Method of handling abstracts and unpublished studies	6
38 39 40	Search strategy	<u>#4j</u>	Description of any contact with authors	7
41 42 43 44		<u>#5a</u>	Description of relevance or appropriateness of studies gathered for assessing the hypothesis to be tested	7
45 46 47 48		<u>#5b</u>	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	7
49 50 51 52		<u>#5c</u>	Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	7
53 54 55 56		<u>#5d</u>	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7
57 58 59 60		<u>#5e</u>	Assessment of study quality, including blinding of quality For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	7

		assessors; stratification or regression on possible	
		predictors of study results	
	<u>#5f</u>	Assessment of heterogeneity	8
	#E a	Description of statistical matheds (or samplets	0
	<u>#50</u>	Description of statistical methods (eg, complete	8
		description of fixed or random effects models,	
		justification of whether the chosen models account for	
		predictors of study results, dose-response models, or	
		cumulative meta-analysis) in sufficient detail to be	
		replicated	
	<u>#5h</u>	Provision of appropriate tables and graphics	n/a
			The methods were d
			escribed in text inste
			ad of tables and grap
			hics.
Results			
	"0		40.40
	<u>#6a</u>	Graphic summarizing individual study estimates and	10-12
		overall estimate	
	#Ch	Table giving descriptive information for each study	0 10
	<u>#00</u>		9, 10
		Included	
	#6c	Besults of sensitivity testing (eq. subgroup analysis)	12
	<u> </u>	ricoulte of constrainty tooting (eg, subgroup analysis)	12
	<u>#6d</u>	Indication of statistical uncertainty of findings	12
Discussion			
	#7.	Quantitative accomment of him (an authlighting him)	
	<u>#1a</u>	Quantitative assessment of blas (eg. publication blas)	n/a
			Small number of
			studios in oach
			subgroup prevented
			publication bias
			analysis
	# 7 6	Justification for evolution (or evolution of non-English	10
	<u>#10</u>	Justification for exclusion (eg, exclusion of non-English-	10
		language citations)	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	nl
	Results	#51 #59 #5h \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	assessors; stratification or regression on possible predictors of study results #51 Assessment of heterogeneity #52 Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated #51 Provision of appropriate tables and graphics #52 Graphic summarizing individual study estimates and overall estimate #52 Table giving descriptive information for each study included #52 Results #53 Results (fig. action of statistical uncertainty of findings) #54 Indication of statistical uncertainty of findings #55 Quantitative assessment of bias (eg. publication bias) #71 Justification for exclusion (eg, exclusion of non-English-language citations)

Page 46 of 47

1		<u>#7c</u>	Assessment of quality of included studies	15, 16
2 3 4	Conclusion			
5 6 7 8		<u>#8a</u>	Consideration of alternative explanations for observed results	17
9 10 11 12 13 14		<u>#8b</u>	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	17
15 16		<u>#8c</u>	Guidelines for future research	17
17 18 10		<u>#8d</u>	Disclosure of funding source	18
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53	Medical Assoc https://www.go Penelope.ai	viation.	All rights reserved. This checklist was completed on 26. August 2019 using ports.org/, a tool made by the EQUATOR Network in collaboration with	
55 56 57 58				

Table S3 Demographic characteristics of patients and healthy controls included in the meta-analysis

BD: Behçet's disease; GIBD: gastrointestinal Behçet's disease; CD: Crohn's disease; UC: ulcerative colitis; iTB: intestinal tuberculosis; HC: healthy control; /: No such group included; Blank: no such information in the article

	BD	GIBD	CD	UC	iTB	НС
Female, n (%)						
2018 Shulan Zhang	/					/
2017 Shulan Zhang			37 (28.9)	69 (49.3)		
2011 George Vaiopoulos	28 (48.3)	/	/	/	/	
2010 B. Kocazeybek	1	5 (38.5)	39 (61.9)	51 (50.0)	3 (30.0)	99 (60.0)
2006 Chang Hwan Choi	16 (86.6)	47 (44.3)	/	/	/	24 (53.3)
2005 I. Fresko	20 (23.5)	2 (25.0)	10 (41.7)	10 (40.0)	/	9 (42.9)
2005 Seung-Ho Rhee	/	28 (63.6)	/	/	/	
2002 I. Krause	20 (74.1)		0			
2002 Byeong Gwan Kim	/	20	28	36	7	
Median age at study (max, min)			0			
2018 Shulan Zhang	/					
2017 Shulan Zhang	/		33 (69,13)	42 (76,13)		/
2011 George Vaiopoulos	38.5 (17,70)	/	/		/	
2010 B. Kocazeybek	/	32.11 (23.22,41)	37.56 (24.91,50.21)	40.72 (27.28,54.16)	SD 9.96	35.07 (24.58,45.56)
2006 Chang Hwan Choi	38 (18,65)	37	/	1	1	39 (16,69)
2005 I. Fresko	34.3 (32.0,36.7)	26.9 (24.1,29.6)	38.9 (34.6,43.2)	35.6 (33.0,38.3)	/	33.7 (30.4,37.0)
2005 Seung-Ho Rhee	/	37.6	/	/	/	
2002 I. Krause	41.6 (36.9,46.2)					
2002 Byeong Gwan Kim	/	43.2	40.9	30.6	33.6	

BMJ Open

Meta-analysis of anti- Saccharomyces cerevisiae antibodies as diagnostic markers of Behçet's disease with gastrointestinal involvement

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033880.R2
Article Type:	Original research
Date Submitted by the Author:	15-May-2020
Complete List of Authors:	Cheng, Linlin; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Li, Liubing; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Liu, Chenxi; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Yan, Songxin; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory Li, Yongzhe; Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Department of Clinical Laboratory
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Diagnostics, Epidemiology, Gastroenterology and hepatology, Immunology (including allergy)
Keywords:	Behçet's disease, Anti-saccharomyces cerevisiae antibodies, autoimmune diseases, meta-analysis, autoantibodies

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

3 4	1	Meta-analysis of anti- Saccharomyces cerevisiae antibodies as diagnostic
5		
6		
7	2	markers of Bençet's disease with gastrointestinal involvement
8		
9		
10	3	
11		
12		
13		Linlin Chang MD & Linking Li MD & Changi Lin MD & Sangyin Van MS & Vangeha
14	4	Liniin Cheng, NID, " Liuding Li, NID, " Chenxi Liu, NID, " Songxin Yan, NIS, " Yongzne
15		
10	5	Li, PhD ^{a*} .
17	-	
10		
20	_	
20	6	*Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking
21		
22	7	Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
23	1	omon vieurear conege and chinese rieudemy of vieurear sciences, beijing, china
25		
26		
27	8	For correspondence: Yongzhe Li*
28		
29		
30	9	Email address: vongzhelipumch@126.com
31	-	JJ
32		
33	4.0	
34	10	
35		
36		
37	11	
38		
39		
40	10	
41	12	
42		
43		
44 45	13	
45 46		
40 47		
47 78	14	
40 40		
50		
51	45	
52	15	
53		
54		
55	16	
56		
57		
58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 47

1

BMJ Open

2	
2	
3	
Λ	
4	
5	
5	
6	
0	
7	
'	
8	
9	
-	
10	
TT.	
17	
12	
12	
13	
11	
14	
15	
15	
16	
17	
18	
10	
19	
20	
20	
71	
∠ I	
22	
~~	
23	
24	
~-	
25	
20	
26	
77	
27	
າຊ	
20	
29	
27	
30	
31	
32	
-	
33	
24	
34	
25	
55	
36	
50	
37	
38	
39	
40	
40	
/1	
-+ I	
47	
74	
43	
44	
45	
45	
16	
40	
⊿7	
47	
48	
.0	
49	
50	
Г 1	
51	
57	
۲۷	
52	
55	
54	
<i>э</i> -т	
55	
56	
- -	
57	
E 0	
20	
•••	
50	
59	

Meta-analysis of anti- *Saccharomyces cerevisiae* antibodies as diagnostic markers of Behçet's disease with gastrointestinal involvement

19

20 Abstract

Objective: Due to common exposure to yeast in the alcoholic and baking industry, positive rate of anti-*Saccharomyces cerevisiae* antibodies (ASCA) is reportedly high in patients with Behçet's disease (BD) who have gastrointestinal symptoms (gastrointestinal BD [GIBD]). We performed a meta-analysis to assess the diagnostic value of ASCA in differentiating patients with BD from those with other chronic inflammatory bowel diseases.

27 Methods: The meta-analysis is compliant with the PRISMA and MOOSE checklist.

Relevant studies that investigated ASCA levels in BD patients were retrieved from PubMed, EMBASE, Web of Science, SCOPUS, and the Cochrane Library on July 12, 2019; the search was rerun on February 12, 2020. Stata/SE 12.0 and Meta-DiSc 1.4 were used to perform the meta-analysis and sensitivity analysis, disaggregated by isotypes of ASCA.

