#### **Supporting Information**

### **Triple-Negative Breast Cancer Cells Exhibit Differential Sensitivity to Cardenolides from** *Calotropis gigantea*

Petra J. Pederson,<sup>†,‡</sup> Shengxin Cai,<sup>§,^</sup> Chase Carver, <sup>II</sup> Douglas R. Powell,<sup>^</sup> April L. Risinger,<sup>†,‡</sup> Tanja Grkovic,<sup>#</sup> Barry R. O'Keefe, <sup>⊥,¶</sup> Robert H. Cichewicz <sup>§,^,\*</sup>, and Susan L. Mooberry, <sup>†,‡\*</sup>

<sup>†</sup>Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States

<sup>‡</sup>Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States

<sup>§</sup>Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States

<sup>^</sup>Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States

<sup>II</sup>Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States

<sup>#</sup>Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States

<sup>1</sup>Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States

<sup>#</sup>Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States

\*Corresponding Authors

| List of Contents |                                                                                               |             |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------|-------------|--|--|--|
|                  | Supplementary methods for siRNA transfection and CRISPR gene knock out                        | S3          |  |  |  |
| Table S1         | <sup>1</sup> H NMR Data for compounds <b>1–4</b> ( $\delta$ in ppm, J in Hz)                  | S4          |  |  |  |
| Table S2         | <sup>13</sup> C NMR Data for compounds 1–4, and 6-9 ( $\delta$ in ppm)                        | S5          |  |  |  |
| Table S3         | <sup>1</sup> H NMR Data for compounds <b>6–9</b> ( $\delta$ in ppm, J in Hz)                  | <b>S</b> 6  |  |  |  |
| Table S4         | List of sources for antibodies and dilutions used                                             | S7          |  |  |  |
| Figure S1        | X-ray structures of compounds 1-3, 7, 8, and bromobenzoyl derivative of 4                     | <b>S</b> 8  |  |  |  |
| Figure S2        | ECD curves of compounds 1-3, 6, and 7-9                                                       | S9          |  |  |  |
| Figure S3        | Concentration response data for cytotoxicity of <i>C. gigantea</i> cardenolides in TNBC cells | S10         |  |  |  |
| Figure S4        | Effects of digoxin on intracellular calcium                                                   | S11         |  |  |  |
| Figure S5        | Total protein for western blots in Figure 5                                                   | S12         |  |  |  |
| Figure S6        | Validation of membrane enrichment and NCX1 antibody                                           | <b>S</b> 13 |  |  |  |
| Figure S7        | Effect of CRISPR knockout of NCX1 in BT-549 cells                                             | S14         |  |  |  |
| Figure S8-S14    | NMR spectra and HRESIMS of uzarigenin (1)                                                     | S15-S18     |  |  |  |
| Figure S15-S21   | 1D, 2D NMR spectra and HRESIMS of coroglaucigenin (2)                                         | S18-S21     |  |  |  |
| Figure S22-S28   | 1D, 2D NMR spectra and HRESIMS of desglucouzarin (3)                                          | \$22-\$25   |  |  |  |
| Figure S29-S35   | 1D, 2D NMR spectra and HRESIMS of frugoside (4)                                               | S25-S28     |  |  |  |
| Figure S36-S42   | 1D, 2D NMR spectra and HRESIMS of frugosidal (5)                                              | S29-S32     |  |  |  |
| Figure S43-S49   | 1D, 2D NMR spectra and HRESIMS of glucofrugoside (6)                                          | \$32-\$35   |  |  |  |
| Figure S50-S56   | 1D, 2D NMR spectra and HRESIMS of uscharin (7)                                                | \$36-\$39   |  |  |  |
| Figure S57-S63   | 1D, 2D NMR spectra and HRESIMS of calotoxin (8)                                               | S39-S42     |  |  |  |
| Figure S64-S70   | 1D, 2D NMR spectra and HRESIMS of calotropin (9)                                              | S43-S46     |  |  |  |

#### Supplementary Methods for siRNA Transfection and CRISPR Gene Knock Out

siRNA Transfection. BT-549 cells were transfected for 48 h with Lipofectamine RNAi-MAX (Thermo Fisher Scientific) at a final concentration of 0.05% (v/v) and according to the manufacturer's directions. A pool of predesigned siRNAs targeting the SLC8A1 gene (NCX1) were purchased from Sigma: SASI\_Hs02\_00325545, SASI\_Hs02\_00325535, SASI\_Hs02\_00325555, SASI\_Hs01\_00071833. MISSION® siRNA Universal Negative Control #1 (Sigma) was used as a negative control. The final concentration of pooled siRNA or negative control siRNA was 5 nM. Following transfection, cells were harvested for membrane enrichment.

