

Supporting Information

Quantitative Supramolecular Heterodimerization for Efficient Energy Transfer

Guanglu Wu, Zehuan Huang, and Oren A. Scherman*

anie_202006530_sm_miscellaneous_information.pdf

Table of Contents

SI-1 Materials and methods	1
SI-2 Synthesis and characterization	3
SI-3 Mixture of VNH ₂ and VOMe homodimers	7
SI-4 Mixture of VNH2 and VNMe2 homodimers	7
SI-5 Mixture of VNH ₂ and VSMe homodimers	8
SI-6 Mixture of VH and VNMe2 homodimers	9
SI-7 Mixture of Np14H and Np14NMe2 homodimers	10
SI-8 Mixture of Np14H, Np14CMe2, and CB[8]	. 12
SI-9 Mixture of Ant910H, Np14CMe ₂ , and CB[8]	. 14
SI-10 Mixture of Np14H, Ant910CMe2, and CB[8]	. 17
SI-11 Diffusion coefficient of CB[8]-directed dimers	. 19
SI-12 Complexation of Ant910H and Np14CMe2 with CB[7]	20
SI-13 Excitation spectrum of Ant910H and Np14CMe2 dimers	21
Reference	21

SI-1 Materials and methods

Materials. All materials were purchased from commercial suppliers as follows and used without further purification: 9,10-dibromoanthracene (98%, Sigma-Aldrich), 4-pyridinylboronic acid (90%, Sigma-Aldrich), tetrakis(triphenylphosphine) palladium(0) (99%, Alfa Aesar), 1-chloro-2,4-dinitrobenzene (98%, Alfa Aesar), aniline (99.5%, Sigma-Aldrich), 4-isopropylaniline (99%, Sigma-Aldrich), 2,2-Dimethyl-2-silapentane-5-sulfonate sodium salt (97%, Sigma-Aldrich). All other reagents and solvents were purchased from Sigma-Aldrich (UK) or Fisher Scientific and used as received. Cucurbit[8]uril (CB[8]) and CB[7] were synthesized and purified according to a published procedure^[1]. Milli-Q water (18.2 M Ω ·cm) was used to prepare all non-deuterated aqueous solutions.

High Pressure Liquid Chromatography (HPLC). HPLC was employed to purify and collect dicationic species by using a 150 x 21.2 mm Phenomenex C18 Kinetic-Evo column with a 5 micron pore size and a 110 Å particle size. A gradient from 5% acetonitrile 95% water to 100% acetonitrile was used with 0.1% TFA.

Nuclear Magnetic Resonance Spectroscopy (NMR). ¹H NMR, ¹³C NMR, COSY, DOSY, ROESY, and NOESY spectra were acquired in heavy water (D₂O) and recorded on a Bruker AVANCE 500 with TCI Cryoprobe system (500 MHz) being controlled by TopSpin2. NOESY experiments were carried out using a standard pulse sequence 'noesygpphpp' with a 2 s relaxation delay and a 1000 ms mixing time. The concentration of CB[8] or CB[7] deuterated aqueous solution was calibrated by an internal standard: DSS sodium salt. ROESY experiments were carried out using a modified EASY ROESY pulse sequence 'roesyadjsphpr' with a 2 s relaxation delay and 200 ms mixing time.

Variable-Temperature ¹H NMR (VT-NMR). ¹H NMR spectra with variable temperature were recorded by a Bruker AVANCE 500 with TCI Cryoprobe system (500 MHz).

Diffusion Ordered Spectroscopy (DOSY). The ¹H DOSY experiments were carried out using a modified version of the Bruker sequence ledbpgp2s involving, typically, 32 scans over 16 steps of gradient variation from 10% to 80% of the maximum gradient. Diffusion coefficients were evaluated in Dynamic Centre (a standard Bruker software) and determined by fitting the intensity decays according to the following equation:

$$I = I_0 e^{\left[-D\gamma^2 g^2 \delta^2 (\Delta - \delta/3)\right]}$$

where *I* and *I*_o represent the signal intensities in the presence and absence of gradient pulses respectively, *D* is the diffusion coefficient, $\gamma = 26753$ rad/s/Gauss is the ¹H gyromagnetic ratio, $\delta = 2.4$ ms is duration of the gradient pulse, $\Delta = 100$ ms is the total diffusion time and *g* is the applied gradient strength. The Monte Carlo simulation method was used for the error estimation of fitting parameters with a confidence level of 95%.