Results: Nine studies were included in the meta-analysis. The results revealed a strong
 association between ASCA and GIBD, especially ASCA-IgG [odds ratio (OR)=5.50 (95%)

Page 4 of 47

2	
3	
4	
5	
6	
7	
, 8	
٥ ٥	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
22	
56	
57	
58	
59	
60	

35	CI 2.58–11.55, p=0.000) and ASCA-IgG+IgA [OR=5.36 (95% CI 1.40–20.45), p=0.014].
36	The positivity rate of ASCA in GIBD was significantly higher than that in ulcerative colitis:
37	IgA [OR=2.13 (95% CI 1.30-3.50), p=0.003]; IgG+IgA [OR=2.19 (95% CI 1.03-4.66),
38	p=0.042]; IgG/IgA [OR=2.03 (95% CI 1.30-3.17), p=0.002]. However, the frequency of
39	ASCA-IgG was significantly higher in patients with Crohn's disease than GIBD [OR=5.36
40	(95% CI 1.40–20.45), p=0.009]. There was no significant difference in ASCA positivity
41	between BD without gastrointestinal involvement and healthy controls and between GIBD
42	and intestinal tuberculosis (p>0.05).
43	Conclusion: ASCA may play a role in the pathogenesis of gastrointestinal involvement.
44	Negative result of IgG favors the diagnosis of GIBD/BD when differentiated from Crohn's
45	disease. ASCA-IgA showed moderate diagnostic performance in distinguishing GIBD and
46	ulcerative colitis and the diagnostic performance was better in combination with IgG.
47	However, ASCA may not be a useful serologic marker distinguishing GIBD and intestinal
48	tuberculosis.
49	Key words: Behçet's disease; Anti-Saccharomyces cerevisiae antibodies; autoimmune
50	diseases; meta-analysis; autoantibodies
51	
52	

BMJ Open

53		
54	Str	rengths and limitations of this study
55	•	In addition to the healthy controls, we included patients with other gastrointestinal
56		diseases that are considered in the differential diagnosis of gastrointestinal Behcet's
57		disease in clinical settings (such as ulcerative colitis, Crohn's disease, and intestinal
58		tuberculosis), in order to improve the clinical awareness of ASCA.
59	•	Inclusion of both categorical data (positivity rate) and continuous data (serum
60		concentration) pertaining to anti-Saccharomyces cerevisiae antibodies (ASCA)
61		increases the reliability of the results of meta-analysis.
62	•	We separately performed meta-analysis of IgG, IgA, and IgG+IgA, which provides
63		insights into their ability to differentiate BD from other gastrointestinal diseases.
64	•	Comprehensive summary of evidence linking ASCA and autoimmune diseases
65		provides preliminary insights into the pathogenicity of Saccharomyces cerevisiae.
66	•	Analysis of too many subgroups contributed to potential heterogeneity due to the small
67		number of studies included in each subgroup.
68		
69		
		4
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

71 Introduction

Behcet's disease (BD) is a chronic systemic vascular autoimmune/inflammatory disease with a high propensity for recurrence; the pathogenetic mechanisms of this disease are not well elucidated [1]. Virtually no specific histological or laboratory features of BD have been identified. Therefore, the diagnosis of BD is typically challenging as it is mainly based on clinical features [2, 3]. The diagnosis is frequently delayed until the development of clinical manifestations that qualify the diagnostic criteria. The estimated duration between the onset of symptoms and the fulfilment of diagnostic criteria is approximately 4 years [4].

Moreover, patients with prominent involvement of a particular organ system are easily misdiagnosed. For example, patients who have gastrointestinal symptoms as the main manifestation are liable to be misdiagnosed as having Crohn's disease (CD), ulcerative colitis (UC), or intestinal tuberculosis (iTB). These features make formulating disease criteria difficult, causing deleterious effects on the patients.

Several recent studies (but not all) have reported the diagnostic value of anti-*Saccharomyces cerevisiae* antibody (ASCA) in BD. *Saccharomyces cerevisiae*, also known as the baker's or brewer's yeast, has long been utilized to ferment the sugars in

BMJ Open

cereals to produce alcoholic beverages; it is also used in the baking industry to raise dough. As a consequence, we are now commonly exposed to yeast [5]. IgG and IgA antibodies against the phosphopeptidomannan of the S. cerevisiae cell wall have been discovered as autoantibodies in the sera of patients with BD, especially those with gastrointestinal involvement. This suggests a role of environmental stimuli in the pathogenesis of BD. However, patients with inflammatory bowel disease such as Crohn's disease (CD) also have a high prevalence rate of ASCA due to their similarities [6, 7, 8, 9, 10, 11]. In this context, identification of ASCA as a diagnostic marker for BD is a key imperative. The objectives of this study were to summarize the findings pertaining to the relevance of ASCA in BD and other gastrointestinal diseases and to perform a meta-analysis to assess Liezoni its diagnostic accuracy for BD. Methods Study design

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis Diagnostic Test Accuracy (PRISMA-DTA) guidelines [12] (supplementary file 1) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) [13] (supplementary file 2) were followed throughout the literature search process to structure and design the framework for

the review [14]. Besides, a predefined protocol was registered with PROSPERO(Registration No. CRD42020115245).

109 Literature search

A comprehensive literature search was performed to identify studies pertaining to ASCA as biomarkers for BD in 5 biomedical databases, i.e., PubMed, EMBASE, Web of Science, SCOPUS, and the Cochrane Library on July 12, 2019. The search terms for Behçet's disease were: Behcet, triple symptom complex, triple symptom complices, Adamantiades Behcet and old silk route disease; the search terms for Saccharomyces cerevisiae were: S. cerevisiae. Saccaromyces cerevisiae. Saccharomyces capensis, Saccharomyces diastaticus, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum, brewer yeast or baker yeast, mannan, manna, polymannan, glucomannan, yeast mannan, dicoman, humamil, ASCA. Combination of keywords using "AND" was used to retrieve studies in the range of "all fields" or "all text". The search was rerun on February 12, 2020 to ensure inclusion of recent studies. No restrictions were imposed with respect to time of publication, region, or ethnicity of the study population. In addition, the reference list of obtained articles was also examined to identify possible relevant studies. The full search strategy for EMBASE is shown in supplementary file 3.

BMJ Open

2		
3 4	12/	
5	124	
6		
7	125	Eligibility and exclusion criteria
8	125	
9 10		
10	176	The inclusion criteria were: (1) studies that evaluated the diagnostic accuracy of Λ SCA in
12	120	The inclusion enteria were. (1) studies that evaluated the diagnostic accuracy of ASCA in
13		
14	127	BD; (2) availability of adequate data pertaining to the prevalence rate or serum levels of
15		
16	178	ASCA in patients with BD: (3) studies with healthy population and/or disease controls: (4)
1/	120	The first in patients with DD, (5) studies with nearing population and/or discuse controls, (1)
18 10		
20	129	meeting abstracts or letters to the editor were also included.
21		
22		
23	130	The exclusion criteria were: (1) studies with incomplete data; (2) review articles; (3) non-
24		
25	101	English articles: (A) in case of studies with overlapping study population studies with
26	121	English articles, (4) in case of studies with overlapping study population, studies with
27		
28	132	smaller sample size were excluded. Two investigators independently performed the
29		
31	122	literature search screened the titles and abstracts followed by full-text review of eligible
32	155	interature search, servened the titles and abstracts, followed by full text review of englote
33		
34	134	studies.
35		
36		
3/	135	
20 20		
40		
41	136	Data extraction and quality assessment
42		
43		
44	137	Two independent investigators reviewed the full-text articles extracted the data and
45	107	The independent investigators reviewed the ran text articles, endacted the data, and
46		
4/	138	assessed the study quality using the Quality Assessment of Diagnostic Accuracy Studies
40 40		
50	139	(OUADAS-2); The included items were evaluated as ves, no, or uncertain. Inter-researcher
51		
52		dia any anti-
53	140	disagreements were resolved by consensus, or by a third investigator. Data pertaining to
54		
55	141	the following variables were extracted: publication year, article type, first author's name,
50 57		
57 58		
59		8
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

country, isotypes of ASCA detected, age and sex, research design, sample size,
experimental method, trade names of experimental materials, cut-off values, diagnostic
criteria, and serum titers and/or prevalence rate of ASCA in BD, gastrointestinal BD
(GIBD), healthy controls (HC), patients with Crohn's disease (CD), ulcerative colitis (UC),
and intestinal tuberculosis (iTB). The data were either obtained directly from the article,
calculated, or requested from the author via e-mail.

149 Statistical analysis

Pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated to evaluate the association ASCA (without gastrointestinal between and BD involvement)/GIBD/CD/UC/iTB using Stata/SE 12.0. Meta-DiSc 1.4 was used to calculate the sensitivity, specificity, AUC values, and the area under the summary receiver operating characteristic (SROC) curve to assess the overall diagnostic performance of ASCA. Heterogeneity among the included studies was evaluated using the Cochran's Q-statistic. P values > 0.10 were considered indicative of lack of significant heterogeneity. We chose the random effects models (REM) since REM tends to generalize findings beyond the included studies by assuming that the selected studies are random samples from a larger population [15]. Subgroup analysis was performed disaggregated by the isotypes of ASCA and different disease controls. The isotypes of ASCA were classified and defined as

BMJ Open

3	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
20	
27	
38	
39	
40	
41	
42	
<u>4</u> २	
4J 44	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

161	follows: IgG, IgA, IgG/IgA (positive results of either IgG or IgA), and IgG+IgA (positive
162	results of both IgG and IgA).

In order to increase the robustness of the meta-analysis, we also extracted the data pertaining to serum levels of ASCA from five studies and performed meta-analysis using the Continuous data module of Stata/SE 12.0. The REM was used for the analysis and weighted mean difference (WMD) was used as the effect measure if the same unit was used in these studies and there were minor differences with respect to the serum levels of ASCA. Sensitivity analysis was performed using Stata/SE 12.0 to evaluate stability of the results after sequential exclusion of one study at a time.

170

171 Patient and public involvement

The present study was a meta-analysis and systematic review based on published data.
Patients and public were not involved in the study design, conduct, data analysis, and result
dissemination.