**CRISPR Gene Knock Out**. BT-549 cells expressing doxycycline-inducible Cas9 were kindly provided by Ratna Vadlamudi. sgRNAs targeting the SLC8A1 gene (NCX1) were designed using the Synthego (Redwood City, CA, USA) CRISPR design tool and the top 3 sequences were purchased, each with the Synthego modified EZ scaffold: U\*C\*U\*UCCUCUUUGCUGGUCAG, A\*C\*U\*GACCAGCAAAGAGGAAG, G\*C\*A\*GCCACUGACCAGCAAAG where \* in the nucleotide sequence indicates 2'-O-methyl analogs and 3'-phosphorothioate internucleotide linkages. A negative control scrambled sgRNA was purchased from Synthego with the following sequence: G\*C\*A\*CUACCAGAGCUAACUCA. Cells were transfected with Lipofectamine RNAi-MAX (Thermo Fisher Scientific) at a final concentration of 0.2% (v/v) with either scrambled control sgRNA or the pool of 3 sgRNAs targeting SLC8A1/NCX1 for a final concentration of 8.6 nM sgRNA in the presence of 50 ng/ml doxycycline. Cells were harvested 48 h later and used for either membrane enrichment and NCX1 western blot to validate knockout or plated in a 96-well plate and treated with calotropin for 48 h and cytotoxicity determined using the SRB assay.

