

Supporting Information

Quantitative Supramolecular Heterodimerization for Efficient Energy **Transfer**

[Guanglu Wu,](http://orcid.org/0000-0002-9690-5992) Zehuan Huang, and [Oren A. Scherman*](http://orcid.org/0000-0001-8032-7166)

anie_202006530_sm_miscellaneous_information.pdf

Table of Contents

SI-1 Materials and methods

Materials. All materials were purchased from commercial suppliers as follows and used without further purification: 9,10-dibromoanthracene (98%, Sigma-Aldrich), 4-pyridinylboronic acid (90%, Sigma-Aldrich), tetrakis(triphenylphosphine) palladium(0) (99%, Alfa Aesar), 1-chloro-2,4-dinitrobenzene (98%, Alfa Aesar), aniline (99.5%, Sigma-Aldrich), 4-isopropylaniline (99%, Sigma-Aldrich), 2,2-Dimethyl-2 silapentane-5-sulfonate sodium salt (97%, Sigma-Aldrich). All other reagents and solvents were purchased from Sigma-Aldrich (UK) or Fisher Scientific and used as received. Cucurbit[8]uril (CB[8]) and CB[7] were synthesized and purified according to a published procedure^[1]. Milli-Q water (18.2 MΩ∙cm) was used to prepare all non-deuterated aqueous solutions.

High Pressure Liquid Chromatography (HPLC). HPLC was employed to purify and collect dicationic species by using a 150 x 21.2 mm Phenomenex C18 Kinetic-Evo column with a 5 micron pore size and a 110 Å particle size. A gradient from 5% acetonitrile 95% water to 100% acetonitrile was used with 0.1% TFA.

Nuclear Magnetic Resonance Spectroscopy (NMR). ¹H NMR, ¹³C NMR, COSY, DOSY, ROESY, and NOESY spectra were acquired in heavy water (D_2O) and recorded on a Bruker AVANCE 500 with TCI Cryoprobe system (500 MHz) being controlled by TopSpin2. NOESY experiments were carried out using a standard pulse sequence 'noesygpphpp' with a 2 s relaxation delay and a 1000 ms mixing time. The concentration of CB[8] or CB[7] deuterated aqueous solution was calibrated by an internal standard: DSS sodium salt. ROESY experiments were carried out using a modified EASY ROESY pulse sequence 'roesyadjsphpr' with a 2 s relaxation delay and 200 ms mixing time.

Variable-Temperature ¹H NMR (VT-NMR). ¹H NMR spectra with variable temperature were recorded by a Bruker AVANCE 500 with TCI Cryoprobe system (500 MHz).

Diffusion Ordered Spectroscopy (DOSY). The ¹ H DOSY experiments were carried out using a modified version of the Bruker sequence ledbpgp2s involving, typically, 32 scans over 16 steps of gradient variation from 10% to 80% of the maximum gradient. Diffusion coefficients were evaluated in Dynamic Centre (a standard Bruker software) and determined by fitting the intensity decays according to the following equation:

$$
I = I_o e^{[-D\gamma^2 g^2 \delta^2 (\Delta - \delta/3)]}
$$

where *I* and *I_o* represent the signal intensities in the presence and absence of gradient pulses respectively, D is the diffusion coefficient, $\gamma = 26753$ rad/s/Gauss is the ¹H gyromagnetic ratio, $\delta = 2.4$ ms is duration of the gradient pulse, $\Delta = 100$ ms is the total diffusion time and g is the applied gradient strength. The Monte Carlo simulation method was used for the error estimation of fitting parameters with a confidence level of 95%.

UV/Vis Spectroscopy and Fluorescence Spectroscopy. UV/Vis and fluorescence spectra were recorded on a Varian Cary 400 UV/Vis spectrophotometer and Varian Cary Eclipse fluorescence spectrophotometer, respectively, using a Hellma 114F-QS cuvette with 10x4 mm path length at 298 K.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI-MS spectra were acquired on a Thermo Fisher Q Exactive Orbitrap mass spectrometer with a nanospraying ion source. Positive mode was chosen for all the experiments with the working temperature of 320 °C and the capillary voltage of 1.5 kV. All the sample solutions were prepared in pure water.

VOMe

Np14CMe₂

 $N_{\overline{\Lambda}}$

 $VMMe₂$

Np14H

Scheme S1. Molecules related to this work (Counter anion is Cl⁻).