èlien

175

176 Relationship between ASCA and autoimmune disease

177 We searched the PubMed for studies pertaining to the relationship between ASCA and

178 autoimmune diseases. The two search terms used were autoimmune disease and

2		
3 4 5	179	Saccharomyces cerevisiae. We performed an interval statistic of four indicators of ASCA-
6 7 °	180	sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR-) based on
8 9 10 11	181	the included studies sorted by diseases.
12 13 14	182	
15 16 17 18	183	Results
19 20 21	184	Literature search and characteristics of studies
22 23 24	185	A total of 625 documents were retrieved on database and manual search. Fifty-one
25 26 27	186	duplicate publications were excluded using the document management software. A total of
28 29 30	187	127 records were retained after screening of titles and/or abstracts; the excluded records
31 32 33	188	included review articles, animal model studies, therapeutic or drug research, genetic
34 35 36	189	research, book chapters, duplicate publications not recognized by software, and other
37 38 20	190	irrelevant records. After full-text review for eligibility, 22 records were selected. Finally,
39 40 41	191	we included 9 available studies with adequate data in the meta-analysis (Figure 1). Two
42 43 44	192	studies were included after obtaining the relevant data by contacting the respective authors
45 46 47	193	[9, 10]. In addition, we also verified 2 studies [16, 17] with overlapping study population;
48 49	194	of these, only 1 study was included in the meta-analysis. Three studies [6, 8, 18] were
50 51 52	195	presented as meeting abstracts without adequate data to allow the construction of a 2×2
53 54 55 56	196	table. One article[7] was a letter to the editor and only reported the prevalence rate of
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

ASCA antibody in patients with BD, without information about the control group. One study [19] had employed a unique calculation method and could not be included in the meta-analysis. Among the included studies, there were 326 cases of BD, 294 cases of GIBD, 520 cases of CD, 598 cases of UC, 112 cases of iTB, and 428 HCs (Table 1 and supplementary file 4).

203 Quality assessment

There were 8 case-control studies and 1 retrospective study [9]. The results of quality assessment by QUADAS-2 including the risk of bias and applicability concerns pertaining to each domain [20] are shown in supplementary file 5. The results indicated that the included studies were of high quality in general. Overall, none of the 9 included studies showed any major methodological bias or flaws, which indicates robustness of our metaanalysis.

211 Meta-analysis

Association between ASCA and BD (without gastrointestinal involvement), GIBD and

213 other intestinal diseases

214 Data pertaining to correlation between ASCA and BD (without gastrointestinal

Page 14 of 47

2
3
1
4
5
6
7
, Q
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
2/
24
25
26
27
28
20
29
30
31
32
22
33
34
35
36
27
57
38
39
40
Δ1
41
42
43
44
45
15
40
47
48
49
50
50
51
52
53
54
51
22
56
57
58
50
55
60

215	involvement)/GIBD/CD/UC/iTB are listed in Table 2. No substantial heterogeneity
216	(p>0.1 for all) was observed by using REM to calculate the OR. The results revealed a
217	strong association between all detection types of ASCA and GIBD, especially for ASCA-
218	IgG [OR=5.50 (95% CI 2.58–11.55, p=0.000) and ASCA-IgG+IgA [OR=5.36 (95% CI
219	1.40–20.45), p=0.014]. When comparing GIBD and UC, of the positivity rate for ASCA
220	in GIBD was significantly higher than that for UC: IgA [OR=2.13 (95% CI 1.30–3.50),
221	p=0.003], IgG+IgA [OR=2.19 (95% CI 1.03–4.66), p=0.042], and IgG/IgA [OR=2.03
222	(95% CI 1.30–3.17), p=0.002]. Conversely, the frequency of only ASCA-IgG in patients
223	with CD was significantly higher than that in the GIBD [OR=5.36 (95% CI 1.40–20.45),
224	p=0.009]. Further, on stratified analysis according to detection method, ASCA-IgG was
225	associated with GIBD using both the ELISA method (OR = 3.83 , 95% CI $1.37-10.70$, p
226	= 0.010) and the immunoprecipitation method (IIF) (OR = 8.17, 95% CI 2.73–24.43, p =
227	0.000) (Figure 2). However, no significant difference was observed with respect to
228	ASCA positivity between BD without gastrointestinal involvement and HC and between
229	GIBD and iTB (p>0.05).
230	Diagnostic ability of ASCA for GIBD
231	The overall sensitivity for ASCA-IgG in patients with GIBD detected by IIF was 0.44,
232	which is much higher than that of ELISA [0.20 (95%CI 0.12-0.31)] (Table 3). Combined
233	detection of IgG and IgA by ELISA increased the sensitivity to 0.33 (95% CI 0.23–0.44).
	1

Page 15 of 47

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
24 25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48 40	
49 50	
50 51	
57	
52	
54	
55	
56	
57	
58	
59	
60	

234	However, we observed a low level of sensitivity of ASCA-IgG/IgA by IIF, which may be
235	attributable to the inclusion of only one study with few GIBD patients (n=13).
236	Difference in serum levels of ASCA in GIBD and other intestinal diseases
237	Serum levels of ASCA-IgA observed in GIBD were significantly greater than that in HC
238	[WMD=7.02 (95% CI 2.23–11.81), p=0.004) and UC [WMD=5.28 (95% CI 0.39–10.17),
239	p=0.034] in contrast to ASCA-IgG (p>0.05) (Figure 3). On the contrary, serum levels of
240	ASCA-IgG in CD were significantly greater than that in GIBD [WMD=-11.04 (95% CI -
241	16.74-5.34), p=0.000] (Figure 3). However, we found no significant difference in serum
242	levels of ASCA between BD without gastrointestinal symptoms and HC (p>0.05) (Figure
243	3).
244	
245	Heterogeneity and sensitivity analysis
246	We performed sensitivity analysis to assess the stability of the results. The results showed
247	that the studies by Krause et al (2002), Zhang et al (2018), Kocazeybe et al (2010), and
248	Fresko et al (2005) were the key contributors to the heterogeneity (supplementary file 6).
249	Thus, the results of related subgroup analysis are considered to be less stable.
250	
251	Summary of the relationship of ASCA with autoimmune disease

Sixteen studies reporting the relevance of ASCA and autoimmune diseases were included in the summary. The sensitivity, specificity, LR+, and LR- of ASCA for different autoimmune diseases are summarized in Table 4. Although the diagnostic results of ASCA reported by different studies vary, the summary revealed an overall association between ASCA and autoimmune diseases especially in patients with scleroderma, juvenile idiopathic arthritis, Crohn's disease, and systemic lupus erythematosus with high SEN (>40%), high SPE (>95), high LR+ (>5) (Table 4). Discussion Serological markers in BD. The diagnosis of BD is typically challenging prior to the appearance of clinical symptoms necessary to qualify the diagnostic criteria. Currently, there are no specific laboratory biomarkers of BD; however, some specific autoantibodies in the context of BD have been reported. Therefore, identification of non-invasive specific diagnostic and prognostic biomarkers of BD is of much clinical relevance and a key focus area of research. ASCA in BD and autoimmune diseases. Several recent studies have investigated the relationship of ASCA with BD or other autoimmune diseases. Saccharomyces cerevisiae

has long been utilized in alcoholic and baking industry, and for the production of vaccines
Page 17 of 47

270	owing to its antigenic component. However, during long-term and ubiquitous presence,
271	even the commensal and classically non-pathogenic microbiota can trigger autoimmunity
272	due to loss of immune tolerance towards the resident bacterial flora, like in gastrointestinal
273	tract [21, 22]. The reported similarity of sequences involving the eukaryotic microorganism
274	and self-antigens suggest a mechanism of molecular mimicry and also the plausibility of
275	shared epitopes in different autoimmune diseases. The production of ASCA by the
276	subsequent activation of the humoral immune response may lead to a direct pathogenic role
277	through a costimulatory CD80/86-CD28-mediated effect [21]. Moreover, healthy family
278	members but not spouses of BD patients were also found to have increased levels of ASCA,
279	which indicated a role of genetic factors in addition to environmental stimuli [17, 22]. A
280	large number of studies have assessed the role of ASCA in the context of several systemic
281	and organ-specific autoimmune diseases, such as BD, scleroderma, systemic lupus
282	erythematosus, primary Sjögren's syndrome, and rheumatoid arthritis (Table 4). The
283	results suggest that the relation of ASCA with BD or other autoimmune diseases may
284	represent a potential pathogenic mechanism between ASCA and autoimmunity; this
285	underlines the importance of ASCA as a valuable serologic marker for autoimmune
286	diseases including BD.

Results of the meta-analysis. To the best of our knowledge, this is the second metaanalysis of evidence pertaining to autoantibodies in patients with BD after anticardiolipin

1	
2	
3	
4	
-T 5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

289	antibodies [23]. ASCA have been widely researched in BD, Crohn's disease and other
290	autoimmune disease; in order to investigate the diagnostic value and possible pathogenetic
291	role of ASCA in BD, we included 9 studies in this meta-analysis. Among these, some
292	studies included BD patients with systemic involvement including or excluding
293	gastrointestinal involvement, while others included only BD patients with gastrointestinal
294	involvement. Therefore, in order to reduce the impact of differences with respect to
295	frequency distribution of gastrointestinal symptoms in each study, we disaggregated
296	patients with BD into those with gastrointestinal involvement only and those without
297	gastrointestinal manifestations. The isotype antibodies of ASCA tested and the results
298	presented by the studies are also different. The meta-analysis revealed a strong association
299	of ASCA with GIBD and not with BD with no gastrointestinal involvement; this suggests
300	the role of ASCA in the pathogenesis of gastrointestinal involvement. ASCA showed a
301	moderate diagnostic performance as a biomarker for the differential diagnosis between
302	GIBD and CD, and the negative result of ASCA-IgG may slightly favor the diagnosis of
303	GIBD/BD when compared with CD, especially with concomitant positive HLA-B51 tests
304	[24]. In addition, ASCA-IgA showed a moderate diagnostic value for distinguishing GIBD
305	and UC and would perform better with concomitant detection of IgG. However, ASCA
306	failed to distinguish between GIBD and iTB. Besides, the concomitant evaluation of both
307	continuous data (sensitivity and specificity) and discontinuous data (serum levels) helped
308	increase the credibility of our results.

