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S1 INSEE Data about “Communes” in France

The data we consider in this work comes from the French Institut National de la Statistique et des
Études Économiques (INSEE) and can be downloaded freely from its website (https://www.insee.
fr/fr/accueil). The data we downloaded concerns several aspects of the French “Communes”
which are the smallest administrative units in the country, ranging from few hundreds of inhabitants
to several millions. In our analysis we arbitrarily removed all the administrative units with less than
20 inhabitants. There is much information in the data we downloaded that has not been used in
the work, while other has been aggregated to obtain 10 socio-economic indicators representing some
aspects of the job market and of the population. INSEE provides yearly snapshots of data about the
communes. In our work, we downloaded data from 2006 to 2015, from different data sources. In the
following we indicate with {Y } a variable which is the last two digits of each year (e.g. {Y } = 12 in
2012).
From ”Emploi - Population active” data we built the variables

1. Jobs in Primary and Secondary Sectors: the sum of the variables C{Y } EMPLT CS1
(agriculture operators), C{Y } EMPLT CS6 (factory workers), C{Y } EMPLT AGRI (workers
in agriculture), C{Y } EMPLT INDUS (employed in industry), C{Y } EMPLT CONST (workers
in construction).

2. Jobs in the Tertiary Sector: C{Y } EMPLT CS4 (intermediary professions)

3. Jobs in Commerce: the sum of C{Y } EMPLT CTS (workers in commerce) and C{Y } EMPLT CS2
(works in artisan’s shops)

4. Jobs in Quaternary: C{Y } EMPLT CS3 (workers in intellectually superior jobs)

5. Jobs in Public Administration and services: C{Y } EMPLT APESAS (workers in public
administration, teaching, health institutes and social aid).

6. Employment rate: ratio between P{Y } ACTOCC1564 (active employed population) and
P{Y } ACT1564 (active population).z

From ”Diplômes - Formation” data we built the variables:

7. Fraction of highly educated: ratio between P{Y } NSCOL15P SUP (Population not in school
more than 15 years old with higher education degrees) and P{Y } NSCOL15P (Population not
in school more than 15 years old)

From ”Population par sexe, âge et situation quant á l’immigration”
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Figure S1: Distributions for the re-scaled xi variables for the year 2012. The other years are not
shown, but similar results can be found in those cases.

8. Number of immigrants: sum of AGE400 IMMI1 SEXE1, AGE400 IMMI1 SEXE2, AGE415 IMMI1 SEXE1,
AGE415 IMMI1 SEXE2, AGE425 IMMI1 SEXE1, AGE425 IMMI1 SEXE2, AGE455 IMMI1 SEXE1,
AGE455 IMMI1 SEXE2. Here SEXE1 indicates males and SEXE2 indicates females. Moreover,
AGE400 indicates population less than 15 years old, AGE415 population of age between 15 and
24, AGE425 population of age between 24 and 54, AGE455 population more than 54 years old.

From ”Salaires et revenus d’activité” data:

9. Average salary per hour: the variable SNHM{Y }.

Finally the population of each commune can be read from the ”Evolution et structure de la population”
data, in the P{Y } POP variable. Each variable Xi has been found to be dependent on the population
P via the power-law relation Xi = X0

i P
a
i . The exponents ai for each variable in each year are shown

in the main text and are found to be roughly constant in time. We use this relation to define the
variable xi = log10(Xi/(X

0
i P

ai)), which then we re-scale by their standard deviation σ(xi). In this
way, we obtain variable which are bell-shaped with the same variance as shown in Fig. S1.

S2 Error Estimation with Bootstrapping and t-test

To perform the t-tests in the main text we need to estimate the error on our observables C(n).
Considering a certain function f(x) defined on our data {xα}Nc

α=1, we can easily estimate its average
over the sample using

〈f〉data =
1

Nc

∑
α

f(xα). (1)

In order to assign an error to the average we can divide our sample in M sub-samples of 0.8Nc
elements, built by randomly picking elements of {xα}Nc

α=1 (with repetitions). We can then use (1)
on each sub-sample, finding a set of mean values {〈f〉m}Mm=1 (bootstrap sample) where m identifies
different sub-samples. The average over this set can the be assumed as an estimate of 〈f〉data. Similarly,
the standard deviation over the set {〈f〉m}Mm=1 can be assumed as standard error. We indicate this
two quantities with f̄ and σ(f) respectively. We can use the set {〈f〉m}Mm=1 to perform a t-test to
check the compatibility of 〈f〉data with a certain value µf , via the statistics

t1sample =
f̄ − µf
σ(f)