| NO.                                                                                                                                                                                                                                 | $1^{a}$                                    | $2^b$                                             | <b>3</b> <sup><i>a</i></sup>                 | <b>4</b> <sup><i>c</i></sup>                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------------|--|
| 1                                                                                                                                                                                                                                   | 1.59, overlap; 0.88, overlap               | 2.15, dt (13.1, 3.4); 0.59, ddd (13.4, 13.4, 3.7) | 1.64, overlap; 0.91, overlap                 | 2.33, dt (13.4, 3.7); 0.80, ddd (13.7, 13.7, 3.7) |  |
| 2                                                                                                                                                                                                                                   | 1.60, overlap; 1.22 overlap                | 1.58, overlap; 1.28, overlap                      | 1.62, overlap; 1.14, overlap                 | 1.89, overlap; 1.55, overlap                      |  |
| 3                                                                                                                                                                                                                                   | 3.31, m                                    | 3.36, m                                           | 3.54, m                                      | 3.68, m                                           |  |
| 4                                                                                                                                                                                                                                   | 1.39, overlap; 1.12, overlap               | 1.44, overlap; 1.23, overlap                      | 1.74, overlap; 1.35, overlap                 | 1.78, overlap; 1.43, overlap                      |  |
| 5                                                                                                                                                                                                                                   | 0.98, m                                    | 1.08, overlap                                     | 0.99, dd (12.6, 12.1)                        | 1.22, overlap                                     |  |
| 6                                                                                                                                                                                                                                   | 1.23, overlap; 1.10, overlap               | 1.16, overlap; 1.08, overlap                      | 1.28, overlap; 1.12, overlap                 | 1.33, overlap; 1.21, overlap                      |  |
| 7                                                                                                                                                                                                                                   | 1.96, overlap; 0.92, overlap               | 1.98, overlap; 0.94, m                            | 1.96, overlap; 0.94, overlap                 | 2.07, m; 1.13, m                                  |  |
| 8                                                                                                                                                                                                                                   | 1.39, overlap                              | 1.63, ddd (12.0, 11.9, 3.6)                       | 1.39, overlap                                | 1.78, overlap                                     |  |
| 9<br>10                                                                                                                                                                                                                             | 0.85, overlap                              | 0.84, ddd (12.1, 12.0, 3.6)                       | 0.87, overlap                                | 1.02, m                                           |  |
| 11                                                                                                                                                                                                                                  | 1.40, overlap; 1.12, overlap               | 1.55, overlap; 1.45, overlap                      | 1.40, overlap; 1.13, overlap                 | 1.64, overlap                                     |  |
| 12                                                                                                                                                                                                                                  | 1.37, m; 1.30, ddd (14.2, 13.4, 3.8)       | 1.36, dt (13.6, 3.3); 1.23, overlap               | 1.38, overlap; 1.31, overlap                 | 1.51, overlap; 1.40, overlap                      |  |
| 13<br>14                                                                                                                                                                                                                            |                                            |                                                   |                                              |                                                   |  |
| 15                                                                                                                                                                                                                                  | 1.91, overlap; 1.55, overlap               | 1.94, overlap; 1.55, overlap                      | 1.92, dd (11.4, 10.6); 1.56, dd (11.0, 11.0) | 2.13, overlap; 1.71, m                            |  |
| 16                                                                                                                                                                                                                                  | 1.98, overlap; 1.75, m                     | 1.99, overlap; 1.76, m                            | 1.98, overlap; 1.75, overlap                 | 2.17, overlap; 1.88, overlap                      |  |
| 17                                                                                                                                                                                                                                  | 2.70, dd (9.4, 5.3)                        | 2.71, dd (9.1, 5.1)                               | 2.71, dd (9.5, 5.3)                          | 2.84, dd (9.1, 5.1)                               |  |
| 18                                                                                                                                                                                                                                  | 0.75, s                                    | 0.80, s                                           | 0.76, s                                      | 0.94, s                                           |  |
| 19                                                                                                                                                                                                                                  | 0.70, s                                    | 3.65, dd (11.5, 4.3); 3.49, dd (11.4, 3.7)        | 0.72, s                                      | 3.86, d (11.8); 3.74, d (10.7)                    |  |
| 20                                                                                                                                                                                                                                  |                                            |                                                   |                                              |                                                   |  |
| 21                                                                                                                                                                                                                                  | 4.94, dd (18.3, 1.9); 4.86, dd (18.3, 1.7) | 4.96, dd (18.5, 1.9); 4.87, dd (18.5, 1.8)        | 4.94, dd (17.9, 1.9); 4.86, d (18.3, 1.7)    | 5.04, dd (18.4, 1.8);4.92, dd (18.4, 1.8)         |  |
| 22<br>23                                                                                                                                                                                                                            | 5.88, s                                    | 5.89, s                                           | 5.89, s                                      | 5.91, s                                           |  |
| 1'                                                                                                                                                                                                                                  |                                            |                                                   | 4.20, d (7.8)                                | 4.73, d (8.0)                                     |  |
| 2'                                                                                                                                                                                                                                  |                                            |                                                   | 2.86, dd (8.5, 8.5)                          | 3.27, dd (8.0, 3.0)                               |  |
| 3'                                                                                                                                                                                                                                  |                                            |                                                   | 3.10, dd (9.8, 9.6)                          | 4.02, dd (3.1, 3.0)                               |  |
| 4'                                                                                                                                                                                                                                  |                                            |                                                   | 2.99, dd (9.1, 8.9)                          | 3.16, dd (9.6, 2.9)                               |  |
| 5'                                                                                                                                                                                                                                  |                                            |                                                   | 3.04, dd (9.4, 6.4)                          | 3.73, overlap                                     |  |
| 6'                                                                                                                                                                                                                                  |                                            |                                                   | 3.63, d (11.6); 3.39, m                      | 1.24, d (6.3)                                     |  |
| <sup>a</sup> obtained on a 600 MHz Varian instrument in the solvent of DMSO-d <sub>6</sub> ; <sup>b</sup> obtained on a 500 MHz Varian instrument in the solvent of DMSO-d <sub>6</sub> ; <sup>c</sup> obtained on a 500 MHz Varian |                                            |                                                   |                                              |                                                   |  |
| instrument in the solvent of methanol- $d_4$                                                                                                                                                                                        |                                            |                                                   |                                              |                                                   |  |