Page 19 of 47

309	Heterogeneity. Combined with the results of QUADAS-2, we found that the heterogeneity
310	in this meta-analysis was largely attributable to the following reasons (see Table 1,
311	supplementary file 5). 1) The different diagnostic criteria used in the included studies.
312	Different criteria may have different thresholds for diagnosis or place more weight on some
313	symptoms than others. Specifically, the 1990 ISG criteria requires the presence of oral
314	ulceration plus any two of the following: genital ulceration, typical eye lesions, typical skin
315	lesions, or positive pathergy test for diagnosis of BD [2]. In contrast, the 1987 Japan criteria
316	require all four characteristics for the diagnosis of BD, i.e., oral ulceration, typical eye
317	lesions, typical skin lesions, and genital ulceration [25]. The ISG criteria and the Japanese
318	criteria often fail to classify some patients with BD; in addition, the Japanese criteria may
319	also cause misclassified diagnosis. This may have caused the different diagnostic
320	sensitivity and specificity for BD [26]. 2) Differences in demographic characteristics of
321	included studies. The clinical features and laboratory findings tend to exhibit wide
322	variability in different populations and clinical settings [27, 28]. However, we failed to
323	perform subgroup analysis disaggregated by ethnicity owing to the small sample size in
324	each subgroup. 3) Different antibody assays and cut-off values. Commercial kits and in-
325	house tests from different laboratories have variable performance, which may affect the
326	diagnosis and management of patients. We found that different methods and cut-off values
327	were adopted by the studies included in this meta-analysis. Notably, there was significant
328	association between ASCA-IgG and GIBD using both methods; however, it seems that IIF

2	
4	
5	
6	
7	
, 8	
a	
10	
11	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
52 53	
55	
55	
56	
57	
58	
59	
60	

1

329	has a higher sensitivity than ELISA. Nonetheless, further investigations with larger study
330	population are required to provide more definitive evidence. Although previous studies
331	have shown that IIF has a better performance, ELISA provides the titer change of serum
332	antibodies and could have an equal performance to IIF by changing cut-off values to
333	optimize the overall diagnostic performance [29]. 4) According to the QUADAS-2, there
334	are certain concerns that most studies have risk of bias (internal validity) in patient
335	selection, which, to some extent, would cause the the distorted estimation in diagnostic
336	accuracy [20].

Limitations of the meta-analysis. In order to fully evaluate the value of ASCA for 337 differential diagnosis of BD, we included patients with CD, UC, and iTB as the comparison 338 objects in our meta-analysis. However, there are some limitations of this meta-analysis. (1) 339 Gray literature database, paper database, and other language databases were not used for 340 the literature search. Quite a few non-English studies were excluded due to incomplete data 341 or unavailability of full text. (2) Our primary goal was to assess the diagnostic efficacy of 342 343 ASCA in BD, and therefore we did not include all studies pertaining to ASCA in inflammatory bowel disease and iTB. (3) Restricted by the number of included studies and 344 the isotypes of ASCA, we could not perform subgroup analysis disaggregated by different 345 populations and diagnostic criteria. (4) Some studies with incomplete data were excluded 346 after lack of response from the author. (5) There are some inherent statistical shortcomings 347

Page 21 of 47

BMJ Open

using Meta-DiSc during the separate pooling of sensitivity and specificity, as the between-study variance is not included. More advanced methods are not implemented [30].

Conclusion. Our study demonstrated the relationship between ASCA/Saccharomyces cerevisiae and gastrointestinal involvement in BD. Furthermore, ASCA may be detectable years before the diagnosis of some autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who were affected by Crohn's disease years later [31]. However, detection of only ASCA may have a limited value for clinical diagnosis due to its moderate sensitivity and the presence in several other autoimmune diseases. In the future, further studies are needed to explore the role of ASCA and Saccharomyces cerevisiae in BD.

Compliance with Ethical Standards:

Contributorship statement: Study concept and design: Linlin Cheng, Yongzhe Li. Acquisition of data: Linlin Cheng, Liubing Li, Chenxi Liu, Songxin Yan. Statistical analysis and interpretation of data: Linlin Cheng, Liubing Li, Chenxi Liu. Drafting of the manuscript: Linlin Cheng. Revision of manuscript: Yongzhe Li, Linlin Cheng, Liubing Li. Supervision of work: Yongzhe Li. All authors read and approved the final manuscript.

competing interests: None.

Funding: This research was supported by grants from the National Natural Science Foundation of China Grants (81671618, 81871302), CAMS Innovation Fund for Medical Sciences (CIFMS) (2017-I2M-3-001, 2017-I2M-B&R-01)

Ethical approval: This article does not contain any studies with human participants performed by any of the authors.

Data availability statement: All data relevant to the study are included in the article or uploaded as supplementary information. 12.04

References

1. Yazici H., Seyahi E., Hatemi G., Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14:107-19.

- 2. Criteria for diagnosis of Behcet's disease. International Study Group for Behcet's Disease. Lancet. 1990;335:1078-80.
- 3. Davatchi F., Assaad-Khalil S., Calamia K.T., Crook J.E., Sadeghi-Abdollahi B.,
- Schirmer M., Tzellos T., Zouboulis C.C., Akhlagi M., Al-Dalaan A., Alekberova Z.S.,
- Ali A.A., Altenburg A., Arromdee E., Baltaci M., Bastos M., Benamour S., Ben
- Ghorbel I., Boyvat A., Carvalho L., Chen W., Ben-Chetrit E., Chams-Davatchi C.,
- Correia J. A., Crespo J., Dias C., Dong Y., Paixão-Duarte F., Elmuntaser K., Elonakov
- A.V., Graña Gil J., Haghdoost A.-A., Hayani R.M., Houman H., Isayeva A.R.,
- Jamshidi A.R., Kaklamanis P., Kumar A., Kyrgidis A., Madanat W., Nadji A., Namba
- K., Ohno S., Olivieri I., Vaz Patto J., Pipitone N., De Queiroz M.V., Ramos F.,
- Resende C., Rosa C.M., Salvarani C., Serra M.J., Shahram F., Shams H., Sharquie
 - K.E., Sliti-Khanfir M., Tribolet De Abreu T., Vasconcelos C., Vedes J., Wechsler B.,
- Cheng Y.K., Zhang Z., Ziaei N. The International Criteria for Behcet's Disease

