

Supporting Information

Improved Access to Organo-Soluble Di- and Tetrafluoridochlorate-(I)/(III) Salts

P. Pröhm, J. R. Schmid, K. Sonnenberg, P. Voßnacker, S. Steinhauer, C. J. Schattenberg, R. Müller, M. Kaupp, and S. Riedel*

anie_202006268_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents	
Experimental Section	3
Reactivity Studies	7
Crystallographic Section	15
Computational Section	16
References	17

Caution!

Fluorine, even under dilute conditions, is extraordinarily reactive and can react violently with organic materials under the formation of HF. Similarly, tetrafluoridochlorate(III) and difluoridochlorate(I) are strongly oxidizing compounds, which can decompose violently under certain conditions when exposed to organic materials. Exposure to acidic compounds (e.g. water or boron trifluoride) greatly enhances the reactivity due to the *in-situ* formation of CIF₃. Additionally, precipitation also greatly enhances the reactivity of tetrafluoridochlorate(II) and difluoridochlorate(I) compounds, leading to explosions at temperatures above –40 °C. Usage of PFA, FEP or PTFE may lower the risk of injury.

General Information

All experiments were performed under rigorous exclusion of moisture and oxygen using standard Schlenk techniques. Solids were handled in a dry box under argon atmosphere ($O_2 < 0.5$ ppm, $H_2O < 0.5$ ppm). HF addition experiments were performend in 3.8 mm PFA tubes with a stainless steel vacuum line. Acetonitrile and propionitrile were dried over Sicapent® prior to use. [NEt₄]Cl and [NEt₃Me]Cl were dried over night at 120 °C under dynamic vacuum. All other chemicals were used as purchased. CIF was synthesized according to literature.^[1]

Raman spectra were recorded on a Bruker MultiRAM II equipped with a low-temperature Ge detector (1064 nm, 30-80 mW, resolution, 4 cm⁻¹). NMR spectra were recorded on a JEOL 400 MHz ECS or ECZ spectrometer. All reported chemical shifts are referenced to the Ξ values given in IUPAC recommendations of 2008 using the ²H signal of the deuterated solvent as internal reference.^[2] For external locking acetone-d6 was flame sealed in a glass capillary and the lock oscillator frequency was adjusted to give δ (¹H) = 7.26 ppm for a CHCl₃ sample locked on the capillary. Crystal data were collected on a Bruker D8 Venture diffractometer with a Photon 100 CMOS area detector with MoK_α radiation. Single crystal were picked at –80 °C under nitrogen atmosphere and mounted on a 0.15 mm Mitegen micromount using perfluoroether oil diluted with perfluorohexane. The structures were solved with the ShelXT^[3] structure solution program using intrinsic phasing and refined with the ShelXL^[4] refinement package using least squares minimizations by using OLEX2.^[5]

Structure optimizations and nonrelativistic shielding calculations for the $[XF_n]^-$ (X = Cl, Br, I; n=2, 4, 6) anions and the CFCl₃ reference standard were performed using a developers' version of the TURBOMOLE program, release 7.4.^[7] Overall four sets of structures were optimized using def2-TZVPPD^[8] basis sets (including an effective core potential, ECP, for iodine^[8]) and TURBOMOLE standard grid setting 3. Two sets of structures were obtained at the BP86^[9]-D3(BJ)^[10] level, either in the gas phase or using the Conductor-like Screening Model (COSMO)^[11] with $r_{solv} = 2.76$ [Å] and $\epsilon = 35.94$ (parameters for the solvent radius and finite permittivity of acetonitrile).

The other two sets were obtained at the B3LYP^[12]-D3(BJ)^[10] level of theory, also without and with COSMO solvent model. D3(BJ) stands for D3 atom-pairwise dispersion corrections with Becke-Johnson damping.^[10]

Subsequent nonrelativistic nuclear-shielding calculations at these structures used a recent improved DFT-GIAO^[13] implementation in Turbomole,^[14] extended to allow the use of local hybrid functionals.^[15] We used two functionals, which had previously been demonstrated to provide accurate ¹⁹F shieldings,^[15,16] the global hybrid BHLYP,^[12b,17] and the LH12ct-SsifPW92.^[18] local hybrid functional with position-dependent exact-exchange admixture.^[19] These computations used pcSseg-4 basis sets^[20] for F, CI, and Br and ANO-RCC-unc^[21] basis sets for I. For each of the abovementioned sets of structures, shielding calculations with these two functionals were performed without or with COSMO. This allows the evaluation of the role of solvent effects acting either indirectly via the structure or directly. The nonrelativistic shielding/shift results are given in Tables S3, S4.