# Table S1. <sup>1</sup>H NMR Data for Compounds 1–4 ( $\delta$ in ppm, J in Hz)

| NO.                         | $1^{a}$              | $2^b$                   | <b>3</b> <sup><i>a</i></sup>       | <b>4</b> <sup><i>c</i></sup>      | <b>6</b> <sup><i>a</i></sup> | $7^{a}$               | $8^{a}$                                | $9^d$                |
|-----------------------------|----------------------|-------------------------|------------------------------------|-----------------------------------|------------------------------|-----------------------|----------------------------------------|----------------------|
| 1                           | 37.2 CH <sub>2</sub> | 31.8 CH <sub>2</sub>    | 37.1 CH <sub>2</sub>               | 32.7 CH <sub>2</sub>              | 31.8 CH <sub>2</sub>         | 35.7 CH <sub>2</sub>  | 35.7 CH <sub>2</sub>                   | 36.8 CH <sub>2</sub> |
| 2                           | 31.7 CH <sub>2</sub> | 32.1 CH <sub>2</sub>    | 34.4 CH <sub>2</sub>               | 30.8 CH <sub>2</sub>              | 30.0 CH <sub>2</sub>         | 69.4 CH               | 68.7 CH                                | 70.2 CH              |
| 3                           | 69.8 CH              | 69.7 CH                 | 76.8 CH                            | 79.4 CH                           | 77.2 CH                      | 71.4 CH               | 71.6 CH                                | 73.3 CH              |
| 4                           | 38.5 CH <sub>2</sub> | 38.9 CH <sub>2</sub>    | 29.5 CH <sub>2</sub>               | 35.8 CH <sub>2</sub>              | 35.1 CH <sub>2</sub>         | 33.4 CH <sub>2</sub>  | 33.4 CH <sub>2</sub>                   | 34.4 CH <sub>2</sub> |
| 5                           | 44.5 CH              | 44.8 CH                 | 44.2 CH                            | 45.9 CH                           | 44.4 CH                      | 42.9 CH               | 42.8 CH                                | 44.4 CH              |
| 6                           | 29.0 CH <sub>2</sub> | 28.5 CH <sub>2</sub>    | 28.9 CH <sub>2</sub>               | 29.4 CH <sub>2</sub>              | 28.5 CH <sub>2</sub>         | 21.8 CH <sub>2</sub>  | 21.8 CH <sub>2</sub>                   | 23.0 CH <sub>2</sub> |
| 7                           | 27.7 CH <sub>2</sub> | 27.8 CH <sub>2</sub>    | 27.7 CH <sub>2</sub>               | 28.7 CH <sub>2</sub>              | 27.7 CH <sub>2</sub>         | 27.6 CH <sub>2</sub>  | 27.6 CH <sub>2</sub>                   | 28.6 CH <sub>2</sub> |
| 8                           | 41.3 CH              | 41.7 CH                 | 41.2 CH                            | 43.0 CH                           | 41.7 CH                      | 42.2 CH               | 42.2 CH                                | 43.4 CH              |
| 9                           | 49.6 CH              | 50.2 CH                 | 49.5 CH                            | 51.5 CH                           | 50.1 CH                      | 47.8 CH               | 47.8 CH                                | 49.6 CH              |
| 10                          | 35.8 C               | 39.1 C                  | 35.9 C                             | 40.5 C                            | 39.2 C                       | 52.8 C                | 52.7 C                                 | 54.0 C               |
| 11                          | 21.3 CH <sub>2</sub> | 22.9 CH <sub>2</sub>    | 21.2 CH <sub>2</sub>               | 24.0 CH <sub>2</sub>              | 22.8 CH <sub>2</sub>         | 27.5 CH <sub>2</sub>  | 27.5 CH <sub>2</sub>                   | 28.8 CH <sub>2</sub> |
| 12                          | 39.4 CH <sub>2</sub> | 40.1 CH <sub>2</sub>    | 39.3 CH <sub>2</sub>               | 41.5 CH <sub>2</sub>              | 40.0 CH <sub>2</sub>         | 38.8 CH <sub>2</sub>  | 38.8 CH <sub>2</sub>                   | 40.2 CH <sub>2</sub> |
| 13                          | 49.8 C               | 50.0 C                  | 49.8 C                             | 51.1 C                            | 50.0 C                       | 49.5 C                | 49.6 C                                 | 50.7 C               |
| 14                          | 84.1 C               | 84.2 C                  | 84.1 C                             | 86.4 C                            | 84.3 C                       | 83.8 C                | 83.8 C                                 | 85.7 C               |
| 15                          | 32.6 CH <sub>2</sub> | 32.5 CH <sub>2</sub>    | 32.6 CH <sub>2</sub>               | 33.4 CH <sub>2</sub>              | 32.6 CH <sub>2</sub>         | 31.9 CH <sub>2</sub>  | 31.9 CH <sub>2</sub>                   | 32.7 CH <sub>2</sub> |
| 16                          | 26.8 CH <sub>2</sub> | 26.8 CH <sub>2</sub>    | 26.8 CH <sub>2</sub>               | 28.0 CH <sub>2</sub>              | 26.8 CH <sub>2</sub>         | 26.7 CH <sub>2</sub>  | 26.6 CH <sub>2</sub>                   | 27.8 CH <sub>2</sub> |
| 17                          | 50.6 CH              | 50.7 CH                 | 50.6 CH                            | 52.1 CH                           | 50.7 CH                      | 50.3 CH               | 50.4 CH                                | 51.8 CH              |