1		
2		
5 4	390	(ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the
5	391	new criteria. Journal of the European Academy of Dermatology and Venereology.
6	392	2014;28:338-47.
7	393	4. Alpsoy E., Donmez L., Bacanli A., Apaydin C., Butun B. Review of the chronology of
8 9	394	clinical manifestations in 60 patients with Behcet's disease. Dermatology.
10	395	2003:207:354-6
11	396	5 Sicard D Legras I L Bread beer and wine: yeast domestication in the
12 13	390	Saccharomyces sensu stricto complex. C R Biol. 2011:334:229-36.
14	398	6 Aslan M Kocazevbek B Celik A Erzin Y Hatemi I Hatemi G Yazici H Anti-
15	300	Saccharomyces cerevisiae (ASCA) antibody levels in a subgroup of natients with
16 17	400	ulgerative colitics Crohn's disease. GL Poheat and GL tuberculesis: Correlations with
17	400	disease duration activity and extension. International Journal of Infectious Diseases
19	401	disease duration, activity, and extension. International journal of Infectious Diseases.
20	402	
21	403	7. Filik Levent, Biyikoglu Ibrahim. Differentiation of Behcet's disease from
23	404	inflammatory bowel diseases: Anti-saccharomyces cerevisiae antibody and anti-
24	405	neutrophilic cytoplasmic antibody. World Journal of Gastroenterology. 2008;14:7271.
25	406	8. Kocazeybek B., Aslan M., Erzin Y., Celik A., Hatemi I., Hatemi G., Yazici H. Clinical
26 27	407	utility of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces
28	408	Cerevisiae antibodies for discriminating specific intestinal inflammations. International
29	409	Journal of Infectious Diseases. 2010;14:e118.
30 21	410	9. Zhang Shulan, Luo Jing, Li Ji, Wu Ziyan, Hu Chaojun, Li Ping, Deng Chuiwen, Zhang
32	411	Fengchun, Oian Jiaming, Li Yongzhe, Retrospective evaluation of the clinical utility of
33	412	serological biomarkers in Chinese patients with inflammatory bowel disease: 2-year
34	/13	clinical experience. Clinical Chemistry and Laboratory Medicine (CCLM)
35 36	413	2017:55:865-75
37	414	10 Zhang Shulan Lua Jing Wu Ziyan Pagganhuak Dirk Sahiaraak Patar Painhald
38	415	Dirk Li Ji Zang Viaofang, Zhang Eangahun, Oian Jiaming, Li Vangzha, Antihadias
39 40	416	Dirk, Li Ji, Zeng Alaoreng, Zhang Fengehun, Qian Jianing, Li Fongzhe. Antibodies
40 41	417	against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD
42	418	from intestinal tuberculosis and intestinal Behçet's disease. Clinical and Translational
43	419	Gastroenterology. 2018;9:e133.
44 45	420	11. Lidar M., Langevitz P., Barzilai O., Ram M., Porat-Katz B. S., Bizzaro N., Tonutti E.,
45 46	421	Maieron R., Chowers Y., Bar-Meir S., Shoenfeld Y. Infectious serologies and
47	422	autoantibodies in inflammatory bowel disease: insinuations at a true pathogenic role.
48	423	Ann N Y Acad Sci. 2009;1173:640-8.
49 50	424	12. Mcinnes M. D. F., Moher D., Thombs B. D., Mcgrath T. A., Bossuyt P. M., Clifford
50	425	T., Cohen J. F., Deeks J. J., Gatsonis C., Hooft L., Hunt H. A., Hyde C. J., Korevaar D.
52	426	A., Leeflang M. M. G., Macaskill P., Reitsma J. B., Rodin R., Ruties A. W. S.,
53	427	Salameh J P Stevens A Takwoingi Y Tonelli M Weeks L Whiting P Willis B
54 55	<u>، _ ,</u> ۵۶۶	H Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic
56	720	In Treferred Reporting terms for a systematic review and meanarysis of Diagnostic
57		
58 50		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	429	Test Accuracy Studies: The PRISMA-DTA Statement. Jama. 2018;319:388-96.
4 5	430	13. Stroup D. F., Berlin J. A., Morton S. C., Olkin I., Williamson G. D., Rennie D.,
6	431	Moher D., Becker B. J., Sipe T. A., Thacker S. B. Meta-analysis of observational
7	432	studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational
8	433	Studies in Epidemiology (MOOSE) group Jama 2000:283:2008-12
, 10	433	14 Liberati A Altman D. G. Tetzlaff I. Mulrow C. Gotzsche P. C. Joannidis I. P.
11	454	Clarke M. Deverseyy D. L. Kleijnen L. Mahar D. The DDISMA statement for
12	435	Clarke M., Develeaux P. J., Kleijnen J., Moner D. The PRISMA statement for
13 14	436	reporting systematic reviews and meta-analyses of studies that evaluate healthcare
15	437	interventions: explanation and elaboration. Bmj. 2009;339:b2700.
16	438	15. Cheung M. W., Ho R. C., Lim Y., Mak A. Conducting a meta-analysis: basics and
17	439	good practices. Int J Rheum Dis. 2012;15:129-35.
18 10	440	16. Krause I., Monselise Y., Milo G., Weinberger A. Anti-Saccharomyces cerevisiae
20	441	antibodiesa novel serologic marker for Behcet's disease. Clin Exp Rheumatol.
21	442	2002;20:S21-4.
22	443	17. Monselise A., Weinberger A., Monselise Y., Fraser A., Sulkes J., Krause I. Anti-
23 24	444	Saccharomyces cerevisiae antibodies in Behcet's diseasea familial study. Clin Exp
24	115	Rheumatol 2006:24:S87-90
26	445	18 Prado I I Augusto K I Magalhões P.F. Viana V.T. Saad C.G.S. Goncalves C.P.
27	440	THUO210 Anti appeheremuoga convised entite dies (ASCA) in active heb Cet's
28	447	THOUZ19 Anti-saccharomyces cerevisae antibodies (ASCA) in active bençet s
30	448	disease: A marker of intestinal involvement? Annals of the Rheumatic Diseases.
31	449	2013;71:229
32	450	19. Oshitani N., Hato F., Jinno Y., Sawa Y., Nakamura S., Matsumoto T., Seki S.,
33	451	Kitagawa S., Arakawa T. IgG subclasses of anti Saccharomyces cerevisiae antibody in
35	452	inflammatory bowel disease. Eur J Clin Invest. 2001;31:221-5.
36	453	20. Whiting P. F., Rutjes A. W., Westwood M. E., Mallett S., Deeks J. J., Reitsma J. B.,
37	454	Leeflang M. M., Sterne J. A., Bossuyt P. M. QUADAS-2: a revised tool for the quality
38 39	455	assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529-36.
40	456	21 Rinaldi M Perricone R Blank M Perricone C Shoenfeld Y Anti-Saccharomyces
41	457	cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity
42	457	Clin Rev Allergy Immunol 2013:45:152-61
43 44	450	22 Saibald E ASCA: gapatia marker predictor of disease or marker of a response to an
45	459	22. Schold F. ASCA. generic marker, predictor of disease, of marker of a response to an
46	460	environmental antigen? Gut. $2005;54:1212-3$.
47	461	23. Zouboulis C. C., Buttner P., Tebbe B., Orfanos C. E. Anticardiolipin antibodies in
40 49	462	Adamantiades-Behcet's disease. Br J Dermatol. 1993;128:281-4.
50	463	24. El-Lateef H. M. A. Behect disease in pediatrics; a solitary sign can be enough.
51	464	Pediatric Rheumatology. 2019;17.
52	465	25. Mizushima Y., Inaba G., Mimura Y., Ono S. Diagnostic criteria for Behçet's disease
53 54	466	in 1987, and guideline for treating Behçet's disease1988. 391-3 p.
55	467	26. Chang H. K., Lee S. S., Bai H. J., Lee Y. W., Yoon B. Y., Lee C. H., Lee Y. H., Song
56		
57 59		
50 59		2.
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

2		
3	468	G. G., Chung W. T., Lee S. W., Choe J. Y., Kim C. G., Chang D. K. Validation of the
4 5	469	classification criteria commonly used in Korea and a modified set of preliminary
6	470	criteria for Behcet's disease: a multi-center study. Clin Exp Rheumatol. 2004:22:S21-6.
7	471	27 Kramer M. Hasanreisoglu M. Weiss S. Kumova D. Schaan-Fogler M. Guntekin-
8	471	Froun S Ozdek S Gurelik G Froun M A Goldenberg-Cohen N Cohen V Single-
9 10	472	Nucleatide Delymorphisms in U 22D U 12DD2 (re1405065) Are Highly Drevelent in
11	473	Nucleoude Polymorphisms in 1L23R-1L12RB2 (181493963) Are Highly Plevalent in
12	474	Patients with Bencet's Overtis, and Vary between Populations. Ocul Immunol Inflamm.
13	475	2018:1-8.
14	476	28. Fedrigo A., Skare T. L., Bortoluzzi A. L., Nisihara R. ASCA (Anti- Saccharomyces
16	477	cerevisiae Antibody) in Patients with Scleroderma. Journal of Clinical Rheumatology.
17	478	2019;25:24-7.
18	479	29. Holle J. U., Hellmich B., Backes M., Gross W. L., Csernok E. Variations in
19 20	480	performance characteristics of commercial enzyme immunoassay kits for detection of
21	481	antineutrophil cytoplasmic antibodies: what is the optimal cut off? Ann Rheum Dis.
22	482	2005:64:1773-9.
23 24	483	30 Wang Junfeng Leeflang Mariska Recommended software/packages for meta-
25	184	analysis of diagnostic accuracy Journal of Laboratory and Precision Medicine 2019.4
26	104	31 Israeli E. Grotto I. Gilburd B. Balicer R. D. Goldin E. Wijk A. Shoenfeld V. Anti-
27	405	Sacharomyzas acrovisias and antinoutraphil autoplasmia antihodias as predictors of
28 29	486	inflammature hand diagonal Cest 2005 54 1222 (
30	487	inflammatory bowel disease. Gut. 2005;54:1232-6.
31	488	32. Zhang Shulan, Luo Jing, Wu Ziyan, Roggenbuck Dirk, Schierack Peter, Reinhold
32	489	Dirk, Li Ji, Zeng Xiaofeng, Zhang Fengchun, Qian Jiaming, Li Yongzhe. Antibodies
33 34	490	against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD
35	491	from intestinal tuberculosis and intestinal Behçet's disease. Clin Transl Gastroenterol.
36	492	2018;9:e133.
37	493	33. Zhang Shulan, Luo Jing, Li Ji, Wu Ziyan, Hu Chaojun, Li Ping, Deng Chuiwen,
30 39	494	Zhang Fengchun, Qian Jiaming, Li Yongzhe. Retrospective evaluation of the clinical
40	495	utility of serological biomarkers in Chinese patients with inflammatory bowel disease:
41	496	2-vear clinical experience. Clin Chem Lab Med. 2017:55:865-75.
42 43	497	34 Vaiopoulos G Lakatos P L Papp M Kaklamanis F Economou E Zevgolis V
44	198	Sourdis I. Konstantonoulos K. Serum anti-Saccharomyces cerevisiae antibodies in
45	400	Greek patients with Behcet's disease. Vonsei Med I 2011:52:347-50
46	499	25 Kooprowhold B. Aglan M. Erzin V. Colik A. Hatami I. Hatami G. Variai H.
47 48	500	55. Kocazeybek B., Asian M., Eizin T., Cenk A., Hatenni I., Hatenni G., Fazici H.
49	501	Clinical utility of perinuclear antineutrophil cytoplasmic antibodies and anti-
50	502	Saccharomyces Cerevisiae antibodies for discriminating specific intestinal
51 52	503	inflammations. Int J Infect Dis. 2010;14:e118.
52 53	504	36. Choi C. H., Kim T. I., Kim B. C., Shin S. J., Lee S. K., Kim W. H., Kim H. S. Anti-
54	505	Saccharomyces cerevisiae antibody in intestinal Behcet's disease patients: relation to
55	506	clinical course. Dis Colon Rectum. 2006;49:1849-59.
56 57		
57 58		
59		2