UV/Vis Spectroscopy and Fluorescence Spectroscopy. UV/Vis and fluorescence spectra were recorded on a Varian Cary 400 UV/Vis spectrophotometer and Varian Cary Eclipse fluorescence spectrophotometer, respectively, using a Hellma 114F-QS cuvette with 10x4 mm path length at 298 K.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI-MS spectra were acquired on a Thermo Fisher Q Exactive Orbitrap mass spectrometer with a nanospraying ion source. Positive mode was chosen for all the experiments with the working temperature of 320 °C and the capillary voltage of 1.5 kV. All the sample solutions were prepared in pure water.

VOMe

Np14CMe₂

VNMe₂

Np14H

Scheme S1. Molecules related to this work (Counter anion is Cl⁻).

SI-2 Synthesis and characterization

As exemplified by Ant910X (X= H, CMe₂) in Scheme S2, a general synthesis of extended bis(*N*-arylpyridinium) derivatives in this work starts with Suzuki-Miyaura cross-coupling of two pyridin-4-yl groups onto the fluorophore core, followed by the transformation of the pryidin-4-yl groups into arylpyridinium salts through a Zincke reaction.^[2] The synthesis of VX (X= H, NH₂, OMe, SMe, NMe₂), ^[3-5] Ant910DNB, ^[6] and Np14X (X = DNB, H, NMe₂) were reported in our previous work. ^[6-7] The final Zincke reactions are pseudo-quantitative, generally resulting in an isolation yield larger than 80 % even in a 10 mg scale reaction.

Scheme S2. Synthetic route of Ant910X.

4,4'-(anthracene-9,10-diyl)bis(1-phenylpyridin-1-ium) chloride (Ant910H). Aniline (30 μL, excess) and 4,4'-(anthracene-9,10-diyl)bis(1-(2,4-dinitrophenyl)pyridin-1-ium) chloride (Ant910DNB, 6 mg, 8.6 μmol) were refluxed in ethanol (10 mL) at 90 °C for 12 h under nitrogen atmosphere. After removing solvent under reduced pressure, the solid was re-dissolved in MeOH (1 mL) and was added dropwise into diethyl ether (30 mL) to precipitate products. The suspension was then centrifuged at 8000 rpm for 10 mins at 4 °C and the supernatant was decanted. The centrifugation/decanting cycle was repeated another two times in order to wash off excess of aniline. Drying in vacuum oven gave 4 mg of orange solid in 89 % yield. ¹H NMR (500 MHz, D₂O) δ (ppm): δ 9.35 (d, *J* = 6.7 Hz, 4H), 8.41 (d, *J* = 6.5 Hz, 4H), 7.87 (dd, *J* = 6.8, 2.8 Hz, 4H), 7.80 – 7.74 (m, 6H), 7.68 (dd, *J* = 6.8, 3.2 Hz, 4H), 7.59 (dd, *J* = 6.9, 3.2 Hz, 4H). ¹³C NMR (126 MHz, D₂O) δ (ppm): 157.72, 144.50, 132.60, 131.72, 131.10, 130.97, 130.62, 128.13, 127.47, 125.32, 124.12. LCMS: *m/z* [M-2CI]²⁺ calcd. for C₃₆H₂₆N₂²⁺: 243.1, found: 243.4.