. (2)
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This statistics is used to perform a double-tailed test over the t-distribution with M − 1 degrees of
freedom under the null hypothesis that f̄ is different from µf . We reject this hypothesis if the p-value
of the test is larger than 0.05. In case we need to compare two empirical averages (e.g. when we
compared the components of C(4) and those of (Cgauss)

(4)), we build a bootstrap sample for each
quantity. Identifying these quantities with f and g respectively and with Mf and Mg the dimension
of the bootstrapped sample, we use the statistics

t2sample =
f̄ − f̄√

σ(f)2 + σ(g)2
. (3)

to perform a double tailed test with a t distribution with

ν =
σ(f)2 + σ(g)2

σ(f)4

Mf−1 + σ(g)4

Mg−1

, (4)

degrees of freedom under the null hypothesis that f̄ and ḡ are different. We can use this test also to
compare empirical averages with those produced by the model exchanging the bootstrapped average
and standard error with those obtained with a Langevin simulation (in which case the size of the
sample is the number of simulation steps).

S3 Maximum Entropy and Parameters Estimation

Let’s consider a data set of Nc points that can be considered several realizations of the same distribu-
tion {xα}Nc

α=1. Each xα ∈ RN and we indicate with xαi its i-th component. Suppose we have identified
a set of observables Oλ(x) with λ an integer index, which are function of RN and are relevant for the
description of our dataset. Maximum Entropy (ME)[1] provides an interesting framework for deriving
a generative model which preserves the average of the observables measured with the data, 〈Oλ〉data.
In ME the goal is to find a distribution P(x) maximising its entropy under the constraints that the
average of the observables computed with P(x) should be the same as in the data. In other words, in
ME we have to maximize the functional:

Γ[P] = S[P] +
∑
λ

Jλ (〈Oλ〉data − 〈Oλ〉P), (5)

where S[P] = −
∫
dxP(x) logP(x) is the Entropy of the distribution P and 〈f〉P =

∫
dxf(x)P(x) is

the average of the function f over the distribution P. In other words, equation (5) is the Lagrangian
function which maximises the entropy under the constraints that the observables produced by P
should be the same as those in the data. Hence, Jλ are the Lagrange multipliers related to each
constraint. With some straightforward calculations, we can show that maximizing equation (5) with
respect to P, is equivalent to maximize the loglikelihood

L(Jλ) =
1

Nc

∑
α

logP(xα; Jλ), (6)

with respect to Jλ, where P is defined as

P(x) =
1

Z
exp

(
−
∑
λ

JλOλ(x)

)
. (7)

In equation (7) Z the “partition function” well-known in Statistical Physics and H(x) =
∑
λ JλOλ(x)

is the Hamiltonian function of the system. It is possible to show that maximizing equation (6) equals
to solve the equations:

∂L
∂Jλ

= 〈Oλ〉P − 〈Oλ〉data = 0. (8)
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However, this would require to know a closed form for 〈Oλ〉P which is typically not the case. Another
common approach to estimate the maximum of the likelihood function is that to perform a gradient
ascent using equations (8). The problem with 〈Oλ〉P at each step of the ascent is solved by using
Langevin simulations to compute these averages and then use that to compute the gradients. This is
the approach we have used for our system. Note that typically this is not feasible if the phase space
becomes too big. However, in our case N = 9 allows to have estimates of 〈Oλ〉P with reasonably short
simulations.

S4 Maximum Entropy for rescaled socio-economic indicators

Considering the data in the main text, we are interested in estimating the effective interactions
between the re-scaled indicators xi. In the main text we have identified some observables related to
the correlations between the indicators. In particular, we have seen that besides C

(2)
i,j = 〈xixj〉data

also C
(3)
i,j,k = 〈xixjxk〉data cannot be considered equal to 0. If we assume C

(2)
i,j as the only relevant

observables, according to the framework defined in the previous paragraph we would end up with a
model

P0(x) ∝ exp

−∑
ij

J
(2)
ij xixj

 , (9)

i.e. a Gaussian model which is not capable of producing correlations C(n) with odd n. The fact that

C
(3)
i,j,k cannot be considered 0 forces us to assume it as a relevant observable to be put in the model.