To evaluate the role of spin-orbit and scalar relativistic effects, we also carried out four-component relativistic computations (at the BP86-D3(BJ)(COSMO,CH₃CN)/def2-TZVPPD optimized structures) using the matrix Dirac-Kohn-Sham (mDKS) method^[22] implemented in the ReSpect program, version 5.1.0.^[23] As neither local hybrids nor BHLYP are currently available for shielding computations in ReSpect, we used a modified B3LYP functional with 50% admixture of exact Hartree-Fock exchange (B3LYP50), which should give results that are close to BHLYP data. Uncontracted Dyall valence quadruple- ζ (Dyall-VQZ)^[24] basis sets were used for all atoms. Relativistic shielding/shift results are shown in Table S5.

Experimental Section

Synthesis of [NEt₃Me][CIF₄] in solution (low concentration)

[NEt₃Me]Cl (100 mg, 0.659 mmol, 1 eq.) was dissolved in dried acetonitrile or propionitrile or CHFCl₂ (1 ml) and cooled to -35 °C (MeCN) or -55 °C (EtCN, CHFCl₂). Dilute F₂ (10 % in Ar) was bubbled through the solution (16 min, 20 ml·min⁻¹, 2 eq). Pure Ar (20 ml·min⁻¹) was bubbled through the solution for 15 min in order to remove residual amounts of reactive gases. A colorless solution was obtained.

¹H NMR (400 MHz, EtCN, ext. acetone-d6, 20 °C) δ [ppm]= 3.87 (q, ³*J*(¹H,¹H)=7.30 Hz, 6H, CH₂) 3.48 (s, 3H N-CH₃), 1.85 (t, ³*J*(¹H,¹H)=7.30 Hz, ³*J*(¹⁴N,¹H)=1.84 Hz, CH₃). ¹⁹F NMR (377 MHz, EtCN, ext. acetone-d6, 20 °C) δ [ppm]= 67 (CIF₄⁻); FT-Raman (EtCN, -196 °C): $\tilde{\mathcal{V}}$ = [CIF₄]⁻: 500 (a_{1q}), 407(b_{1q}), 278 cm⁻¹ (b_{2q}).

Synthesis of [NEt₃Me][CIF₄] in solution (high concentration)

 $[NEt_3Me][Cl_3]$ was prepared by the addition of 1 eq. of Cl_2 to $[NEt_3Me][Cl. [NEt_3Me][Cl_3]$ (0.621 g, 2.79 mmol, 1 eq.) was diluted with acetonitrile (0.3 ml) and cooled to -30 °C. Dilute F_2 (10 % in Ar) was bubbled through the solution (68 min, 20 ml min⁻¹, 2 eq). To remove residual amounts of reactive gases, Ar was bubbled through the solution for (15 min, 20 ml min⁻¹). A colorless solution was obtained. Analytics was identical to samples with low concentration.

Crystal growth of [NEt4][CIF4]

The synthetic procedure is similar to $[NEt_3Me][CIF_4]$. Single crystals were obtained by slowly cooling a propionitrile solution to -80 °C over 1 week in a freezer. An ethanol bath in a Dewar was used to reduce the cooling rate.

Synthesis of [NEt4]3[CIF4][CIF2]2 in solution

[NEt₄]Cl (300 mg, 1.81 mmol, 1 eq.) was dissolved in acetonitrile (3 ml) and cooled to -30 °C. Dilute F₂ (10 % in Ar) was bubbled through the solution (20 min, 20 ml min⁻¹, 1.2 eq). To remove residual amounts of reactive gases, Ar was bubbled through the solution for 15 min. A colorless solution was obtained.

¹H NMR (400 MHz, MeCN, ext. acetone-d6, -40 °C) δ [ppm]= 3.11 (q, ³*J*(¹H,¹H)=7.18 Hz, 8H, CH₂), 1.12 (t, ³*J*(¹H,¹H)=7.18 Hz, ³*J*(¹⁴N,¹H)=1.84 Hz, 12H, CH₃). ¹⁹F NMR (377 MHz, MeCN, ext. acetone-d6, -40 °C) δ [ppm]= 67 (s, [CIF₄]⁻), -125 (s, [CIF₂⁻]) FT-Raman (MeCN, -196 °C): $\tilde{\mathcal{V}}$ = [CIF₄]⁻: 500 (a_{1g}), 407(b_{1g}), 278 (b_{2g}), [CIF₂]⁻: 455 cm⁻¹ (a_{1g}).

Crystal growth of [NEt₃Me]₃[CIF₄][CIF₂]₂

The synthetic procedure is similar to $[NEt_4]_3[CIF_4][CIF_2]_2$. Single crystals were obtained by slowly cooling a propionitrile solution to -35 °C over 2 days in a freezer. An ethanol bath in a Dewar was used to reduce the cooling rate.