4,4'-(anthracene-9,10-diyl)bis(1-(4-isopropylphenyl)pyridin-1-ium)chloride(Ant910CMe2).Ant910CMe2was prepared following the same synthetic route as that of Ant910H except using 4-
isopropylaniline instead of aniline as the starting material. Yield 83 %, 15 mg. ¹H NMR (500 MHz, D2O)
 δ (ppm): 9.31 (d, J = 6.3 Hz, 4H), 8.38 (d, J = 6.4 Hz, 4H), 7.79 (d, J = 8.3 Hz, 4H), 7.70 – 7.63 (m, 8H),
7.58 (dd, J = 6.9, 3.2 Hz, 4H), 3.08 (p, J = 7.0 Hz, 2H), 1.28 (d, J = 6.9 Hz, 12H). ¹³C NMR (126 MHz,
MeOD) δ (ppm): 157.73, 153.30, 144.84, 140.94, 132.86, 130.81, 128.49, 128.44, 127.35, 125.38, 124.13,
33.88, 22.75. LCMS: m/z [M-2Cl]²⁺ calcd. for C42H₃₈N₂²⁺: 285.1, found: 285.5.

4,4'-(*naphthalene-1,4-diyl*)*bis*(*1-(4-isopropylphenyl*)*pyridin-1-ium*) *chloride* (*Np14CMe₂*). Np14CMe₂ was prepared following the same synthetic route as that of Ant910CMe₂ except using Np14DNB instead of Ant910DNB as the starting material. Yield 87 %, 10 mg. ¹H NMR (500 MHz, D₂O) δ (ppm): 9.24 (d, J = 6.9 Hz, 4H), 8.49 (d, J = 6.8 Hz, 4H), 8.10 (dd, J = 6.5, 3.3 Hz, 2H), 7.93 (s, 2H), 7.83 – 7.77 (m, 6H), 7.70 (d, J = 8.6 Hz, 4H), 3.14 (p, J = 6.9 Hz, 2H), 1.34 (d, J = 6.9 Hz, 12H).¹³C NMR (126 MHz, D₂O) δ (ppm): 157.53, 153.35, 143.95, 140.23, 136.45, 130.12, 129.05, 128.57, 128.49, 127.69, 125.11, 123.87, 33.42, 22.98. LCMS: *m/z* [M-2Cl]²⁺ calcd. for C₃₈H₃₆N₂²⁺: 260.1, found: 260.4.

SI-3 Mixture of VNH₂ and VOMe homodimers

Figure S1. ¹H NMR spectra of a) (**VNH**₂)₂•**CB**[**8**]₂, c) (**VOMe**)₂•**CB**[**8**]₂, and b) the equilibrium products of a 50/50 mixture of (**VNH**₂)₂•**CB**[**8**]₂ and (**VOMe**)₂•**CB**[**8**]₂ in D₂O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and [AB]) were quantified from their proton integrations in the ¹H NMR spectra.

SI-4 Mixture of VNH₂ and VNMe₂ homodimers

Figure S2. ¹H NMR spectra of a) (**VNH**₂)₂•**CB**[**8**]₂, c) (**VNMe**₂)₂•**CB**[**8**]₂, and b) the equilibrium products of a 50/50 mixture of (**VNH**₂)₂•**CB**[**8**]₂ and (**VNMe**₂)₂•**CB**[**8**]₂ in D₂O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and [AB]) were quantified from their proton integrations in the ¹H NMR spectra.

SI-5 Mixture of VNH₂ and VSMe homodimers

Figure S3. ¹H NMR spectra of a) (**VNH**₂)₂•**CB**[**8**]₂, c) (**VSMe**)₂•**CB**[**8**]₂, and b) the equilibrium products of a 50/50 mixture of (**VNH**₂)₂•**CB**[**8**]₂ and (**VSMe**)₂•**CB**[**8**]₂ in D₂O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and [AB]) were quantified from their proton integrations in the ¹H NMR spectra.

Figure S4. COSY spectrum of the equilibrium products of a 50/50 mixture of (**VNH**₂)₂•**CB**[**8**]₂ and (**VSMe**)₂•**CB**[**8**]₂ in D₂O at 298 K, which is carried out in order to assign protons correctly.