The inclusion of C(3) might lead to C(1) different from 0 which is instead observed in the data. Thus,

we will include C
(1)
i = 0 for every i as an observable in the model. We obtain the model defined in

the main text in which there is a contribution to the Hamiltonian of 3-points interactions

P(x) ∝ exp

−∑
ij

J
(2)
ij xixj −

∑
ijk

J
(3)
ijkxixjxk +

∑
i

J
(1)
i xi

 . (10)

The introduction of the term J (3) in the Hamiltonian make so that the distribution P(x) cannot be
normalized if its domain is RN . In other words, there will be directions in RN that will make the
distribution grow indefinitely. However, there might be values of the coupling parameters that will
allow for some local maxima that will constrain the dynamics of the system for a finite time, before
it diverges for t → ∞. To prevent this behaviour from happening, we can bound the system around
these maxima redefining the domain of the probability P(x) so that P : I → R with I = [−L,L]N

is a hypercube centred on the origin. The choice of the value L influences the final behaviour of the
model, as well as on the training phase. If L is too small, some parts of the space that are populated
by the empirical data could be excluded. A value which is too large might instead allow some of
the diverging directions to appear within the hypercube. At each training step, we will generate a
sample from the model by iterating the discrete Langevin equation (18) to have an approximation of
the gradient of the likelihood function. Hence, these directions will make the dynamics collapse to
the border of the hypercube, leading to an incorrect estimation. Fig. S4 shows the percentage of data
points within the hypercube as a function of L. We see that the first value that almost all the sample
if L > 5, hence we choose L = 6, i.e. 6 standard deviations of the sample.

To estimate the Lagrange multipliers J
(2)
ij and J

(3)
ijk , we need to find the values maximizing (7) via

gradient ascent. This requires to be able to compute exactly the log-likelihood Z to be computed.
Estimating Z is quite a hard task typically. To circumvent this problem, we will use an approach widely
used for training Energy Based models in Machine Learning[2, 3]. We can write the log-likelihood of
our model as:

L = −〈H(x)〉data − logZ, (11)
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Figure S2: Percentage of data points contained withing the hypercube I = [−L,L]N as a function of
L.

Where 〈·〉data indicates the average on the sample data. Taking the gradient of the above expression
we find

∇L = −〈∇H(x)〉data + 〈∇H(x)〉P , (12)

where 〈·〉P is the average for the model. This average can be approximated at each training step by
averaging over a sample obtained with numerical simulations (e.g. by iterating equation (18). If we
use this approximation we can see from equation (12) that maximising the log-likelihood is equivalent
to optimise the cost function:

C = −〈H(x)〉data + 〈H(x)〉P , (13)

that we can use to monitor the development of the training.
To avoid over-fitting when estimating the parameters of the model, we divided the sample in a

training set (≈ 70% of the whole sample) and test set (the remaining part). In order to make the two
samples as similar as possible, we initially divided the whole sample in percentiles of the population
distribution: from the 0th percentile to the 5th; from the 5th percentile to the 10th and so one. We
divided each classes in training and test with the proportion of 70% and 30%, having in this way a
global train and test sample with the same population distribution. This was done in order to not
over-represent small cities which are more numerous that the large ones.

The algorithm used to estimate J
(2)
ij and J

(3)
ijk is then:

1. Starting at t = 0, we set J
(2)
ij = 1/2δij , J

(3)
ijk = 0 and J

(1)
i = 0, which is equivalent to a system

of non-interactive variables with variance equal to 1. We estimate the starting value of the cost
function (13) for the training and test data.

2. At each time step, we generate a sample from the current version of P(x), iterating equation
(18) with dt = 0.1 for at least 106 steps. To prevent the simulations from diverging, we bound
the dynamics to the box I = [−6, 6]N .