Synthesis of [NEt₃Me][CIF₂] in solution

[Net3Me]Cl (50 mg, 0,330 mmol, 1 eq) was dissolved in propionitrile (0.5 ml) and cooled to -50 °C. Dilute CIF (10 % in Ar) was bubbled through the solution (8.5 min, 20 ml min⁻¹, 2 eq). To remove residual amounts of reactive gases, Ar was bubbled through the solution for 15 min. A colorless solution was obtained. The reaction mixture was allowd to warm to -10 °C and subsequently slowly cooled to -80 °C in an ethanol bath Dewar to reduce the cooling rate. Single crystals were obtained after 4 days.

Raman (crystal, -196 °C): $\tilde{\mathcal{V}}$ = [CIF₂]⁻: 457 cm⁻¹ (a_{1q}).

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 δ/ppm Figure S1. ¹H NMR spectrum (400 MHz, EtCN, ext. acetone-d6, 21 °C) of a solution of [NEt₃Me][ClF₄] in propionitrile.

Figure S2. ¹⁹F NMR spectrum (377 MHz, EtCN, ext. acetone-d6, 21 °C) of a solution of [NEt₃Me][ClF₄] in acetonitrile. Asterisk (*) denotes CFCl₃. Unknown impurity at -91 ppm (t).

Figure S3. ¹⁹F NMR spectrum (377 MHz, MeCN, ext. acetone-d6, -40 °C) of a solution of [NEt₃Me]₃[CIF₄][CIF₂]₂ in acetonitrile. Asterisk (*) denotes CFCI₃.

We realized that the ¹⁹F NMR signal of [NEt₃Me][CIF₄] shows different line broadening under certain conditions. Therefore, we studied the influence of temperature and HF impurities on the line width. Figure S4 shows the ¹⁹F NMR spectra at -20 °C and -40 °C prior and after addition of 1 eq of HF. Raising the temperature from -40 °C to -20 °C leads to a significant line broadening (-40 °C : FWHM = 164.8 Hz, -20 °C = 414.8 Hz). Addition of HF also leads to line broadening at -20 °C and -40 °C (-40 °C + HF addition: FWHM = 251.6 Hz; -20 °C + HF addition: FWHM = 637.7 Hz).

Figure S4. ¹⁹F NMR spectra (377 MHz, EtCN, ext. acetone-d6) of a solution of [NEt₃Me][CIF₄] in propionitrile at -20 °C and -40 °C prior and after addition of 1 eq HF.

Figure S5. Raman spectra (-196 °C) of [NEt₃Me][CIF₄] in different solvents: CHFCl₂ (top), EtCN (middle), MeCN (bottom). Left: full spectrum, right: Extract from 200-600 cm⁻¹. [CIF₄]⁻ bands are highlighted in red.

 $[NEt_3Me][CIF_4]$ in different solvents, CHFCl₂ (top), propionitrile (middle) and acetonitrile (bottom). The three characteristic bands for $[CIF_4]^-$ (500 cm⁻¹ (a_{1g}), 407 cm⁻¹ (b_{1g}), 278 cm⁻¹ (b_{2g})) are highlighted in red. The different intensities are due to different concentrations. In case of propionitrile the concentration is too low (0.32 mol·l⁻¹) to observe the b_{2g} vibration. In case of CHFCl₂ the band of the b_{2g} vibration is superimposed by a solvent band.

Reactivity Studies

Disulfide activation

5 [NEt₃Me][CIF₄]+ 2
$$Ph^{S_{S}}Ph = \frac{EtCN}{-55 \circ C} \rightarrow 2 Ph^{SF_5 + 2} Ph^{SF_4CI}$$

To a cooled (-55 °C) solution of [NEt₃Me][ClF₄] in propionitrile (1 ml, 0.659 mol·l⁻¹, 1 eq.) a solution of phenyl disulphide (28.8 mg, 0.132 mmol, 0.2 eq) in propionitrile (2 ml) was added dropwise. The solution was stirred for 15 min at -55 °C, then allowed to warm to r.t. and stirred over night. A 1 : 4 : 2 mixture of Ph-SF₅ : *cis*-PhSF₄Cl : *trans*-PhSF₄Cl was obtained. After addition of H₂O (0.5 ml) *trans*-PhSF₄Cl was selectively hydrolysed to PhSO₂F. Addition of dilute potassium hydroxide solution (1 ml) and heating to 90 °C over night led to the hydrolysis of *cis*-PhSF₄Cl and PhSO₂F. Products were identified by ¹⁹F NMR spectroscopy. NMR yield PhSF₅: 17 % ¹⁹F NMR (377 MHz, EtCN, ext. acetone-d6, 21 °C) \bar{o} = 85 (quin. ²J(¹⁹F, ¹⁹F)=148Hz, 1F, PhSF₅ *trans*-F), 63 (d, 4F, PhSF₅ *cis*-F), 165 (td, ²J(¹⁹F, ¹⁹F)=164Hz, ²J(¹⁹F, ¹⁹F)=149 Hz, 1F, *cis*-PhSF₄ *trans*-F), 100 (dd, ²J(¹⁹F, ¹⁹F)=81 Hz, 2F, *cis*-PhSF₄ *cis*-F), 67 (dt, 2F, *cis*-PhSF₄

cis-F), 137 (s, 4F, trans-PhSF₄Cl), 64 ppm (s, 1F PhSO₂F).