SI-6 Mixture of VH and VNMe₂ homodimers

Figure S5. ¹H NMR spectra of a) (VH)₂•CB[8]₂, c) (VNMe₂)₂•CB[8]₂, and b) the equilibrium products of a 50/50 mixture of (VH)₂•CB[8]₂ and (VNMe₂)₂•CB[8]₂ in D₂O at 298 K. The K value was calculated according to Eq. 1 in the manuscript, where relative concentration ratios of equilibrium products ([AA], [BB], and [AB]) were quantified from their proton integrations in the ¹H NMR spectra.

Figure S6. COSY spectrum of VH• VNMe₂•CB[8]₂ heterodimer in D₂O at 298 K.

SI-7 Mixture of Np14H and Np14NMe2 homodimers

Figure S7. ¹H NMR spectra of a) (**Np14H**)₂•**CB**[**8**]₂, c) (**Np14NMe**₂)₂•**CB**[**8**]₂, and b) the equilibrium products of a 50/50 mixture of (**Np14H**)₂•**CB**[**8**]₂ and (**Np14NMe**₂)₂•**CB**[**8**]₂ in D₂O at 298 K.

Figure S9. DOSY analysis for Np14H• Np14NMe₂•CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of $2.00 \times 10^{-10} \text{ m}^2/\text{s}$.

Figure S10. ¹H NMR spectra of a) **Np14H**, b) **Np14H**• **Np14CMe₂•CB[8]₂, c) Np14CMe₂ in D₂O at 298** K. Protons are assigned using the COSY and NOESY spectra in Figure S11-12.

Figure S11. COSY spectrum of Np14H• Np14CMe₂•CB[8]₂ heterodimer in D₂O at 298 K.

Figure S12. NOESY spectrum of **Np14H**• **Np14CMe₂•CB[8]**₂ heterodimer in D₂O at 298 K (mixing time: 1000 ms).

Figure S13. DOSY analysis for Np14H• Np14CMe₂•CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of $2.02 \times 10^{-10} \text{ m}^2/\text{s}$.

Figure S14. ¹H NMR spectra of a) **Ant910H**, b) **Np14CMe₂•Ant910H• CB[8]**₂, c) **Np14CMe**₂ in D₂O at 298 K. Protons are assigned using the COSY and NOESY spectra in Figure S16-17.

Figure S15. VT-NMR spectra of Np14CMe₂•Ant910H• CB[8]₂ in D₂O.

Figure S16. COSY spectrum of Np14CMe₂•Ant910H• CB[8]₂ heterodimer in D₂O at 278 K.

Figure S17. NOESY spectrum of **Np14CMe₂•Ant910H• CB[8]**₂ heterodimer in D₂O at 278 K (mixing time: 1200 ms). Correlation signals are easier to be observed under low temperature.

Figure S18. DOSY analysis for Np14CMe₂•Ant910H• CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of $1.98 \times 10^{-10} \text{ m}^2/\text{s}$.

SI-10 Mixture of Np14H, Ant910CMe₂, and CB[8]

Figure S19. ¹H NMR spectra of a) **Np14H**, b) **Np14H**• **Ant910CMe₂•CB[8]**₂, c) **Ant910CMe**₂ in D₂O at 298 K. Protons are assigned using the COSY and NOESY spectra in Figure S21-22.

Figure S21. COSY spectra of Np14H• Ant910CMe₂•CB[8]₂ heterodimer in D₂O at 278 K and 317 K.

Figure S22. NOESY spectrum of **Np14H**• **Ant910CMe₂•CB[8]**₂ heterodimer in D₂O at 278 K (mixing time: 1200 ms). Correlation signals are easier to be observed under low temperature.

Figure S23. DOSY analysis for Np14H• Ant910CMe₂•CB[8]₂ heterodimer in D₂O at 298 K, showing one complex with a diffusion coefficient of $1.99 \times 10^{-10} \text{ m}^2/\text{s}$.