3. We use the generated sample and the training data to estimate the gradients

∂L
∂J

(1)
i

= 〈xi〉data − 〈xi〉P ,

∂L
∂J

(2)
ij

= 〈xixj〉P − 〈xixj〉data,

∂L
∂J

(3)
ijk

= 〈xixjxk〉P − 〈xixjxk〉data

(14)
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4. We update the parameters using

J
(1)
i ← J

(1)
i + η

(1)
J

∂L
∂J

(1)
i

,

J
(2)
ij ← J

(2)
ij + η

(2)
J

∂L
∂J

(2)
ij

,

J
(3)
ijk ← J

(3)
ijk + η

(3)
J

∂L
∂J

(3)
ijk

(15)

5. We compute the new value of the cost function (13) for the training and test data and we update
t by 1.

6. We restart from point 2 until the test log-likelihood stops growing.

The perturbative form for Z used to estimate the log-likelihood requires the contribution of J (3) to

be smaller than that of J (2). Hence, we set η
(2)
J = 0.01 and η

(1)
J = η

(3)
J = 0.001. In Fig. S3 we show

the cost function curves for all the train and test data for some years. We can see that we reach
convergence quite quickly. The curves for the training and test sets are very similar. We can conclude
that there are not overfitting issues and the model would generalize to non-observed data.
We can study the effects of J (3) in the Hamiltonian and the finite domain I to the distribution of the
models. Considering the Gaussian model in equation (9), we can transform the space of the variables
using projecting on the eigenvectors of the J (2) matrix. If we do so, the model becomes a set of
non-interacting Gaussian models. Fig. S4 shows the comparison between the various distributions on
the Principal Components (PC), i.e. the directions of the eigenvalues of J (2), between the model and
the data. We can see that on each PC the model (9) predicts a Gaussian distribution centred in 0
(orange line) which is not so far from the empirical distribution (blue bars). Doing the same for the
model in equation (10) gives a slightly different result. We can see in Fig. S4 that the introduction of
a bounded dominion allows the model to reproduce the bell-shaped distribution we see from the data
(green line). However, the introduction of J (3) modifies the shape distribution tails, which are now
more adherent to the empirical one.
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Figure S3: Cost function for the train and test data during training as a function of the training step.

Figure S4: Ditribution of the Pricipal Components of J (2) obtained with the data (blue bars), the
Gaussian model of equation (9) (orange line) and with the model with 3-points interactions and
bounded dominion (10) (green line).

S5 Other Examples of Prediction of a Dependent Variable

In the main text we have shown some examples of predictions of the model, when an indicator is
chosen as a dependent variable and another two are used as the independent ones. In Fig. S5 , we
show some other examples for the P0 (only C(2) correlations are use in the model) and the P (also
C(1) and C(3)). We can see that the pattern observed in the main text is reproduced for almost
every one of the shown cases, i.e. there is more agreement between of the model and the data if J (3)

interactions are taken into account. Considering the fist and second columns of panels, the theoretical
predictions are obtained as the average of the distributions P0(xi|xj , xk) and P(xi|xj , xk), where xi
is the chosen dependent variable and xj and xk are the two chosen independent ones. Sampling from
these distributions can be made by means simulating the corresponding Langevin dynamics (18),
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keeping fixed the variables xj and xk at each step. In a similar, but more simple fashion we can study
the dependence of just one indicator with respect to another. In Fig. S6 , we show four indicators -
the employment rate, the fraction of highly educated people, the number the average salary per hour -
as a function of the the number of jobs in the quaternary sector. It is evident that the introduction of
the nonlinear term J (3) increases the model predictive ability, and it is key to capture the non-linear
effects present in the data also in this more simple case. Let us take for instance panels (b) and (f) of
Fig. S6 reporting the behaviour of the rescaled indicator for the fraction of highly educated citizens
as a function of the rescaled indicator for number of jobs in the Quaternary sector . Panel (b) is
reporting the comparison of the prediction of the full model with non-linear terms, with the empirical
data. Panel (f) shows the same comparison for a simpler Gaussian model described without J (3) .
We can see that in this case, when the rescaled indicators for jobs in the Quaternary sector is smaller
than 1, the increase in the Fraction of Highly Educated citizens is relatively small. In this region,
this indicator is always close to 0, indicating a commune with an average number of highly educated
individuals. For values above 1 (i.e., the number of this jobs in the Quaternary sector is more than 1
standard deviation to the average of the communes with the same population), the rescaled fraction
of highly educated citizens starts to increase more rapidly. The model with only binary interactions
fails to predict this behaviour, which is instead well reproduced by the model in with higher-order
interactions. This result stays valid for other rescaled indicators as the employment rate (panels (a)
and (e) of Fig. S6) and the average yearly salary (panels (d) and (h) of Fig. S6). In the case of
the number of immigrants (panels (g) and (c)), no non-linear behaviour is present in the data, and
both the models predict the dependence correctly on the rescaled values of the number of jobs in the
Quaternary sector.
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Figure S5: Some rescaled indicators (indicated in the label of the colorbar) as functions of the some
couples of rescaled indicators (indicated on the x-axis and the y-axis of each panel). Areas in red
(blue)represents communes with a large(small) value of the rescaled indicator used as dependent
variable. The first column are the results obtained with the Hamiltonian model without the terms
J (1) and J (3). The second column are the results obtained with the complete model including those
terms. The last column of panels are the results obtained by binning the points for the communes in
the year (2012).
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Figure S6: Rescaled indicators for Employment rate, Fraction of highly educated people, Number of
immigrants, Average salary per hour indicators as a function of the rescaled indicator for number of
jobs in the quaternary sector as measured with the empirical data (dashed blue line) and with two
different Hamiltonian model, the complete one (upper row of panels) of model in the maix text and
the simple Gaussian one (lower row of panels) without the terms J (1) and J (3) (orange lines) . Green
points represent all the points in the data-set for the considered year (2012). The mean squared errors
between the data and the models are also shown.