3	507	37. Fresko I., Ugurlu S., Ozbakir F., Celik A., Yurdakul S., Hamuryudan V., Yazici H.
4 5	508	Anti-Saccharomyces cerevisiae antibodies (ASCA) in Behcet's syndrome. Clin Exp
6	509	Rheumatol. 2005:23:S67-70.
7	510	38 Rhee S H Kim Y B Lee E S Comparison of Behcet's disease and recurrent
8	511	anthous ulcer according to characteristics of gastrointestinal symptoms. I Korean
9 10	511	Mod Soi 2005:20:071.6
11	512	$\begin{array}{c} \text{Med Sci. 2003, 20.971-0.} \\ \text{20 K} \text{D} \text{C} \text{K} \text{M} \text{K} \text{L} \text{L} \text{L} \text{L} \text{L} \text{D} \text{C} \text{K} \text{L} \text{L}$
12	513	39. Kim B. G., Kim Y. S., Kim J. S., Jung H. C., Song I. S. Diagnostic role of anti-
13	514	Saccharomyces cerevisiae mannan antibodies combined with antineutrophil
14	515	cytoplasmic antibodies in patients with inflammatory bowel disease. Dis Colon
16	516	Rectum. 2002;45:1062-9.
17	517	40. De Vries M., Van Der Horst-Bruinsma I., Van Hoogstraten I., Van Bodegraven A.,
18 10	518	Von Blomberg B. M., Ratnawati H., Dijkmans B. pANCA, ASCA, and OmpC
20	519	antibodies in patients with ankylosing spondylitis without inflammatory bowel disease.
21	520	J Rheumatol. 2010;37:2340-4.
22	521	41. Riente L., Chimenti D., Pratesi F., Delle Sedie A., Tommasi S., Tommasi C.,
23 24	522	Bombardieri S., Migliorini P. Antibodies to tissue transglutaminase and
25	523	Saccharomyces cerevisiae in ankylosing spondylitis and psoriatic arthritis. I
26	520	Rheumatol 2004:31:920-4
27	524	42 Mundwiler M. J. Mai J. Landers C. L. Payaille J. D. Targan S. Waisman M. H.
28 29	525	42. Multidwher M. E., Mer E., Landers C. J., Revenie J. D., Targan S., Weisinan W. H.
30	526	initialinatory bower disease serologies in ankylosing spondyntis patients, a prot
31	527	study. Arthritis Res Ther. 2009;11:R1//.
32	528	43. Wallis Dinny, Asaduzzaman Arundip, Weisman Michael, Haroon Nigil, Anton
33 34	529	Ammepa, Mcgovern Dermot, Targan Stephan, Inman Robert. Elevated serum anti-
35	530	flagellin antibodies implicate subclinical bowel inflammation in ankylosing
36	531	spondylitis: an observational study. Arthritis Research & Therapy. 2013;15:R166.
37	532	44. Krause I., Blank M., Cervera R., Font J., Matthias T., Pfeiffer S., Wies I., Fraser A.,
38 39	533	Shoenfeld Y. Cross-reactive epitopes on beta2-glycoprotein-I and Saccharomyces
40	534	cerevisiae in patients with the antiphospholipid syndrome. Ann N Y Acad Sci.
41	535	2007;1108:481-8.
42 43	536	45. Gonzalez T., Malagon C., Guarnizo P., Mosquera A. C., Chila-Moreno L., Romero-
44	537	Sanchez C. Autoantibodies and Gastrointestinal Symptoms in Colombian Children
45	538	with Juvenile Idionathic Arthritis Curr Rheumatol Rev. 2018:14:163-71
46 47	520	46 Muratori P. Muratori I. Guidi M. Maccariello S. Pannas G. Ferrari R. Gionchetti
47 48	559	40. Mutatori I., Mutatori E., Oudri M., Maccareno S., Lappas O., Ferrari K., Ofonenetti D. Commissi M. Dianchi F. D. Anti Saacharamyaaa aarayigiga antibadiga (ASCA) and
49	540	P., Campien M., Blancin F. B. Anti-Saccharolityces cerevisiae antibodies (ASCA) and
50	541	autoimmune liver diseases. Clin Exp Immunol. 2003;132:4/3-6.
51 52	542	47. Czaja A. J., Shums Z., Donaldson P. T., Norman G. L. Frequency and significance of
52 53	543	antibodies to Saccharomyces cerevisiae in autoimmune hepatitis. Dig Dis Sci.
54	544	2004;49:611-8.
55	545	48. Papp M., Norman G. L., Vitalis Z., Tornai I., Altorjay I., Foldi I., Udvardy M., Shums
56 57		
58		
59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
4	546	Z., Dinya T., Orosz P., Lombay B., Jr., Par G., Par A., Veres G., Csak T., Osztovits J.,
5	547	Szalay F., Lakatos P. L. Presence of anti-microbial antibodies in liver cirrhosisa tell-
6 7	548	tale sign of compromised immunity? PLoS One. 2010;5:e12957.
8	549	49. Sakly W., Jeddi M., Ghedira I. Anti-Saccharomyces cerevisiae antibodies in primary
9	550	biliary cirrhosis. Dig Dis Sci. 2008;53:1983-7.
10	551	50. Main J., Mckenzie H., Yeaman G. R., Kerr M. A., Robson D., Pennington C. R.,
11 12	552	Parratt D. Antibody to Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease.
13	553	Bmj. 1988;297:1105-6.
14	554	51. Shor D. B., Orbach H., Boaz M., Altman A., Anaya J. M., Bizzaro N., Tincani A.,
15 16	555	Cervera R., Espinosa G., Stojanovich L., Rozman B., Bombardieri S., Vita S. D.,
17	556	Damoiseaux J., Villalta D., Tonutti E., Tozzoli R., Barzilai O., Ram M., Blank M.,
18	557	Agmon-Levin N., Shoenfeld Y. Gastrointestinal-associated autoantibodies in different
19 20	558	autoimmune diseases Am J Clin Exp Immunol 2012 ⁻¹⁻⁴⁹⁻⁵⁵
20	559	52 Yazici D Avdin S Z Yayuz D Tarcin O Devneli O Direskeneli H Akalin S
22	560	Anti-Saccaromyces Cerevisiae antibodies (ASCA) are elevated in autoimmune thyroid
23	561	disease ASCA in autoimmune thyroid disease Endocrine 2010:38:194-8
24 25	562	53 Mankai A Thabet Y Manoubi W Achour A Sakly W Ghedira I Anti-
26	562	Saccharomyces cerevisiae antibodies are elevated in Graves' disease but not in
27	567	Hashimoto's thyroiditis Endocr Res 2013:38:08-104
28 29	504	54 Dai H. Li Z. Zhang V. Ly P. Goo V. M. Elevated levals of sarum IgA against
30	505	Sacharamyaas aaravisiaa mannan in nationts with rhoumatoid arthritis. Call Mal
31	500	Immunol 2000:6:261.6
32 33	567	55 Dei II. Li Z. Zhang V. Ly D. Coo V. M. Elevated levels of some antihedies accient
34	568	55. Dal H., Li Z., Zhang Y., Lv P., Gao A. M. Elevated levels of seruin antibodies against
35	569	Saccharomyces cerevisiae mannan in patients with systemic lupus erythematosus.
36 37	570	Lupus. 2009;18:1087-90.
38	571	56. Mankai A., Sakly W., Thabet Y., Achour A., Manoubi W., Ghedira I. Anti-
39	572	Saccharomyces cerevisiae antibodies in patients with systemic lupus erythematosus.
40 41	573	Rheumatol Int. 2013;33:665-9.
42	574	57. Sakly W., Mankai A., Sakly N., Thabet Y., Achour A., Ghedira-Besbes L., Jeddi M.,
43	575	Ghedira I. Anti-Saccharomyces cerevisiae antibodies are frequent in type 1 diabetes.
44 45	576	Endocr Pathol. 2010;21:108-14.
46	577	58. Alunno A., Bistoni O., Carubbi F., Valentini V., Cafaro G., Bartoloni E., Giacomelli
47	578	R., Gerli R. Prevalence and significance of anti-saccharomyces cerevisiae antibodies in
48 49	579	primary Sjogren's syndrome. Clin Exp Rheumatol. 2018;36 Suppl 112:73-9.
50		
51	580	
52 53	581	
54	501	
55	582	
56 57		
58		2
59		Z
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntml

1 2		
3	584	Figure 1 PRISMA flow diagram illustrating the literature screening process and the
4 5	504	criteria for inclusion of studies in the mate analysis
6	202	enteria for merusion of studies in the meta-analysis
7		
8 9	586	Figure 2 Forest plot of the association between the presence of ASCA-IgG and GIBD
10		
11 12	587	stratified by detection methods
12		
14	588	Figure 3 Forest plot comparing serum levels of ASCA between BD without
15 16		
17	589	gastrointestinal symptom/GIBD and HC/CD/UC
18		
19 20		
20	590	
22		
23		
24 25	591	
26		
27 28	592	
28 29		
30		
31 32	593	
32		
34		
35	594	
30 37		
38	595	
39 40		
40 41		
42	596	
43 44		
45	507	
46	597	
47 48		
49	598	
50		
51 52		
53	599	
54		
55 56	600	
57	000	
58		2'
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2															
3 4 5	601	Та	Table 1 Characteristics of studies included in the meta-analysis of Anti-Saccharomyces												
6 7 8	602	cerevisiae antibodies in Behçet's disease, its main differential diagnoses, and healthy													
9 10 11	603					con	trols.								
12								Samp	ole size	9					
13 14 y ear an 15	d author	Count ries	Туре	Type of article	Design	BD	GIBD	CD	UC	iTB	нс	Methods	Brands of experimental materials	Cut-off	Diagnostic criteria
1 <u>6</u> 12018 Shula 17	in Zhang [32]	China	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	/	71	171	208	57	70	ELISA	Inova Diagnostic	25	NR

¹ 2018 Shulan Zhang [32] 17	China	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	/	71	171	208	57	70	ELISA	Inova Diagnostic	25	NR
18 2017 Shulan Zhang [33] 19	China	lgG; lgA; lgG/lgA; lgG+lgA	Original article	Retrospective study	/	34	128	140	31	/	ELISA	Euroimmun, Luebeck	20	NR
20														
2021 George Vaiopoulos [34]	Greece	IgG; IgA	Original article	case-control	58	4#	/	/	/	56	ELISA	Inova Diagnostic	NR	1990 ISG criteria
22 39 10 B. Kocazeybek. [35]	Turkey	lgG/lgA	conference Abstract	case-control	1	13	63	102	10	165	IIF	Euroimmun, Luebeck	NR	NR
23														
2006 Chang Hwan Choi [36] 25	Korea	IgG	Original article	case-control	30*	106	/	/	/	45	IIF	Euroimmun, Luebeck	1:1000	1987 Japan criteria
26														
272005 I. Fresko [37]	Turkey	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	85	8	24	25	/	21	ELISA	Inova Diagnostic	28 for IgG; 25 for IgA	1990 ISG criteria
28														
2005 Seung-Ho Rhee [38] 30	Korea	IgG	Original article	case-control	/	16	/	/	/	4	ELISA	Inova Diagnostic	25	1987 Japan criteria
312002 I. Krause [16]	Israel	lgG; lgA; lgG/lgA; lgG+lgA	Original article	case-control	27*	1	1	1	/	10	ELISA	Inova Diagnostic	25	1990 ISG criteria
32														
33 2002 Byeong Gwan Kim [39] 34	Korea	lgG+lgA+lgM	Original article	case-control	/	36	85	77	14	20	ELISA	plate: Sigma Chemical antibody: Biosoft	ROC curve	1987 Japan criteria
35														
36 604	/:no	sample: ELISA: enzy	me-linked immu	nosorbent a	ssav.	IIF	indire	ect im	nunot	fluores	scence a	ssav: NR: not reporte	ed:	
37													,	
605	SD:	standard deviation; *:	all without gasti	ointestinal	mani	festat	ions;	#: lacl	k of c	orresp	onding o	data; 1990 ISG criter	ia:	

the 1990 criteria of Behçet's Disease International Study Group; 1987 Japan criteria: the 1987 criteria by the Behçet's