SI-11 Diffusion coefficient of CB[8]-directed dimers

Smaaiar	Diffusion Coefficient $(10^{-10} \cdot m^2/s)$				
species	G ₂ -CB[8] ₂ ^[6] or G-G'-CB[8] ₂	G2-CB[8]3	G ₁ - CB [8] ₁		
Ant910Me	2.04 ± 0.01	-	-		
Ant15Me	1.98 ± 0.01	-	-		
Np27Me	2.00 ± 0.01	-	-		
Np14Me	1.98 ± 0.01	-	-		
Np15Me	2.00 ± 0.01	-	-		
Ph14Me	2.06 ± 0.01	-	-		
Ph13Me	2.07 ± 0.01	-	-		
Ph135Me	N.D.	1.79 ± 0.01	-		
VNMe ₂	2.01 ± 0.01	-	-		
dzpy	-	-	3.04 ± 0.01		
CB[8]	-	-	3.11 ± 0.01		
Np14H	2.06 ± 0.01	-	-		
Np14H-Np14NMe ₂	2.00 ± 0.01	-	-		
Np14H-Np14CMe ₂	2.02 ± 0.01	-	-		
Np14CMe ₂ -Ant910H	1.98 ± 0.01	-	-		
Np14H-Ant910CMe ₂	1.99 ± 0.01	-	-		

Table S1	. Diffusion	coefficient o	f CB[8]-directed	dimers from	DOSY in	D ₂ O at 298 K.
----------	-------------	---------------	------------------	-------------	---------	----------------------------

SI-12 Complexation of Ant910H and Np14CMe₂ with CB[7]

Figure S24. ¹H NMR spectra of a) Np14CMe₂•CB[7]₂, c) Ant910H•CB[7]₂, and b) the equilibrium products of a 50/50 mixture of Np14CMe₂•CB[7]₂ and Ant910H•CB[7]₂ in D₂O at 298 K.

SI-13 Excitation spectrum of Ant910H and Np14CMe2 dimers

Figure S25. Absorption (solid line) and excitation spectra (dash dotted line) of a) Np14CMe₂ (green) or Ant910H (orange) homodimers and b) Np14CMe₂•Ant910H• CB[8]₂ heterodimer in D₂O (20 μ M). The excitation spectra of Np14CMe₂•Ant910H• CB[8]₂ was detected at 650 nm, which corresponds to the emission solely from anthracene moiety without interference from naphthalene. The intense excitation band around 400 nm confirms an energy-transfer contribution from Np14CMe₂ to the emission of Ant910H.

Reference

[1] Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B. J. Org. Chem. 2001, 66, 8094-8100.

[2] Bongard, D.; Möller, M.; Rao, S. N.; Corr, D.; Walder, L. Helv. Chim. Acta 2005, 88, 3200-3209.

[3] Biedermann, F.; Scherman, O. A. J. Phys. Chem. B 2012, 116 (9), 2842-2849.

[4] Zhang, W.; Gan, S.; Vezzoli, A.; Davidson, R. J.; Milan, D. C.; Luzyanin, K. V.; Higgins, S. J.; Nichols, R. J.; Beeby, A.; Low, P. J.; Li, B.; Niu, L. *ACS Nano* **2016**, *10*, 5212–5220.

[5] Wu, G.; Olesińska, M.; Wu Y.; Matak-Vinkovic D.; Scherman, O. A. J. Am. Chem. Soc. 2017, 139, 3202–3208

[6] Wu, G.; Bae, Y. J.; Olesińska, M.; Antón-García, D.; Szabó, I.; Rosta, E.; Wasielewski, M. R.; Scherman, O. A. *Chem. Sci.* **2020**, *11*, 812–825.

[7] Olesińska, M.; Wu, G.; Gómez-Coca, S.; Antón-García, D.; Szabó, I.; Rosta, E.; Scherman, O. A. *Chem. Sci.* **2019**, *10*, 8806–8811.