Figure S7. ¹⁹F NMR spectra (377 MHz, EtCN, ext. acetone-d6, 21 °C) of the reaction mixture after the reaction of [NEt₃Me][ClF₄] with Ph₂S₂ showing three products: PhSF₅, *cis*-PhSF₄Cl and *trans*-PhSF₄Cl. Experimental spectra shown with positive intensities, simulated spectra shown with negative intensities.

Figure S8. ¹⁹F NMR spectrum (377 MHz, EtCN, ext. acetone-d6, 21 °C) of the hydrolysed reaction mixture (H₂O, r.t., 15 min) after the reaction of [NEt₃Me][ClF₄] with Ph₂S₂ showing three products: PhSF₅, *cis*-PhSF₄Cl and PhSO₂F.

SUPPORTING INFORMATION

Figure S9. ¹⁹F NMR spectrum (377 MHz, EtCN, ext. acetone-d6, 21 °C) of the hydrolysed reaction mixture (KOH_{aq}, 90 °C, 8 h) after the reaction of [NEt₃Me][ClF₄] with Ph₂S₂ showing only PhSF₅.

Nitrile activation

2 [NEt₃Me][CIF₄]+ 2 MeCN · BF₃
$$\xrightarrow{\text{CHFCl}_2 -55 \,^{\circ}\text{C}}$$
 2 CH₃CF₃
-2 [NEt₃Me][BF₄] > 2 CH₃CF₃
-N₂
-Cl₂

The acetonitrile boron trifluoride complex was synthesized by the addition of BF₃ to acetonitrile at r.t. followed by removal of residual acetonitrile under reduced pressure.

To solid acetonitrile boron trifluoride complex (35.9 mg, 0.330 mmol, 0.5 eq) a solution of [NEt₃Me][ClF₄] (150 mg, 0.659 mmol, 1 eq) in dichlorofluoromethane (1 ml) was added at -60 °C. The reaction mixture was analyzed by ¹⁹F NMR spectroscopy (Figure S9). The reaction equation suggests the equimolar formation of CH₃CF₃ and [BF₄]⁻. The ¹⁹F NMR spectrum shows a ratio of 1:230 in favour of [BF₄] this can be rationalised due to several reasons: First, CH₃CF₃ has a boiling point of -50 °C. During the reaction and the transfer of the reaction mixture probably significant amounts of the product evaporated. Secondly, during the reaction highly reactive ClF₃ is formed leading to side products which are evident in the ¹⁹F NMR spectrum. The signal at -129 ppm can be identified as [SiF₆]²⁻ from a reaction with the glass vessle.

SUPPORTING INFORMATION

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 δ/ppm

Figure S10. ¹⁹F NMR spectrum (377 MHz, EtCN, ext. acetone-d6, 21 °C) of the reaction mixture. Symbols denote solvent impurities (*), side products generated during the reaction (#).

CO activation

$$[NEt_3Me][CIF_4] + CO \xrightarrow{EtCN} COF_2$$

A solution of [NEt₃Me][CIF₄] (150 mg, 0.659 mmol, 1 eq) was stirred under a CO atmosphere for 30 min at r.t. Then the gas-phase was analyzed via FT-IR spectroscopy. The FT-IR spectrum (Figure S7) only shows the presence of starting material (CO) solvent (EtCN) and product (COF₂). The formation of COCl₂ or COCIF was not observed.

Figure S11. Gas-phase FT-IR spectrum (50 mbar, 10 cm) of the reaction mixture showing only solvent (EtCN, blue), starting material (CO, green) and product (COF₂, red).

Dissolution of gold

2 [NEt₃Me][CIF₄]+ 2 Au $\xrightarrow{\text{MeCN}}$ 2 [NEt₃Me][AuF₄]

Gold metal (16 mg) was dissolved over 2 days in a solution of $[NEt_3Me][CIF_4]$ in acetonitrile (0.5 ml, 8 mol·l⁻¹) at r.t. The solution was analyzed with ¹⁹F NMR spectroscopy. The major product is $[AuF_4]^-$ (95 %) but traces of $[AuF_3CI]^-$ (3%) and *cis*- $[AuF_2CI_2]^-$ (2%) were also present in the reaction mixture.

SUPPORTING INFORMATION

Figure S12. ¹⁹F NMR spectrum (377 MHz, MeCN, ext. acetone-d6, 21 °C) of the reaction mixture after the reaction of [NEt₃Me][ClF₄] with Au. Symbols denote fluorinated impurities: # fluorinated solvent (FCH₂CN), * halogenated cations.

