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1. Health and aging in non-industrial societies 

Absolute increases in mortality rates with age are higher in small-scale subsistence 
societies than contemporary industrialized countries [1,2], consistent with a faster pace of 
actuarial senescence. Transitioning subsistence populations often experience improvements in 
life expectancy associated with increased access to healthcare and other modern amenities [3]. 
As conditions improve, developed countries show a greater “rectangularization” of survival 
curves consistent with temporal declines in rates of actuarial aging [4]. Yet how actuarial aging 
relates to physiological condition is not straightforward.  

Numerous studies suggest that human subsistence populations with distinct lifestyles 
and genetic backgrounds experience radically different age trajectories in health-related 
biomarkers compared to industrial populations [5–7]. For example, risk of hypertension 
increases with age in almost all industrialized populations, but not among some subsistence 
populations of hunter-gatherers and forager-horticulturalists [8,9]. Such differences in 
physiological aging are likely responsible for the very low prevalence of hypertension and 
atherosclerosis in subsistence populations [10]. In examples from our own studies of Tsimane 
horticulturalists of Bolivia, we have documented high mortality risk and major infectious 
sources of mortality and morbidity [3], unique age profiles of immune cells [11], slow age-
related loss of cardiorespiratory fitness and muscular strength [12], age-related cognitive 
decline [13], and minimal cardiovascular disease [10,14,15]. Based on these findings, one might 
expect large population differences in physiological aging profiles.  

 
2. Additional details of data analysis 

 
2.1 Sampling design 
 Sample sizes vary by biomarker and across the duration of the study period for several 
reasons. First, sampling strategy varies by data type such that some variables were targeted 
towards individuals of a particular sex or age demographic (e.g. vertebral bone mineral density 
not measured in young individuals). Second, absent or sick THLHP personnel precluded the 
collection of specific data types at certain times. Finally, the number of study villages and thus 
enrolled participants has increased over time, and the data types collected have changed. As a 
result, our dataset contains missing values that require special procedures for the calculation of 
the Mahalanobis distance, described below. 
 
2.2 Biomarker analysis 
 Following a fasting morning blood draw, serum was separated and frozen in liquid 
nitrogen. Samples then were either measured at our clinic laboratory located in San Borja, 
Bolivia, or sent on dry ice to the Human Biodemography Laboratory at UC Santa Barbara. 



 In Bolivia, at the time of collection, glucose was measured using a point of care device 
(Prodigy Diabetes Care, Charlotte NC). A manual complete blood count with a five-part 
differential was conducted using a hemocytometer, and erythrocyte sedimentation rate (ESR) 
was measured using the conventional (Westergren) method. Hemoglobin was assessed on a 
QBC Autoread Plus Dry Hematology System (Drucker Diagnostics, PA). Serum lipids (total 
cholesterol, HDL, LDL, triglycerides) were measured on a Stat Fax 1908 (Awareness Technology, 
Palm City, FL).  
 At UC Santa Barbara, commercial immunoassays were used to measure oxidized LDL 
(oxLDL) (Mercodia, Winston Salem, NC), Apolipoprotein A (ApoA) (Abcam, Cambridge, MA), 
Apolipoprotein B (ApoB) (R&D Systems, Minneapolis, MN) [10]. Cytokines were measured via 
multiplex assay on a Luminex MagPix (EMD Millipore, Darmstadt, Germany) [10,16]. High 
sensitivity C-Reactive Protein was assessed from serum via immunoassay, and was cross-
validated by the University of Washington laboratory, using the protocols utilized for the 
National Health and Nutrition Evaluation Survey (NHANES) [17].  Cortisol was measured via an 
in-house enzyme immunoassay [18]. Serum IgE and IgG were assessed via commercial enzyme 
immunoassay with consistent lot numbers (per assay) used across all samples (Bethyl, 
Montgomery, TX) [11]. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured with a 
commercial ELISA (Highly Sensitive 8-OHdG Check ELISA, Genox Corp., Baltimore, MD), as was 
urinary 15-F2t-isoprostane (Oxford Biomedical Research, Rochester Hills, MI). Urinary 
creatinine was measured with the colorimetric Jaffe reaction [19]. 
 Several other biomarkers are included here that have not been previously described in 
other publications. These include body temperature, respiratory rate, forced expiratory volume, 
and peak expiratory flow. Body temperature was measured using an oral thermometer up 
through mid-2006 and a Braun digital tympanic thermometer (Thermoscan 5) thereafter. 
Respiratory rate was assessed by counting the number of breaths at rest over a set time period. 
Forced expiratory volume and peak expiratory volume (two different standardized measures of 
lung function) were measured in one of two ways using spirometry tests: 1) using a Cosmed 
Fitmate PRO metabolic device, or 2) using a Piko peak flow meter device. In either case, 
subjects were asked to blow a single breath as full and long as possible through a measurement 
device, which then calculated the desired parameters. 
 