S6 Stationarity of the Inferred Models

Indicating with J (2)(y1) and J (3)(y1) the parameters inferred for the data in a certain year y1, it is
possible to compare them with those of another year y2. To make statistical comparisons, it is needed
to have an idea of the errors associated with each inferred parameter. Errors for the parameters can be
computed using the Fisher Information matrix I. In fact, the parameters estimated with Maximum
Likelihood can be considered as a coming from a multivariate normal distribution, whose averages
are the real parameters and the co-variance matrix is given by the inverse of I. For our system I is
defined as:

I(J
(2)
ij , J

(2)
lm ) = − ∂

∂J
(2)
ij

∂

∂J
(2)
lm

logZ = C
(4)
ijlm − C

(2)
ij C

(2)
lm

I(J
(2)
ij , J

(1)
k ) = − ∂

∂J
(2)
ij

∂

∂J
(1)
k

logZ = C
(3)
ijk − C

(2)
ij C

(1)
k

I(J
(2)
ij , J

(3)
lmn) = − ∂

∂J
(2)
ij

∂

∂J
(3)
lmn

logZ = C
(5)
ijlmn − C

(2)
ij C

(3)
lmn

I(J
(3)
ijk , J

(3)
lmn) = − ∂

∂J
(3)
ijk

∂

∂J
(3)
lmn

logZ = C
(6)
ijklmn − C

(3)
ijkC

(3)
lmn.

I(J
(3)
ijk , J

(1)
l ) = − ∂

∂J
(3)
ijk

∂

∂J
(1)
l

logZ = C
(4)
ijkl − C

(3)
ijkC

(1)
l

I(J
(1)
i , J

(1)
l ) = − ∂

∂J
(1)
i

∂

∂J
(1)
l

logZ = C
(2)
il − C

(1)
i C

(1)
l

(16)

To compute I we generate a sample from P (x) ∝ exp(−H(x)) iterating equation (18) with dt = 0.1
for at least 106 steps. We then use the produced sample to estimate the observables C(n). The errors
associated to each parameter will be then computed using the corresponding element on the diagonal
of I−1 as variance, and in turn using such variance to compute the standard error. As an example,
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Figure S7: Comparisons between the components of J (1) in different years. Errors of each parameter
are reported in the plot. Dotted line represents the identity relation. The percentage of component
with a p-value from t-test below 0.05 is shown in the legend.

the standard error of the estimate of J
(2)
ij is given by

√
(I−1(J

(2)
ij , J

(2)
ij )/Nc), where Nc is the number

of points in the training set. Once we have computed all the errors for each components of J (1)(y),
J (2)(y) and J (3)(y) for each year, we can make t-tests for each one of their components with null
hypothesis that they are compatible. We reject the null hypothesis if the p-value of the test is larger
than 0.05. Fig. S8 and Fig. S9 show the scatter-plot of the corresponding components of J (1), J (2) and
J (3) for different years. Each component is plotted with its error and the percentage of components
that have failed the t-test are shown in the legend of each plot. We can see from these figures that
the parameters are quite similar between different years and typically the hypothesis of compatibility
cannot be rejected.
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Figure S8: Comparisons between the components of J (2) in different years. Errors of each parameter
are reported in the plot. Dotted line represents the identity relation. The percentage of component
with a p-value from t-test below 0.05 is shown in the legend.
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Figure S9: Comparisons between the components of J (3) in different years. Errors of each parameter
are reported in the plot. Dotted line represents the identity relation. The percentage of component
with a p-value from t-test below 0.05 is shown in the legend.
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S7 Maximum Likelihood Estimation of the dt parameter