Tetracyanoborate activation

Potassiumtetracyanoborate (500 mg, 3.25 mmol, 1 eq) was dissolved in acetonitrile (10 ml). A solution of triethylmethylaommonium chloride (0.493 mg, 3.25 mmol, 1 eq) in acetonitrile (5 ml) was added. The colourless precipitated was filtrated and the solvent was removed under reduced pressure to yield tetramethylammonium tetracyanoborate.

Triethylmethylammonium tetracyanoborate (76.0 mg, 0.330 mmol, 0.5 eq) was dissolved in CHFCl₂ (1 ml) and boron trifluoride (67,0 mg, 0.989 mmol, 1.5 eq) was added. The solution was cooled to -60 °C. A cooled solution of Triethylmethylammonium tetrafluoridochlorate(III) (1 ml, 0.659 mol*I⁻¹, 1 eq) was added at -60 °C, stirred for 5 min at -60 °C and let allowd to warm to r.t. Volatiles were removed and the residue was dissolved in CD₃CN and analyzed via ¹⁹F and ¹¹B NMR spectroscopy. [B(CF₃)_x(CN)_{4-x}]⁻ anions were identified according to literature.

-61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 δ / ppm **Figure S13.** ¹⁹F NMR spectrum (377 MHz, CD₃CN, 21 °C) of the reaction mixture after the reaction of [NEt₃Me][ClF₄] with [NEt₃Me][B(CN)₄].

SUPPORTING INFORMATION

Difluoridoaurate activation

$$[NEt_{3}Me][CIF_{4}] + [NEt_{3}Me][Au(CN)_{2}] \xrightarrow[-N_{2}]{CHFCl_{2} \\ -55 \ ^{\circ}C} \\ [NEt_{3}Me][BF_{4}] \rightarrow [NEt_{3}Me][AuF_{2}(CF_{3})(CN)] \\ -N_{2} \\ -Cl_{2} \end{bmatrix}$$

Cation metathesis was achived in a simiar procedure to triethylmethylammonium tetracyanoborate.

Triethylmethylammonium dicyanoaurate (43 mg, 0.118 mmol, 0.18 eq) was dissolved in CHFCl₂ (1 ml). Boron trifluoride (19 mg, 0.280 mmol, 0.42 eq) was added. The solution was cooled to -60 °C. A cooled solution of triethylmehtylammonium tetrafluoridochlorate(III) (1 ml, 0.659 mol⁺l⁻¹, 1 eq) was added at -60 °C, stirred for 5 min at -60 °C and let allowd to warm to r.t and analyzed via ¹⁹F NMR spectroscopy.

Cis-cyanodifluorido(trifluoromethyl)aurate(III) was identfied using ¹⁹F NMR spectroscopy in comparison with literature values.^[25] Due to the low concentration of cis-cyanodifluorido(trifluoromethyl)aurate(III) the region between -80 and -170 ppm in the NMR spectrum is

not shown. It contains solvent signal CHFCl₂ at -81 ppm, $[SiF_6]^{2^-}$ at -129 ppm and $[BF_4]^-$ at -152 ppm δ [ppm]= -58.29 (dd, ${}^{3}J({}^{19}F, {}^{19}F) = 5.8$ Hz, ${}^{3}J({}^{19}F, {}^{19}F) = 2.5$ Hz, 3F), -196.66 (dq, ${}^{2}J({}^{19}F, {}^{19}F) = 65.3$ Hz, ${}^{3}J({}^{19}F, {}^{19}F) = 2.5$ Hz, 1F), -254.31 (dq, ${}^{2}J({}^{19}F, {}^{19}F) = 65.3$ Hz, ${}^{3}J({}^{19}F, {}^{19}F) = 5.8$, 1F)

Figure S15. ¹⁹F NMR spectrum (377 MHz, CHFCl₂, ext. acetone-d6, 21 °C) of the reaction mixture after the reaction of $[NEt_3Me][ClF_4]$ with $[NEt_3Me][Au(CN)_2]$. Omitted spectral area between -80 and -170 ppm contains solvent CHFCl₂ (-81 ppm), $[SiF_6]^2$ (-129 ppm) and $[BF_4]^-$ (-152 ppm).

Crystallographic section

Table S1. Crystallographic details of $[NEt_3Me]_3[CIF_4][CIF]_2$ and $[NEt_4][CIF_4]$.