SI-2 Synthesis and characterization

As exemplified by $\text{Ant910X (X= H, CMe₂)}$ in Scheme S2, a general synthesis of extended bis(*N*arylpyridinium) derivatives in this work starts with Suzuki-Miyaura cross-coupling of two pyridin-4-yl groups onto the fluorophore core, followed by the transformation of the pryidin-4-yl groups into arylpyridinium salts through a Zincke reaction.^[2] The synthesis of **VX** ($X = H$, NH₂, OMe, SMe, NMe₂), $^{[3-5]}$ **Ant910DNB**, ^[6] and **Np14X (X = DNB, H, NMe₂)** were reported in our previous work. ^[6-7] The final Zincke reactions are pseudo-quantitative, generally resulting in an isolation yield larger than 80 % even in a 10 mg scale reaction.

Scheme S2. Synthetic route of **Ant910X**.

4,4'-(anthracene-9,10-diyl)bis(1-phenylpyridin-1-ium) chloride (Ant910H). Aniline (30 µL, excess) and 4,4'-(anthracene-9,10-diyl)bis(1-(2,4-dinitrophenyl)pyridin-1-ium) chloride (**Ant910DNB**, 6 mg, 8.6 µmol) were refluxed in ethanol (10 mL) at 90 °C for 12 h under nitrogen atmosphere. After removing solvent under reduced pressure, the solid was re-dissolved in MeOH (1 mL) and was added dropwise into diethyl ether (30 mL) to precipitate products. The suspension was then centrifuged at 8000 rpm for 10 mins at 4 °C and the supernatant was decanted. The centrifugation/decanting cycle was repeated another two times in order to wash off excess of aniline. Drying in vacuum oven gave 4 mg of orange solid in 89 % yield. ¹ H NMR (500 MHz, D2O) δ (ppm): δ 9.35 (d, *J* = 6.7 Hz, 4H), 8.41 (d, *J* = 6.5 Hz, 4H), 7.87 (dd, *J* = 6.8, 2.8 Hz, 4H), 7.80 – 7.74 (m, 6H), 7.68 (dd, *J* = 6.8, 3.2 Hz, 4H), 7.59 (dd, *J* = 6.9, 3.2 Hz, 4H). 13C NMR (126 MHz, D2O) δ (ppm): 157.72, 144.50, 132.60, 131.72, 131.10, 130.97, 130.62, 128.13, 127.47, 125.32, 124.12. LCMS: m/z [M-2Cl]²⁺ calcd. for C₃₆H₂₆N₂²⁺: 243.1, found: 243.4.

4,4'-(anthracene-9,10-diyl)bis(1-(4-isopropylphenyl)pyridin-1-ium) chloride (Ant910CMe2). **Ant910CMe2** was prepared following the same synthetic route as that of **Ant910H** except using 4 isopropylaniline instead of aniline as the starting material. Yield 83 %, 15 mg. 1 H NMR (500 MHz, D2O) δ (ppm): 9.31 (d, *J* = 6.3 Hz, 4H), 8.38 (d, *J* = 6.4 Hz, 4H), 7.79 (d, *J* = 8.3 Hz, 4H), 7.70 – 7.63 (m, 8H), 7.58 (dd, *J* = 6.9, 3.2 Hz, 4H), 3.08 (p, *J* = 7.0 Hz, 2H), 1.28 (d, *J* = 6.9 Hz, 12H). 13C NMR (126 MHz, MeOD) δ (ppm): 157.73, 153.30, 144.84, 140.94, 132.86, 130.81, 128.49, 128.44, 127.35, 125.38, 124.13, 33.88, 22.75. LCMS: m/z [M-2Cl]²⁺ calcd. for C₄₂H₃₈N₂²⁺: 285.1, found: 285.5.