| 18                          | 16.1 CH <sub>3</sub> | 16.3 CH <sub>3</sub>    | 16.1 CH <sub>3</sub>               | 16.5 CH <sub>3</sub>              | 16.3 CH <sub>3</sub>         | 15.9 CH <sub>3</sub>  | 15.9 CH <sub>3</sub>                   | 16.1 CH <sub>3</sub> |
| 19                          | 12.5 CH <sub>3</sub> | 58.1 CH <sub>2</sub>    | 12.4 CH <sub>3</sub>               | 60.0 CH <sub>2</sub>              | 58.3 CH                      | 209.3 CH              | 209.3 CH                               | 209.4 CH             |
| 20                          | 176.8 C              | 176.9 C                 | 176.8 C                            | 178.5 C                           | 176.9 C                      | 176.6 C               | 176.6 C                                | 178.2 C              |
| 21                          | 73.6 CH <sub>2</sub> | 73.6 CH <sub>2</sub>    | 73.6 CH <sub>2</sub>               | 75.3 CH <sub>2</sub>              | 73.6 CH <sub>2</sub>         | 73.6 CH <sub>2</sub>  | 73.6 CH <sub>2</sub>                   | 75.3 CH <sub>2</sub> |
| 22                          | 116.7 CH             | 116.6 CH                | 116.7 CH                           | 117.7 CH                          | 116.6 CH                     | 116.8 CH              | 116.8 CH                               | 117.9 CH             |
| 23                          | 174.3 C              | 174.3 C                 | 174.3 C                            | 177.2 C                           | 174.3 C                      | 174.2 C               | 174.3 C                                | 177.2 C              |
| 1'                          |                      |                         | 101.1 CH                           | 99.8 CH                           | 98.6 CH                      | 95.6 CH               | 93.9 CH                                | 97.3 CH              |
| 2'                          |                      |                         | 73.9 CH                            | 72.5 CH                           | 70.9 CH                      | 99.1 C                | 92.6 C                                 | 92.7 C               |
| 3'                          |                      |                         | 77.2 CH                            | 72.9 CH                           | 71.1 CH                      | 91.9 C                | 73.7 CH                                | 73.9 CH              |
| 4'                          |                      |                         | 70.6 CH                            | 74.4 CH                           | 82.4 CH                      | 47.9 CH <sub>2</sub>  | 71.4 CH                                | 39.6 CH <sub>2</sub> |
| 5'                          |                      |                         | 77.2 CH                            | 70.5 CH                           | 67.8 CH                      | 67.8 CH               | 68.7 CH                                | 69.4 CH              |
| 6'                          |                      |                         | 61.6 CH <sub>2</sub>               | 18.2 CH <sub>3</sub>              | 18.2 CH <sub>3</sub>         | 21.2 CH <sub>3</sub>  | 18.4 CH <sub>3</sub>                   | 21.3 CH <sub>3</sub> |
| 1"                          |                      |                         |                                    |                                   | 105.0 CH                     | 161.6 CH              |                                        |                      |
| 2"                          |                      |                         |                                    |                                   | 73.9 CH                      | 43.3 CH <sub>2</sub>  |                                        |                      |
| 3"                          |                      |                         |                                    |                                   | 77.2                         |                       |                                        |                      |
| 4"                          |                      |                         |                                    |                                   | 70.4 CH                      |                       |                                        |                      |
| 5"                          |                      |                         |                                    |                                   | 77.1 CH                      |                       |                                        |                      |
| 6"                          |                      |                         |                                    | -                                 | 61.6 CH <sub>2</sub>         |                       |                                        |                      |
| <sup><i>a</i></sup> obtaine | ed on a 150 MHz V    | arian instrument in the | e solvent of DMSO-d <sub>6</sub> : | <sup>b</sup> obtained on a 125 MH | Iz Varian instrument i       | in the solvent of DMS | SO- $d_6$ : <sup>c</sup> obtained on a | 125 MHz Varian       |