Compound			
Empirical formula			
Empirical formula	607.02		190.67
	100.0	241.70	109.07
Temperature/K	100.0	99.92	100.0
Crystal system	triclinic	monoclinic	monoclinic
Space group	P1	C2/c	P21/c
a/A	6.9802(8)	11.4818(9)	11.2608(4)
b/Å	14.6749(16)	7.5474(5)	6.9954(2)
c/Å	15.3580(16)	14.3613(11)	12.6412(4)
α/°	97.190(4)	90	90
β/°	92.017(4)	110.877(3)	102.6650(10)
γ/°	102.608(4)	90	90
Volume/Å ³	1520.0(3)	1162.81(15)	971.57(5)
Z	2	4	4
ρ _{calc} g/cm ³	1.326	1.381	1.297
µ/mm ⁻¹	0.366	0.347	0.367
F(000)	648.0	512.0	408.0
Crystal size/mm ³	0.34 × 0.23 × 0.18	0.32 × 0.16 × 0.04	0.293 × 0.216 × 0.154
Radiation	ΜοΚ _α (λ = 0.71073)	ΜοΚ _α (λ = 0.71073)	ΜοΚ _α (λ = 0.71073)
20 range for data collection/°	5.358 to 57.15	6.072 to 56.738	3.708 to 61.112
Index ranges	$-9 \le h \le 9, -19 \le k \le 19, -20 \le l \le 20$	−15 ≤ h ≤ 15, −9 ≤ k ≤ 10, −19 ≤ l ≤ 19	16 ≤ h ≤ 16, -9 ≤ k ≤ 10, -18 ≤ l ≤ 18
Reflections collected	85154	25147	24557
Independent reflections	7678 [R _{int} = 0.0626, R _{sigma} = 0.0322]	1453 [$R_{int} = 0.0452$, $R_{sigma} = 0.0173$]	2961 [R _{int} = 0.0275, R _{sigma} = 0.0157]
Data/restraints/parameters	7678/0/331	1453/0/68	2961/0/117
Goodness-of-fit on F ²	1.059	1.172	1.065
Final R indexes [I>=2σ (I)]	$R_1 = 0.0372, wR_2 = 0.0810$	$R_1 = 0.0300, wR_2 = 0.0752$	$R_1 = 0.0268, wR_2 = 0.0751$
Final R indexes [all data]	$R_1 = 0.0517$, wR2 = 0.0878	$R_1 = 0.0334, \ wR_2 = 0.0766$	$R_1 = 0.0316, wR_2 = 0.0804$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.44	0.32/-0.38	0.34/-0.34
CCDC deposition number	1948997	1948998	2004243

 Table S2.
 Bond lengths and angles of [CIF₄]⁻ anions in [NEt₄][CIF₄] and [NEt₃Me]₃[CIF₄][CIF₂]₂ in comparison with the literature known compounds [pyp][CIF₄], [NO][CIF₄], Cs[CIF₄], Rb[CIF₄] and K[CIF₄].

 [NO][CIF₄], Cs[CIF₄], Rb[CIF₄] and K[CIF₄].
 Lengths in pm, angles in °.

Bond/Angle	[NEt ₄][CIF ₄]	[NEt ₃ Me] ₃ [CIF ₄][CIF ₂] ₂	[pip][ClF₄]	[NO][CIF4]	Cs[CIF ₄]	Rb[ClF₄]	K[CIF₄]
CI1-F1	179.3(1)	178.8(1)	175.9(2)	187.4(1)	179.4(4)	180.34(9)	179.82(6)
CI1-F2	180.6(1)	179.4(1)	181.4(1)	172.7(1)	179.2(4)	179.30(9)	-
CI1-F3	-	180.0(1)	177.1(1)	-	-	-	-
CI1-F4	-	180.8(1)	181.3(1)	-	-	-	-
F1-Cl1-F2	90.01(5)	89.78(5)			89.1(2)	89.33(4)	89.79(4)
F2-CI1-F1'	89.99(5)	-			90.9(2)	90.67(4)	90.21(4)
F2-CI1-F3	-	89.66(5)			-	-	-
F3-CI1-F4	-	90.21(5)			-	-	-
F4-CI1-F1	-	90.35(5)			-	-	-

Figure S16. Hirshfeld surface of of the [CIF₄]⁻ anion in [NEt₃Me][CIF₄]. Color code: blue = N, grey = C, white H, green dashed line displays hydrogen bond.^[27]

Figure S17. Crystal structure of [NEt₃Me]₃[ClF₄][ClF₄][ClF₂]₂. Color code: yellow = F, green = Cl, blue = N, grey = C. Displacement ellipsoids are shown at 50 % probability at 100 K. Selected bond lengths [pm] and bond angles [°]: F1-Cl1 178.8(1), F2-Cl1 179.4(1), F3-Cl1 180.0(1), F4-Cl1 180.8(2), F5-Cl2 185.4(1), F6-Cl3 184.1(2), F7-Cl4 184.9(1), F8-Cl4 185.4(1), F7-Cl4-F8 179.66(5). Hydrogen atoms omitted for clarity.