4,4'-(naphthalene-1,4-diyl)bis(1-(4-isopropylphenyl)pyridin-1-ium) chloride (Np14CMe2). **Np14CMe2** was prepared following the same synthetic route as that of $Ant910CMe₂$ except using **Np14DNB** instead of **Ant910DNB** as the starting material. Yield 87 %, 10 mg. ¹H NMR (500 MHz, D₂O) δ (ppm): 9.24 (d, *J* = 6.9 Hz, 4H), 8.49 (d, *J* = 6.8 Hz, 4H), 8.10 (dd, *J* = 6.5, 3.3 Hz, 2H), 7.93 (s, 2H), 7.83 – 7.77 (m, 6H), 7.70 (d, *J* = 8.6 Hz, 4H), 3.14 (p, *J* = 6.9 Hz, 2H), 1.34 (d, *J* = 6.9 Hz, 12H).13C NMR (126 MHz, D2O) δ (ppm): 157.53, 153.35, 143.95, 140.23, 136.45, 130.12, 129.05, 128.57, 128.49, 127.69, 125.11, 123.87, 33.42, 22.98. LCMS: m/z [M-2Cl]²⁺ calcd. for C₃₈H₃₆N₂²⁺: 260.1, found: 260.4.

SI-3 Mixture of VNH2 and VOMe homodimers

Figure S1. ¹ H NMR spectra of a) (**VNH2)2•CB[8]2**, c) **(VOMe)2•CB[8]2**, and b) the equilibrium products of a 50/50 mixture of (**VNH2)2•CB[8]2** and **(VOMe)2•CB[8]2** in D2O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and $[AB]$) were quantified from their proton integrations in the ${}^{1}H$ NMR spectra.

SI-4 Mixture of VNH2 and VNMe2 homodimers

Figure S2. ¹ H NMR spectra of a) (**VNH2)2•CB[8]2**, c) **(VNMe2)2•CB[8]2**, and b) the equilibrium products of a 50/50 mixture of (**VNH2)2•CB[8]2** and **(VNMe2)2•CB[8]2** in D2O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products $([AA], [BB], and [AB])$ were quantified from their proton integrations in the ${}^{1}H$ NMR spectra.

SI-5 Mixture of VNH2 and VSMe homodimers

Figure S3. ¹H NMR spectra of a) $(VNH₂)₂•CB[8]₂$, c) $(VSM_e)₂•CB[8]₂$, and b) the equilibrium products of a 50/50 mixture of (**VNH2)2•CB[8]2** and **(VSMe)2•CB[8]2** in D2O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and $[AB]$) were quantified from their proton integrations in the ${}^{1}H$ NMR spectra.

Figure S4. COSY spectrum of the equilibrium products of a 50/50 mixture of (**VNH2)2•CB[8]2** and **(VSMe)2•CB[8]2** in D2O at 298 K, which is carried out in order to assign protons correctly.

SI-6 Mixture of VH and VNMe2 homodimers

Figure S5. ¹ H NMR spectra of a) (**VH)2•CB[8]2**, c) **(VNMe2)2•CB[8]2**, and b) the equilibrium products of a 50/50 mixture of (**VH)2•CB[8]2** and **(VNMe2)2•CB[8]2** in D2O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and $[AB]$) were quantified from their proton integrations in the ${}^{1}H$ NMR spectra.

Figure S6. COSY spectrum of **VH• VNMe2•CB[8]2** heterodimer in D2O at 298 K.

SI-7 Mixture of Np14H and Np14NMe2 homodimers

.

Figure S7. ¹H NMR spectra of a) (Np14H)₂•CB[8]₂, c) (Np14NMe₂)₂•CB[8]₂, and b) the equilibrium products of a 50/50 mixture of (Np14H)₂ • CB[8]₂ and (Np14NMe₂)₂ • CB[8]₂ in D₂O at 298 K.

Figure S9. DOSY analysis for **Np14H**• **Np14NMe₂**•CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of 2.00 x 10^{-10} m²/s.

Figure S10. ¹H NMR spectra of a) **Np14H**, b) **Np14H• Np14CMe₂•CB[8]**₂, c) **Np14CMe**₂ in D₂O at 298 K. Protons are assigned using the COSY and NOESY spectra in Figure S11-12.

Figure S11. COSY spectrum of **Np14H**• **Np14CMe₂**•CB[8]₂ heterodimer in D₂O at 298 K.

Figure S12. NOESY spectrum of **Np14H**• **Np14CMe₂•CB[8]**₂ heterodimer in D₂O at 298 K (mixing time: 1000 ms).

Figure S13. DOSY analysis for **Np14H**• **Np14CMe₂**•CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of 2.02 x 10^{-10} m²/s.