Table S2. <sup>13</sup>C NMR Data for Compounds 1–4, and 6-9 ( $\delta$  in ppm)

"obtained on a 150 MHz Varian instrument in the solvent of DMSO-*d*<sub>6</sub>; "obtained on a 125 MHz Varian instrument in the solvent of DMSO-*d*<sub>6</sub>; "obtained on a 125 MHz Varian instrument in the solvent of methanol-*d*<sub>4</sub>; "obtained on a 150 MHz Varian instrument in the solvent of methanol-*d*<sub>4</sub>;

| NO.                  | <b>6</b> <sup><i>a</i></sup>        | <b>7</b> <sup>b</sup>                                       | <b>8</b> <sup>b</sup>                         | <b>9</b> <sup>c</sup>                                 |
|----------------------|-------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| 1                    | 2.18, d (12.6); 0.62, dd (12.1,     | 2.20, dd (12.5, 4.4); 1.03, dd (12.4,                       | 2.20, dd (12.5, 4.3); 0.97, dd (12.2,         | 2.46, dd (12.7, 4.4); 1.13, dd (12.3,                 |
|                      | 13.7)                               | 12.3)                                                       | 12.0)                                         | 12.2)                                                 |
| 2                    | 1.68, overlap; 1.41, overlap        | 3.71, m                                                     | 3.68, overlap                                 | 3.85, ddd (12.0, 10.0, 4.4)                           |
| 3                    | 3.51, overlap                       | 3.85, overlap                                               | 3.72, overlap                                 | 3.93, ddd (11.4, 10.4, 4.4)                           |
| 4                    | 1.62, overlap; 1.26, overlap        | 1.55, overlap; 1.22, overlap                                | 1.50, overlap; 1.20, dd (12.2, 11.9)          | 1.65, overlap; 1.40, overlap                          |
| 5                    | 1.07, overlap                       | 1.51, overlap                                               | 1.47, overlap                                 | 1.55, overlap                                         |
| 6                    | 1.20, overlap; 1.08, overlap        | 1.57, overlap                                               | 1.55, overlap                                 | 1.75, overlap; 1.29, overlap                          |
| 7                    | 1.97, overlap; 0.93, m              | 2.13, d (12.7); 1.10, overlap                               | 2.12, d (12.8); 1.09, overlap                 | 2.23, dd (13.2, 3.5); 1.30, overlap                   |
| 8                    | 1.62, overlap                       | 1.39, overlap                                               | 1.34, overlap                                 | 1.59, overlap                                         |
| 9                    | 0.85, dd (12.5, 11.9)               | 1.38, overlap                                               | 1.37, overlap                                 | 1.44, overlap                                         |
| 10                   |                                     |                                                             |                                               | · •                                                   |
| 11                   | 1.53, overlap; 1.45, overlap        | 1.90, overlap; 1.55, overlap                                | 1.88, overlap; 1.52, overlap                  | 2.02, dd (13.2, 4.0); 1.66, overlap                   |
| 12                   | 1.36, overlap; 1.23, overlap        | 1.37, overlap; 1.27, overlap                                | 1.37, overlap; 1.26, overlap                  | 1.51, overlap; 1.44, overlap                          |
| 13                   |                                     |                                                             |                                               |                                                       |
| 14                   |                                     |                                                             |                                               |                                                       |
| 15                   | 1.94, overlap; 1.56, overlap        | 1.92, overlap; 1.55, overlap                                | 1.91, m; 1.54, overlap                        | 2.11, overlap; 1.69, overlap                          |
| 16                   | 2.00, overlap; 1.76, m              | 1.98, overlap; 1.76, m                                      | 1.99, m; 1.76, m                              | 2.12, overlap; 1.87, overlap                          |
| 17                   | 2.71, dd (8.8, 5.5)                 | 2.71, dd (9.4, 5.4)                                         | 2.70, dd (9.4, 5.3)                           | 2.83, dd (9.3, 5.3)                                   |
| 18                   | 0.79, s                             | 0.67, s                                                     | 0.67, s                                       | 0.83, s                                               |
| 19                   | 3.64, overlap; 3.49, overlap        | 9.96, s                                                     | 9.94, s                                       | 10.03, s                                              |
| 20                   |                                     |                                                             |                                               |                                                       |
| 21                   | 4.96, d (17.7); 4.88, d (17.8)      | 4.92, dd (18.4, 1.9); 4.86, dd (18.2,                       | 4.92, dd (18.2, 1.9); 4.85, dd (18.3, 1.7)    | 5.02, dd (18.6, 1.8); 4.91, dd (18.4,                 |
|                      |                                     | 1.8)                                                        |                                               | 1.8)                                                  |
| 22                   | 5.90, s                             | 5.88, s                                                     | 5.88, s                                       | 5.90, s                                               |
| 23                   |                                     |                                                             |                                               |                                                       |
| 1'                   | 4.54, d (8.0)                       | 4.67, s                                                     | 4.47, s                                       | 4.45, brs                                             |
| 2'                   | 3.06, overlap                       |                                                             |                                               |                                                       |
| 3'                   | 4.05, d s                           |                                                             | 3.39, dd (3.0, 2.6)                           | 3.59, dd (12.0, 4.9)                                  |
| 4'                   | 3.10, overlap                       | 1.99, overlap; 1.67, d (13.3, 2.2)                          | 3.21, m                                       | 1.73, overlap; 1.59, overlap                          |
| 5'                   | 3.69, m                             | 4.09, ddd (11.3, 6.4, 2.0)                                  | 3.65, overlap                                 | 3.66, m                                               |
| 6'                   | 1.17, d (6.2)                       | 1.09, d (6.2)                                               | 1.11, d (6.2)                                 | 1.24, d (6.2)                                         |
| 1"                   | 4.22, d (7.8)                       | 7.54, s                                                     |                                               |                                                       |
| 2"                   | 2.98, dd (8.5,8.3)                  | 3.86, d (16.4); 3.79, m (16.5)                              |                                               |                                                       |
| 3"                   | 3.10, overlap                       |                                                             |                                               |                                                       |
| 4"                   | 3.03, overlap                       |                                                             |                                               |                                                       |
| 5"                   | 3.08, overlap                       |                                                             |                                               |                                                       |
| 6"                   | 3.64, overlap; 3.42, m              |                                                             |                                               |                                                       |
| <sup>a</sup> obtaine | d on a 500 MHz Varian instrument in | the solvent of DMSO- $d_6$ ; <sup>b</sup> obtained on a 600 | 0 MHz Varian instrument in the solvent of DMS | SO- $d_6$ ; <sup>c</sup> obtained on a 500 MHz Varian |