By slowly cooling a reaction mixture of [NEt₃Me]Cl with 1.2 eq. fluorine in acetonitrile, single crystals of [NEt₃Me]₃[ClF₄][ClF₂]₂ were obtained (Figure S16). This compound crystallizes in the space group $P\overline{1}$. In the asymmetric unit are four anionic moieties. One is a [ClF₄]⁻ anion, the second is an asymmetric [ClF₂]⁻ (F7Cl4F8) anion. Furthermore, there are two [ClF₂]⁻ units with the chlorine atom on centers of inversion (F6Cl3F6' and F5Cl2F5') (Figure 4). The bond lengths and angles in the [ClF₄]⁻ anion in [NEt₃Me]₃[ClF₄][ClF₂]₂ are very similar to the ones found in [NEt₄][ClF₄]. The Cl–F bond lengths of the [ClF₂]⁻ anions vary between 184.1(2) pm and 185.4(1) pm. The bond angle of the [ClF₂]⁻ anion (F7Cl4F7) is 179.66(5) °.

Computational section

Table S3. Calculated ¹⁹F NMR chemical shifts relative to CFCI₃ (in ppm) of $[XF_n]^-$ (X = CI, Br, I; n=2, 4, 6) in comparison with experimental values, at BP86-D3 structures.^a

		BH	LYP			LH12ct-	SsifPW92		
opt.	gas.	gas	COSMO.	COSMO	gas.	gas	COSMO.	COSMO	
NMR	gas	COSMO	gas	COSMO	gas	COSMO	gas	COSMO	δ_{exp}
[CIF ₂] ⁻	-193.2	-200.0	-196.6	-202.4	-166.3	-170.1	-171.5	-174.4	-125
[CIF₄] [−]	80.6	76.1	71.9	67.8	71.8	68.6	63.3	60.5	67
[CIF ₆] ⁻	284.3	286.8	275.0	277.6	255.1	257.3	246.6	248.9	-
[BrF ₂] ⁻	-284.4	-294.6	-286.2	-295.5	-262.6	-270.7	-265.4	-272.7	-210
[BrF ₄] ⁻	-32.2	-38.3	-36.3	-42.0	-36.6	-41.6	-40.7	-45.4	-37
[BrF ₆] ⁻	131.9	135.0	126.0	129.2	114.6	117.4	109.0	111.9	94
[IF ₂] ⁻	-350.1	-359.3	-351.4	-360.1	-338.1	-346.7	-339.5	-347.8	-282
[IF4] ⁻	-103.1	-109.5	-105.1	-111.1	-109.8	-115.5	-111.8	-117.3	-106
[IF ₆] ⁻	31.1	33.3	28.1	30.5	14.8	16.9	11.9	14.1	13
σ(CFCl ₃)	185.4	189.7	183.8	183.8	195.2	198.8	193.7	197.5	

a At BP86-D3(BJ)/def2-TZVPPD optimized structures. CFCl₃ reference shieldings at the same level have been used to obtain the relative shifts. Nonrelativistic results with pcSseg-4 basis sets for F, Cl, Br, and ANO-RCC-unc for I.

Table S4. Calculated ¹⁹F NMR chemical shifts relative to CFCl₃ (in ppm) of $[XF_n]^-$ (X = Cl, Br, I; n=2, 4, 6) in comparison with experimental values, at B3LYP-D3 structures.^a

		BH	LYP		LH12ct-SsifPW92				
opt. NMR	gas gas	gas COSMO	COSMO gas	COSMO COSMO	gas gas	gas COSMO	COSMO gas	COSMO COSMO	δ_{exp}
[CIF ₂] ⁻	-190.6	-196.4	-193.4	-198.4	-169.8	-171.0	-173.3	-169.8	-125
[CIF₄] [−]	65.3	61.3	58.5	54.9	56.5	53.8	49.9	47.5	67
[CIF ₆] ⁻	250.8	252.9	243.0	245.3	224.7	226.7	217.5	219.7	-
[BrF ₂]⁻	-279.4	-288.5	-281.1	-289.5	-260.0	-267.1	-262.3	-268.9	-210
[BrF₄]⁻	-38.2	-43.7	-41.5	-46.7	-43.3	-47.8	-46.6	-50.8	-37
[BrF ₆] ⁻	113.8	116.4	108.5	111.4	97.6	100.0	92.7	95.3	94
[IF ₂] ⁻	-343.0	-351.5	-344.6	-352.9	-332.4	-340.3	-333.9	-341.8	-282
[IF ₄] ⁻	-99.5	-105.5	-101.3	-107.1	-107.0	-112.5	-108.8	-114.1	-106
[IF ₆] ⁻	29.3	31.1	26.5	28.4	12.7	14.4	9.9	11.7	13
0.501									