Assuming that our system can be described by a Langevin equation in the form of

dx

dt
(t) = −∇H(x) + η(t), (17)

it is easy to derive a discrete version of this equation, capable of coping with the discrete nature of
the data we have. Supposing to have a small shift in time dt and calling t′ = t+ dt we have

x(t′) = x(t)−∇H(x(t))dt/2 + η
√
dt. (18)

We assumed in the main text that the each component of the noise ηi is distributed according to
a Laplace distribution with variance 1 and that different components are uncorrelated. Hence, each
component of the vector (x(t′)−x(t) +∇H(x(t))dt)/

√
dt will be a Laplace-distributed variable. This

simple fact allows to compute the transition probability from x(t) to x(t′), that will be in the form

Pdt(x(t′)|x(t)) =

N∏
j=1

√
1

2dt
exp

(
−
√

2|xj(t+ dt)− xj(t)− (∂H/∂xj)(~x(t))dt/2|√
dt

)
.

(19)

At this point we would like to match the intrinsic time t of the model, with the real time of the data. To
do so, we need to understand which dt corresponds to a time frame of one year. We can use Maximum
Likelihood to fix this value, trying to maximize the Log-likeihood obtained by applying (19). In other
words, we look for the value of dt maximizing the probability of observing the transitions we have in
the data. Such log-likelihood can be written as

L(dt) =
1

4NC

∑
α

2015∑
y=2006

Pdt(xα(ty+1)|xα(ty)), (20)

where xα(ty) is the vector of indicators of the city α in the year y (the notation ty indicates the
intrinsic time corresponding to the year y). Fig. show log-likelihood as a function of dt. The
maximum observed value of L has been found for dtmax = 0.014.

Figure S10: Log-likelihood in equation (20) as a function of dt. The maximum observed value of L is
highlighted in the plot and has been found at dtmax = 0.014.
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S8 Comparison with Causal Inference

The static model inferred in the main text is capable of predicting the evolution of a city if we
use its corresponding Langevin equation to define a dynamics. In this case, we use the temporal
information in the data only to infer the parameter dt used to make the Langevin equation discrete.
Another approach we can use to define dynamic models is to use temporal correlations explicitly
according to the Maximum Caliber principle[4]. First, we need to define time-dependent observables,
i.e. observables depending on variable at different times. For sake of simplicity, we will focus on
correlations of order 2 defined as,

C
(2)
i,j (δ) = 〈xi(y + δ)xj(y)〉data, (21)

where now the average is taken over all the communes in the data-set and all the years. As observables

for the definition of the model we choose C
(1)
i , C

(2)
i,j (δ = 1). In this way, we are modelingng explicitly

the average of the sample and the correlations between the indicators in consecutive years. The model
corresponding to this set of observables has a transition probability defined by

P(x(y + 1)|x(y)) ∝

exp

−∑
i

xi(y + 1)2

2
−
∑
ij

Bijxi(y + 1)xj(y) +
∑
i

cixi(y + 1)

 .
(22)

This model corresponds to a linear model defined as

x(y + 1) = −Bx(y) + h+ η (23)

where η is a normally distributed random variable with mean equal to 0 and variance equal to 1.
Being equation (23) corresponding to a linear model, its parameters can be inferred by a standard
linear regression.

References

[1] Martyushev LM, Seleznev VD. 2006 Maximum entropy production principle in physics, chemistry
and biology. Physics reports 426, 1–45.

[2] Du Y, Mordatch I. 2019 Implicit generation and generalization in energy-based models. arXiv
preprint arXiv:1903.08689.

[3] LeCun Y, Chopra S, Hadsell R, Ranzato M, Huang F. 2006 A tutorial on energy-based learning.
Predicting structured data 1.
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