607 Disease Research Committee of Japan; BD: Behçet's disease; GIBD: gastrointestinal Behçet's disease; CD: Crohn's

42 608 disease; UC: ulcerative colitis; iTB: intestinal tuberculosis; HC: healthy control 43

2	
3	
Δ	
- -	
Э	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
55	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
57	
20	
59	

		symptom//GIB		intestinai diseases	
	Subgroup	Antibody	Number of studies	Diagnostic OR (95% CI)	Significance test (p)
	BD vs. HC	ASCA-IgG	4	1.00 (0.28–3.53)	0.997
		ASCA-IgA	2	2.50 (0.63-9.96)	0.194
		ASCA-IgG+IgA	2	1.06 (0.17-6.78)	0.954
		ASCA-IgG/IgA	2	2.88 (0.62–13.44)	0.179
	GIBD vs. HC	ASCA-IgG	3	5.50 (2.58–11.55)	0.000
		ASCA-IgA	2	2.65 (1.18-5.96)	0.018
		ASCA-IgG+IgA	2	5.36 (1.40-20.45)	0.014
		ASCA-IgG/IgA	3	2.90 (1.47-5.74)	0.002
	GIBD vs. CD	ASCA-IgG	3	0.48(0.28-0.83)	0.009
		ASCA-IgA	3	0.91(0.56-1.46)	0.685
		ASCA-IgG+IgA	3	0.58(0.30-1.11)	0.100
		ASCA-IgG/IgA	4	0.57 (0.28–1.15)	0.117
	GIBD vs. UC	ASCA-IgG	3	1.78 (0.98–3.22)	0.057
		ASCA-IgA	3	2.13 (1.30-3.50)	0.003
		ASCA-IgG+IgA	3	2.19 (1.03-4.66)	0.042
		ASCA-IgG/IgA	4	2.03 (1.30-3.17)	0.002
	GIBD vs. iTB	ASCA-IgG	2	1.08 (0.50-2.32)	0.854
		ASCA-IgA	2	1.51 (0.71-3.22)	0.290
		ASCA-IgG+IgA	2	1.02 (0.40–2.62)	0.972
		ASCA-IgG/IgA	3	1.05 (0.58–1.87)	0.883
BD: B UC: ul	ehçet's disease witho cerative colitis; iTB:	ut gastrointestinal syn	ptom; GIBD: ga;	istrointestinal Behçet's d	isease; CD: Crol

Table 2. Association between the presence of ASCA and BD (without gastrointestinal 614

	Table 3 Pooled s	sensitivity and specific	ity of ASCA-IgG and	IgG/IgA for c	liagnosis o
624		GIBD assess	ed by ELISA and IIF		
	Methods	EL	ISA	Ι	IF
	Diagnostic accuracy	Pooled sensitivity (95% CI)	Pooled specificity (95% CI)	Sensitivity	Specifici
	ASCA-IgG	0.20 (0.12–0.31)	0.93 (0.86–0.98)	0.44	0.91
	ASCA-IgG/IgA	0.33 (0.23–0.44)	0.85 (0.76–0.91)	0.15	0.96
625	ELISA: enzyme-linked i	mmunosorbent assay; IIF: ind	irect immunofluorescence as	say	
626					
627					
628					
629					
630					
631					
632					
633					
634					

2 3 4	635 Table 4 Summ	ary of the	diagnosti	c performa	ance of A	SCA in	autoimmune disease		
5 Reference	Autoimmune disease	Туре	SEN (%)	SPE (%)	LR+	LR-	Supplementary information		
7		IgG	43.24	98.25	24.65	0.58	African descendants showed higher positivity rates for ASCA- IgG. ASCA-IgA was less frequently detected in patients with severe disease		
8 [28] 9	Scleroderma	IgA	16.22	94.74	3.08	0.88			
10 1410 41 42		IgG	0-11.63	89.74–98.72	1.13-3.00	0.97–0.98	ASCA IgA levels were significantly increased in patients with		
12 ^{43]}	Ankylosing spondylitis	IgA	1.28-23.26	91.03-100.00	2.59-3.71	0.84–0.99	HLA-B27-associated SpA, particularly in AS and uSpA		
14 ^[44]	Antiphospholipid syndrome	IgG/IgA	20.00	95.00	/	/			
15 [45]	Juvenile Idiopathic Arthritis	IgA	0-50.00	94.74	9.50	0.53			
16		IgG	16.42-27.53	100.00	/	0.84			
[46, 47, 48] 18	Autoimmune hepatitis	IgA	11.94	94.74	2.27	0.93			
19		IgG/IgA	18.52	84.00	1.16	0.97			
20		IgG	10.57-18.95	97.50-100.00	7.58	0.83-0.89			
[46, 48, 49] 22	Primary biliary cirrhosis	IgA	11.58–18.70	94.74–98.75	3.55-9.26	0.86-0.90			
23		IgG/IgA	20.26–24.21	84.00-96.25	1.27-6.46	0.79–0.95			
24		IgG	28.00	100.00	/	0.72			
2546, 48]	Primary sclerosing cholangitis	IgA	32.00	94.74	6.08	0.72			
26 27		IgG/IgA	30.51	84.00	1.91	0.83			
218, 40, 46,	Crohn's disease	IgG	13.75-69.57	97.96–100	6.74	0.30-0.88	Patients with more complicated disease course showed a trend		
29 ^{0, 51}]		IgA	19.30-71.43	94.74–100.00	9.91-29.40	0.50-0.71	- Ior greater seroreactivity towards ASCA.		
30 31 ^[51]	Cryoglobulinemia	IgG	7.10	99.50		/			
P54 , 52, 53]	Graves' disease	IgG	5.70-12.50	94.17–99.50	2.15-3.76	0.91-0.93	ASCA was elevated in Graves' disease but not in Hashimoto's		
33		IgA	8.40-16.67	94.17–96.88	2.69-2.86	0.88-0.95	- thyroiditis		
34 25		IgG	10.13-20.00	89.74–91.45	0.99–2.34	0.87-1.00	ASCA IgA levels strongly correlated with C-reactive protein		
35 [41, 54] 36	Rheumatoid arthritis	IgA	17.72-40.00	91.03-94.74	1.97-7.60	0.63-0.90	- levels and erythrocyte sedimentation rate		
37		IgM	13.33	94.74	2.53	0.91	-		
38		IgG	4.50-57.50	91.45-99.50	6.72–9.38	0.46-0.73	ASCA IgG levels in SLE patients during remission were		
39 [51, 55, 56] 40	Systemic lupus erythematosus	IgA	7.50-12.07	94.74–99.38	1.43-19.31	0.88-0.98	- relatively lower, indicating a possible correlation with disease activity		
41		IgG/IgA	31.90	96.25	8.51	0.71			
42		IgG	20.98	98.09	10.98	0.81			
43 _[57]	Type 1 diabetes	IgA	9.82	98.73	7.71	0.91			
44 45		IgG/IgA	24.55	97.45	9.64	0.77			
46 [58] 47	Primary Sjögren's syndrome	IgG/IgA	4.81	100.00	/	0.95	ASCA positivity was associated with pSS specific clinical and serological features		
48 [51] 49	Vasculitides	IgG	6.50	99.50	/	/			

_

_

_

SEN: sensitivity; SPE: specificity; LR+: positive likelihood; LR-: negative likelihood

Serum	level	s of	ASCA
-------	-------	------	------

Rage 35 of 47	BMJ Open	WMD (95% CI)	% Weight
BD vs HC ASCA-IgA 2002 I.Krause 2005 I.Fresko 2011 George Vaiopoulos Subtotal (I-squared = 93.9%, p = 0.000)	**	5.80 (1.26, 10.34) 4.00 (0.79, 7.21) -6.61 (-9.47, -3.76) 0.95 (-7.10, 9.00)	32.06 33.78 34.16 100.00
D vs HC ASCA-IgG 2002 I.Krause 2005 I.Fresko 2011 George Vaiopoulos 201btotal (I-squared = 67.1%, p = 0.048)	•	9.90 (2.26, 17.54) 1.80 (-2.17, 5.77) 0.28 (-1.32, 1.89) 2.50 (-1.44, 6.43)	17.60 34.19 48.20 100.00
GIBD vs HC ASCA-IgA 2005 I.Fresko 2018 Shulan Zhang Subtotal (I-squared = 0.0%, p = 0.863)	++0	7.48 (0.40, 14.55) 6.63 (0.12, 13.14) 7.02 (2.23, 11.81)	45.86 54.14 100.00
HBD vs HC ASCA-IgG 2005 I.Fresko P018 Shulan Zhang Subtotal (I-squared = 11.8%, p = 0.287)	4	6.68 (-0.48, 13.83) 2.15 (-2.11, 6.41) 3.46 (-0.56, 7.49)	28.99 71.01 100.00
CIBD vs CD ASCA-IgA 2005 I.Fresko 2017 Shulan Zhang 2018 Shulan Zhang Subtotal (I-squared = 84.7%, p = 0.001)		-51.03 (-95.72, -6.33) 26.57 (3.25, 49.89) -12.56 (-20.68, -4.44) -8.13 (-41.57, 25.31)	24.02 34.93 41.05 100.00
GIBD vs CD ASCA-IgG 2005 I.Fresko 2017 Shulan Zhang 2018 Shulan Zhang Bubtotal (I-squared = 25.9%, p = 0.260)		-18.53 (-33.65, -3.40) -5.13 (-14.44, 4.18) -12.26 (-17.38, -7.14) -11.04 (-16.74, -5.34)	12.63 28.18 59.20 100.00
GIBD vs UC ASCA-IgA 2005 I.Fresko 2010 Shulan Zhang 2016 Shulan Zhang Subtotal (I-squared = 0.0%, p = 0.437)	÷	4.67 (-3.23, 12.58) 20.61 (-3.27, 44.49) 4.56 (-1.89, 11.01) 5.28 (0.39, 10.17)	38.35 4.20 57.45 100.00
Auby IS UCASCA (aGIY) - http:// 2002 Shulan Zhang 2002 Shulan Zhang Subtotal (-Koqurard = 0.0%, p = 0.766) 1073 Weights are from random effects analysis	bmjopen.bmj.com/s	site/about/gu 0.86 (-6.76, 8.48) 2.24 (-1.63, 6.11) 1.63 (-1.68, 4.94)	18.84 73.13 100.00
14 -95.7	0	95.7	