Figure S14. ¹H NMR spectra of a) **Ant910H**, b) **Np14CMe₂•Ant910H• CB[8]₂, c) Np14CMe**₂ in D₂O at 298 K. Protons are assigned using the COSY and NOESY spectra in Figure S16-17.

Figure S15. VT-NMR spectra of **Np14CMe₂•Ant910H• CB[8]**₂ in D₂O.

Figure S16. COSY spectrum of **Np14CMe2•Ant910H• CB[8]2** heterodimer in D2O at 278 K.

Figure S17. NOESY spectrum of **Np14CMe₂•Ant910H• CB[8]**₂ heterodimer in D₂O at 278 K (mixing time: 1200 ms). Correlation signals are easier to be observed under low temperature.

Figure S18. DOSY analysis for **Np14CMe2•Ant910H• CB[8]2** heterodimer in D2O at 298 K, showing one complex with a diffusion coefficient of 1.98×10^{-10} m²/s.

SI-10 Mixture of Np14H, Ant910CMe₂, and CB[8]

Figure S19. ¹ H NMR spectra of a) **Np14H**, b) **Np14H• Ant910CMe2•CB[8]2**, c) **Ant910CMe2** in D2O at 298 K. Protons are assigned using the COSY and NOESY spectra in Figure S21-22.

Figure S21. COSY spectra of **Np14H• Ant910CMe2•CB[8]2** heterodimer in D2O at 278 K and 317 K.

Figure S22. NOESY spectrum of **Np14H• Ant910CMe2•CB[8]2** heterodimer in D2O at 278 K (mixing time: 1200 ms). Correlation signals are easier to be observed under low temperature.

Figure S23. DOSY analysis for **Np14H• Ant910CMe2•CB[8]2** heterodimer in D2O at 298 K, showing one complex with a diffusion coefficient of 1.99×10^{-10} m²/s.

SI-11 Diffusion coefficient of CB[8]-directed dimers

SI-12 Complexation of Ant910H and Np14CMe2 with CB[7]

Figure S24. ¹H NMR spectra of a) $Np14CMe₂•CB[7]₂$, c) $Ant910H•CB[7]₂$, and b) the equilibrium products of a 50/50 mixture of **Np14CMe2•CB[7]2** and **Ant910H•CB[7]2** in D2O at 298 K.

SI-13 Excitation spectrum of Ant910H and Np14CMe2 dimers

Figure S25. Absorption (solid line) and excitation spectra (dash dotted line) of a) **Np14CMe**₂ (green) or Ant910H (orange) homodimers and b) **Np14CMe₂•Ant910H**• **CB[8]**₂ heterodimer in D₂O (20 µM). The excitation spectra of **Np14CMe2•Ant910H• CB[8]2** was detected at 650 nm, which corresponds to the emission solely from anthracene moiety without interference from naphthalene. The intense excitation band around 400 nm confirms an energy-transfer contribution from **Np14CMe**₂ to the emission of **Ant910H**.

Reference

[1] Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B. *J. Org. Chem.* **2001**, *66*, 8094–8100.

[2] Bongard, D.; Möller, M.; Rao, S. N.; Corr, D.; Walder, L. *Helv. Chim. Acta* **2005,** *88,* 3200–3209.

[3] Biedermann, F.; Scherman, O. A. *J. Phys. Chem. B* **2012**, *116* (9), 2842–2849.

[4] Zhang, W.; Gan, S.; Vezzoli, A.; Davidson, R. J.; Milan, D. C.; Luzyanin, K. V.; Higgins, S. J.; Nichols, R. J.; Beeby, A.; Low, P. J.; Li, B.; Niu, L. *ACS Nano* **2016**, *10*, 5212–5220.

[5] Wu, G.; Olesińska, M.; Wu Y.; Matak-Vinkovic D.; Scherman, O. A. *J. Am. Chem. Soc.* **2017**, *139*, 3202–3208

[6] Wu, G.; Bae, Y. J.; Olesińska, M.; Antón-García, D.; Szabó, I.; Rosta, E.; Wasielewski, M. R.; Scherman, O. A. *Chem. Sci.* **2020,** *11,* 812–825.

[7] Olesińska, M.; Wu, G.; Gómez-Coca, S.; Antón-García, D.; Szabó, I.; Rosta, E.; Scherman, O. A. *Chem. Sci.* **2019**, *10,* 8806–8811.