## Table S3. <sup>1</sup>H NMR Data for Compounds 6–9 ( $\delta$ in ppm, J in Hz)

instrument in the solvent of methanol- $d_4$ 

## Table S4. List of sources for antibodies and dilutions used

| Target                                    | Vendor Information                         | Dilution | Figure          |
|-------------------------------------------|--------------------------------------------|----------|-----------------|
| Na <sup>+</sup> /K <sup>+</sup> ATPase α1 | EMD Millipore, 05-369 (C464.6)             | 1:500    | 5A              |
| $Na^+/K^+$ ATPase $\alpha 2$              | EMD Millipore, 07-674                      | 1:5,000  | 5A              |
| $Na^+/K^+$ ATPase $\alpha 3$              | Invitrogen, MA3-915 (XVIF9-G10)            | 1:1,000  | 5A              |
| NCX1                                      | Abcam ab2869 (C2C12)                       | 1:1,000  | 5C, S6B,<br>S7A |
| GAPDH                                     | Cell Signaling Technologies, 5174 (D16H11) | 1:1,000  | S6A,<br>S7A     |
| Flotillin-1                               | BD Biosciences, 610820                     | 1:1,000  | S6A,<br>S7A     |



Figure S1. X-ray structures of compounds 1-3, 7, 8, and bromobenzoyl derivative of 4



Figure S2. ECD curves of compounds 1-3, 6, and 7-9



**Figure S3.** Concentration response data for cytotoxicity of *C. gigantea* cardenolides in TNBC cells. Data are represented as percent of vehicle control after 48 h treatment. Each concentration was tested in triplicate in three independent experiments and the mean  $\pm$  SEM is shown.



**Figure S4.** Effects of digoxin on intracellular Ca<sup>2+</sup> concentrations. A) Images of the same fields of BT-549 and MDA-MB-231 cells at indicated time points loaded with Cal520-AM and treated as indicated. B) Quantification of cellular Ca<sup>2+</sup> fluorescence in BT-549 and MDA-MB-231 cells treated with 150 nM digoxin corresponding to images in A. Significance was determined by comparing cellular Ca<sup>2+</sup> fluorescence in BT-549 cells to MDA-MB-231 cells at each time point by two-way ANOVA with Bonferoni's post hoc test, n = 355-591 cells, \*\*\*\* p < 0.0001.



Figure S5. Total protein stain for immunoblots in Figure 5.



**Figure S6**. Validation of membrane enrichment and NCX1 antibody A) Western blots of membrane and cytosol fractions from TNBC cell lysates for flotillin-1, a protein localized to membranes and GAPDH, a cytosolic protein. B) Validation of NCX1 antibody specificity in membrane-enriched cell lysates from BT-549 cells 48 h after transfection with non-targeting control siRNA or NCX- targeted siRNA pool.



**Figure S7.** Effect of CRISPR knockout of NCX1 on BT-549 sensitivity to calotropin. BT-549 cells expressing doxycycline-inducible Cas9 were transfected with either non-targeting ctrl sgRNA or a pool of 3 sgRNAs targeting NCX1 in the presence of 50 ng/ml doxycycline. Cells were harvested 48 h later and used for either membrane enrichment and NCX1 western blot to validate knockout (A) or plated in a 96-well plate to evaluate calotropin cytotoxicity using the SRB assay (B).