ì

PRISMA-DTA Checklist

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
TITLE / ABSTRACT		·	
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	1
	·		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Clinical role of index test	D1	State the scientific and clinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimally acceptable test accuracy (or minimum difference in accuracy for comparative design).	4, 5
, Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	4, 5
METHODS	·		
Protocol and	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide	5
registration		registration information including registration number.	CRD42020115245
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6, 7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6, 7
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	7
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	7
Diagnostic accuracy measures	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-lesion).	7, 8
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include, but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e)	7, 8

Page 37 of 47

BRIS MAL

1 2

> 46 47

PRISMA-DTA Checklist

Reporting checklist for meta-analysis of observational studies.

Based on the MOOSE guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the MOOSEreporting guidelines, and cite them as:

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283(15):2008-2012.

33 34			Reporting Item	Page Number
35 36	Title		2	
37 38 39 40 41 42 43	Abstract	<u>#1</u>	Identify the study as a meta-analysis of observational research	1
44 45 46 47 48 49 50 51 52 53		<u>#2</u>	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number (From PRISMA checklist)	1-2
54 55 56 57 58 59 60	Background	<u>#3a</u>	Problem definition For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

1 2		<u>#3b</u>	Hypothesis statement	4-5
3 4		<u>#3c</u>	Description of study outcomes	n/a
5 6 7 8 9 10 11				The study outcomes were reported in the section of Results an d Discussion.
12 13		<u>#3d</u>	Type of exposure or intervention used	4
14 15 16		<u>#3e</u>	Type of study designs used	4
10 17 18		<u>#3f</u>	Study population	4, 5
19 20	Methods			
21 22 23 24	Search strategy	<u>#4a</u>	Qualifications of searchers (eg, librarians and investigators)	6, 7
25 26 27 28	Search strategy	<u>#4b</u>	Search strategy, including time period included in the synthesis and keywords	5, 6
29 30 31 32	Search strategy	<u>#4c</u>	Effort to include all available studies, including contact with authors	7
33 34 35	Search strategy	<u>#4d</u>	Databases and registries searched	5, 6
36 37 38 39 40 41 42 43	Search strategy	<u>#4e</u>	Search software used, name and version, including special features used (eg, explosion)	n/a The search was perf ormed on website of databases
44 45 46 47	Search strategy	<u>#4f</u>	Use of hand searching (eg, reference lists of obtained articles)	6
48 49 50 51	Search strategy	<u>#4g</u>	List of citations located and those excluded, including justification	6, 7
52 53 54	Search strategy	<u>#4h</u>	Method of addressing articles published in languages other than English	6
56 57 58	Search strategy	<u>#4i</u>	Method of handling abstracts and unpublished studies	6
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	I

1 2 3	Search strategy	<u>#4j</u>	Description of any contact with authors	7
4 5 6 7		<u>#5a</u>	Description of relevance or appropriateness of studies gathered for assessing the hypothesis to be tested	7
8 9 10 11		<u>#5b</u>	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	7
12 13 14 15		<u>#5c</u>	Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	7
16 17 18		<u>#5d</u>	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7
20 21 22 23		<u>#5e</u>	Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results	7
24 25 26		<u>#5f</u>	Assessment of heterogeneity	8
27 28 29 30 31 32 33 34 35 36		<u>#5g</u>	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	8
37 38		<u>#5h</u>	Provision of appropriate tables and graphics	n/a
 39 40 41 42 43 44 45 				The methods were d escribed in text inste ad of tables and grap hics.
46 47	Results			
48 49 50 51		<u>#6a</u>	Graphic summarizing individual study estimates and overall estimate	10-12
52 53 54 55		<u>#6b</u>	Table giving descriptive information for each study included	9, 10
56 57 58		<u>#6c</u>	Results of sensitivity testing (eg, subgroup analysis)	12
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtr	nl

Page 40 of 47

1 2		<u>#6d</u>	Indication of statistical uncertainty of findings	12
3 4	Discussion			
5 6 7		<u>#7a</u>	Quantitative assessment of bias (eg. publication bias)	n/a
7 8 9 10 11 12 13 14 15				Small number of studies in each subgroup prevented publication bias analysis
16 17 18 19		<u>#7b</u>	Justification for exclusion (eg, exclusion of non–English- language citations)	16
20 21		<u>#7c</u>	Assessment of quality of included studies	15, 16
22	Conclusion			
24 25 26 27		<u>#8a</u>	Consideration of alternative explanations for observed results	17
28 29 30 31 32		<u>#8b</u>	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	17
33 34 35		<u>#8c</u>	Guidelines for future research	17
36 37		<u>#8d</u>	Disclosure of funding source	18
38 39 40	Reproduced w	vith per	rmission from JAMA. 2000. 283(15):2008-2012. Copyright (All rights reserved This checklist was completed on 26. Au	© 2000 American
41 42	https://www.go	bodrep	ports.org/, a tool made by the EQUATOR Network in collabor	pration with
43 44	Penelope.ai	-		
45				
46 47				
48 49				
50 51				
52				
53 54				
55 56				
57				
58 59			For poor review only http://hmionon.hmi.com/site/shout/suidslives.ukt	ml
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtr	111

Supplementary file 3 The full search strategy for EMBASE

#1 yeast?, AND baker? OR (baker? AND yeast?) OR (yeast?, AND brewer?) OR (brewer? AND yeast?) OR (s AND cerevisiae) OR (s. AND cerevisiae) OR (saccaromyces AND cerevisiae) OR (saccharomyces AND capensis) OR (saccharomyces AND cerevisia) OR (saccharomyces AND cerevisiae) OR (saccharomyces AND cerevisial) OR (saccharomyces AND cervisiae) OR (saccharomyces AND diastaticus) OR (saccharomyces AND italicus) OR (saccharomyces AND oviformis) OR (saccharomyces AND uvarum AND var. AND melibiosus) OR asca

#2 behcet? OR ('triple symptom' AND complex) OR (triple AND symptom AND complex) OR (complex, AND triple AND symptom) OR (complices, AND triple AND symptom) OR (symptom AND complex, AND triple) OR (symptom AND complices, AND triple) OR (triple AND symptom AND complices) OR 'adamantiades behcet' OR (old AND silk AND route AND disease) OR behcet

#3 #1 AND #2

BMJ Open

Supplementary file 4 Demographic characteristics of patients and healthy controls included in the

meta-analysis

BD: Behçet's disease; GIBD: gastrointestinal Behçet's disease; CD: Crohn's disease; UC: ulcerative colitis; iTB: intestinal tuberculosis; HC: healthy control; /: No such group included; Blank: no such information in the article

	BD	GIBD	CD	UC	iTB	НС
Female, n (%)						
2018 Shulan Zhang	/					/
2017 Shulan Zhang			37 (28.9)	69 (49.3)		
2011 George Vaiopoulos	28 (48.3)	/	/	/	/	
2010 B. Kocazeybek	/	5 (38.5)	39 (61.9)	51 (50.0)	3 (30.0)	99 (60.0)
2006 Chang Hwan Choi	16 (86.6)	47 (44.3)	/	/	/	24 (53.3)
2005 I. Fresko	20 (23.5)	2 (25.0)	10 (41.7)	10 (40.0)	/	9 (42.9)
2005 Seung-Ho Rhee	/	28 (63.6)	/	/	/	
2002 I. Krause	20 (74.1)		· L;			
2002 Byeong Gwan Kim	/	20	28	36	7	
Median age at study (max, min)			14			
2018 Shulan Zhang	/		-	0		
2017 Shulan Zhang	/		33 (69,13)	42 (76,13)		/
2011 George Vaiopoulos	38.5 (17,70)	/	/	1	1	
2010 B. Kocazeybek	/	32.11 (23.22,41)	37.56 (24.91,50.21)	40.72 (27.28,54.16)	SD 9.96	35.07 (24.58,45.56)
2006 Chang Hwan Choi	38 (18,65)	37	/	/	/	39 (16,69)
2005 I. Fresko	34.3 (32.0,36.7)	26.9 (24.1,29.6)	38.9 (34.6,43.2)	35.6 (33.0,38.3)	/	33.7 (30.4,37.0)
2005 Seung-Ho Rhee	/	37.6	/	/	/	
2002 I. Krause	41.6 (36.9,46.2)					
2002 Byeong Gwan Kim	/	43.2	40.9	30.6	33.6	

Supplementary file 5 Results of quality assessment of the included studies based on the QUADAS-1 tool