 CFCI3
 190.77
 194.77
 189.11
 193.25
 200.31
 203.63
 198.72
 202.17

 ^a At B3LYP-D3(BJ)/def2-TZVPPD optimized structures. CFCI3 reference shieldings at the same level have been used to obtain the relative shifts. Nonrelativistic results with pcSseg-4 basis sets for F, Cl, Br, and ANO-RCC-unc for I.
 Nonrelativistic

Table S5. Fully relativistic 4c-mDKS/B3LYP50/Dyall-VQZ results for ¹⁹F NMR nuclear shieldings and chemical shifts of [XFn]⁻ (X = Cl, Br, I; n=2, 4, 6).^a

	[CIF ₂] ⁻	[CIF₄] [−]	[CIF ₆] [−]	[BrF₂]⁻	[BrF ₄] ⁻	[BrF ₆]⁻	[IF ₂] ⁻	[IF ₄] ⁻	[IF ₆]⁻	CFCI ₃
σ^{iso}	389.0	126.2	-78.8	471.3	236.1	75.0	539.6	321.5	192.1	192.4
δ	-196.5	66.2	271.2	-278.9	-43.7	117.4	-347.2	-129.2	0.3	0
δ _{exp}	-125	67	_	-210	-37	94	-282	-106	13	0

^a Gas-phase results relative to CFCl₃ at the same level, at BP86-D3(BJ)(COSMO,CH₃CN)/def2-TZVPPD structures.

References

- M. Baudler, G. Brauer, Handbuch der Präparativen Anorganischen Chemie in drei Bänden, Bd1, Vol 5., Ferdinand Enke, Stuttgart, 1975, p.166. [1]
- R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59. [2]
- G. M. Sheldrick, Acta Crystallogr. A 2008, A64, 112. [3]
- [4] G. M. Sheldrick, Acta Crystallogr. C 2015, C71, 3.
- [5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- [6] K. Brandenburg, Crystal Impact GbR 2009.
- Local version derived from Turbomole version 7.4, Turbomole GmbH, 2017. Turbomole is a development of University of Karlsruhe and Forschungszentrum [7] Karlsruhe 1989–2007, Turbomole GmbH since 2007.
- a) A. D. Becke Phys. Rev. A 1998, 38, 3098; b) J. P. Perdew Phys. Rev. B 1986, 33, 8822. [8]
- [9] a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297; b) D. Rappoport, F. Furche, *J. Chem. Phys.* 2010, 133, 134105; c) K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, *J. Chem. Phys.* 2003, 119, 11113.
- a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, L. J. Comput. Chem. 2011, 32, [10] 1456-1465
- [11]
- A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 2, 799.
 a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. [12]
- [13] a) F. London, J. Phys. Radium 1937, 8, 397; b) R. Ditchfield, Mol. Phys. 1974, 27, 789; c) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112 8251
- [14]
- K. Reiter, F. Mack, F. Weigend, *J. Chem. Theory Comput.* **2018**, *14*, 191. C. J. Schattenberg, K. Reiter, F. Weigend, M. Kaupp *J. Chem. Theory Comput.* **2020**, *16*, 931. [15]
- T. Kupka, *Magn. Reson. Chem.* **2009**, 47, 959. [16] [17]
- A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
- A. V. Arbuznikov, M. Kaupp, J. Chem. Phys. 2012, 136, 014111. [18]
- T. M. Maier, A. V. Arbuznikov, M. Kaupp WIREs Comp. Mol. Sci. 2019, 9, e1378. [19]
- F. Jensen, J. Chem. Theory Comput. 2015, 11, 132. [20]
- [21]
- [22]
- B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, P.-O. Widmark, J. Phys. Chem. A 2005, 108, 2851.
 S. Komorovský, M. Repiský, O. L. Malkina, V. G. Malkin, I. Malkin Ondík, M. Kaupp J. Chem. Phys. 2008, 128, 104101/1-15.
 M. Repisky, S. Komorovsky, V. G. Malkin, O. L. Malkina, M. Kaupp, K. Ruud, R. Bast, R. Di Remigio, U. Ekstrom, M. Kadek, S. Knecht, L. Konecny, E. Malkin, I. Malkin-Ondik, ReSpect 5.1.0 (2019) Relativistic Spectroscopy DFT program http://www.respectprogram.org. [23]
- [24] K. G. Dyall, Theor. Chem. Acc. 2006, 115, 441.
- E. Bernhardt, M. Finze, H. Willner, J. Fluor. Chem. 2004, 125, 967. [25]
- [26] a) X. Zhang, K. Seppelt, Z. Anorg. Allg. Chem. 1997, 623, 491; b) B. Scheibe, S. I. Ivlev, A. J. Karttunen, F. Kraus, Eur. J. Inorg. Chem. 2020, 37, 477.
- M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17, University of Western [27] Australia, 2017.