Figure S8. <sup>1</sup>H NMR (600 MHz) spectrum of uzarigenin (1) in DMSO-*d*<sub>6</sub>





Figure S11. <sup>1</sup>H-<sup>1</sup>H COSY (500 MHz) spectrum of uzarigenin (1) in DMSO- $d_6$ 



Figure S12. HMBC (500 MHz) spectrum of uzarigenin (1) in DMSO- $d_6$ 



Figure S13. ROESY (500 MHz) spectrum of uzarigenin (1) in DMSO- $d_6$ 



Figure S14. HRESIMS spectrum of uzarigenin (1)



Figure S15. <sup>1</sup>H NMR (500 MHz) spectrum of coroglaucigenin (2) in DMSO-*d*<sub>6</sub>



Figure S17. HSQC (500 MHz) spectrum of coroglaucigenin (2) in DMSO- $d_6$ 





Figure S19. HMBC (500 MHz) spectrum of coroglaucigenin (2) in DMSO-d<sub>6</sub>



Figure S20. ROESY (500 MHz) spectrum of coroglaucigenin (2) in DMSO- $d_6$ 



Figure S21. HRESIMS spectrum of coroglaucigenin (2)



**Figure S23**. <sup>13</sup>C NMR (150 MHz) spectrum of desglucouzarin (**3**) in DMSO- $d_6$ 



Figure S25. <sup>1</sup>H-<sup>1</sup>H COSY (500 MHz) spectrum of desglucouzarin (3) in DMSO- $d_6$ 



Figure S26. HMBC (500 MHz) spectrum of desglucouzarin (3) in DMSO- $d_6$ 



Figure S27. ROESY (500 MHz) spectrum of desglucouzarin (3) in DMSO-d<sub>6</sub>



Figure S28. HRESIMS spectrum of desglucouzarin (3)



Figure S29. <sup>1</sup>H NMR (500 MHz) spectrum of frugoside (4) in methanol- $d_4$ 



**Figure S31**. HSQC (500 MHz) spectrum of frugoside (4) in methanol- $d_4$ 



**Figure S33**. HMBC (500 MHz) spectrum of frugoside (4) in methanol- $d_4$ 





Figure S35. HRESIMS spectrum of frugoside (4)



S29



Figure S39.  $^{1}$ H- $^{1}$ H COSY (500 MHz) spectrum of frugosidal (5) in DMSO- $d_{6}$ 





Figure S41. ROESY (500 MHz) spectrum of frugosidal (5) in DMSO- $d_6$ 



Figure S42. HRESIMS spectrum of frugosidal (5)





Figure S45. HSQC (500 MHz) spectrum of glucofrugoside (6) in DMSO-d<sub>6</sub>



**Figure S46**. <sup>1</sup>H-<sup>1</sup>H COSY (500 MHz) spectrum of glucofrugoside (6) in DMSO- $d_6$ 



Figure S47. HMBC (500 MHz) spectrum of glucofrugoside (6) in DMSO- $d_6$ 



Figure S48. ROESY (500 MHz) spectrum of glucofrugoside (6) in DMSO- $d_6$ 



Figure S49. HRESIMS spectrum of glucofrugoside (6)



**Figure S51**. <sup>13</sup>C NMR (150 MHz) spectrum of uscharin (7) in DMSO- $d_6$ 



Figure S53. <sup>1</sup>H-<sup>1</sup>H COSY (500 MHz) spectrum of uscharin (7) in DMSO- $d_6$ 





Figure S55. ROESY (500 MHz) spectrum of uscharin (7) in DMSO- $d_6$ 



Figure S56. HRESIMS spectrum of uscharin (7)





Figure S59. HSQC (500 MHz) spectrum of calotoxin (8) in DMSO-d<sub>6</sub>



Figure S61. HMBC (500 MHz) spectrum of calotoxin (8) in DMSO-d<sub>6</sub>



Figure S62. ROESY (500 MHz) spectrum of calotoxin (8) in DMSO-d<sub>6</sub>





**Figure S65**. <sup>13</sup>C NMR (150 MHz) spectrum of calotropin (9) in methanol- $d_4$ 



3.5 3.0 f2 (ppm) 4.0 Figure S67. <sup>1</sup>H-<sup>1</sup>H COSY (500 MHz) spectrum of calotropin (9) in methanol- $d_4$ 

2.5

2.0

1.5

1.0

0.5

6.0

5.5

5.0

4.5