2.3 Checking reference values 
 Baseline or reference means and covariance matrix are required to calculate Dm. As 
noted in the main text, we set reference values as the median of all observations for individuals 
between the ages of 20 and 45 years old and generated separate baselines for males and 
females to account for potential sex differences in traits. Similar approaches have been 
employed by Cohen and colleagues [20]. Nonetheless, we corroborated this reference by 
calculating mean values on all biomarkers from a subset of our data that included individuals 
between 20 and 45 years old who received a “healthy” diagnosis from medical doctors during 
examinations at the time of data collection. Values from the two calculations were highly 
correlated (rfemale = 0.79, p < 0.001; rmale = 0.88, p < 0.001), suggesting that our reference values 
reflect biomarker values that are indicative of a healthy condition.  
 
 



2.4 Further details on the calculation of Mahalanobis distance 
Milot et al. [21] note that Dm cannot be calculated if cases contain missing values. It 

would have been impractical to remove all missing values from our dataset. To address this 
constraint, we used MDmiss in the R package modi to calculate the “marginal” Dm over all 
available data [22]. This function handles missingness by looping over observations and 
omitting missing dimensions before calculating Dm, and then incorporates a correction factor 
based on the ratio of total to observed dimensions [22]. Distances are therefore calculated 
based solely on existing values.  

The magnitude of Dm is influenced by the number of biomarkers analyzed. To ensure 
that the number of biomarkers did not influence our results, we included the number of 
biomarkers as a covariate in all models and weighted observations by the number of 
biomarkers. To test whether missing data and methodological procedures affected results, we 
re-ran models of Dm while restricting the dataset to observations with at least 5, 10, 15, 20, and 
25 biomarkers. Despite reductions in sample size, this procedure produced qualitatively similar 
results at all levels (Fig. S2). 
 We also could not directly estimate a sample covariance matrix from our reference 
population due to the presence of missing values. We thus calculated the covariance matrix 
using pairwise complete cases of individuals 20-45 years old. Because some combinations of 
biomarkers were rarely measured in tandem in young individuals, we then identified pairwise 
combinations of variables that had less than 50 observations in the reference population, and 
replaced such cases with a covariance calculation from either the 50 observations of lowest age 
with pairwise information, or all cases in the population (people of all ages) if there were less 
than 40 observations overall. Because this procedure can lead to covariance matrices which are 
not positive-definite (problematic for calculation of Mahalanobis distance), we then used the 
algorithm of Higham [23] via the nearPD function in R to compute the nearest positive-definite 
approximation when necessary. An alternative approach to calculate a positive definite 
covariance matrix with missingness is to use maximum likelihood estimation or an expectation 
maximization algorithm. We applied this approach using a penalized expectation maximization 
algorithm [24] and found similar results.  
 
2.5 Non-human primate data and methods 
 Dm estimates from non-human primates were taken from a recent study by Dansereau 
et al. [25]. In brief, this study analyzed longitudinal biomarker data from a recently available 
database (Internet Primate Aging Database (iPAD); http://ipad.primate.wisc.edu/) on 10 species 
of non-human primates. Observations in this database come from nonexperimental adult 
animals housed in captive settings. 
 This dataset contained variable numbers of biomarkers measured across the different 
study species. As such, the authors conducted two types of analyses of Dm: 1) using all available 
biomarkers for each species (what they call "Set 1"), and 2) using a fixed set of 12 biomarkers 
that were available for all species and industrialized humans ("Set 2"). Because our analysis of 
Tsimane Dm used a different array of biomarkers (all that were available) and thus corresponds 
closely with their "Set 1," we use focus on this set for comparison. Age slopes from [25] derive 
from linear mixed effects models without polynomial effects, allowing comparison with our 
models including only linear age terms (see [25] for more details). Data were taken from their 



Table S3, and 95% confidence intervals that were not reported were taken directly from figure 
1 in [25] using ImageJ.  
 Dansereau et al. [25] present only standardized coefficients that correspond to changes 
in Dm per standard deviation of age. To calculate unstandardized coefficients, we obtained the 
appropriate sample SDs from the original authors (T. Wey and A. Cohen, personal 
communication), and then transformed estimates by dividing reported age slopes by species-
specific sample SDs (Fig. 3).  
 
2.6 Industrialized human population data 
 Dm from industrialized humans also come from [25]. Average "industrialized human" 
values were generated from two longitudinal datasets, the Baltimore Longitudinal Study of 
Aging [26] and the Invecchiare in Chianti study [27]. See [25] and references within for more 
details. 
 
3. Additional advantages and disadvantages of Mahalanobis distance  

There are several additional advantages to the use of Mahalanobis distance as a 
measure of systemic physiological aging beyond those described in the main text. First, by 
comparing observations to a baseline reference population, Dm can be interpreted explicitly as 
a relative deviation from a presumed healthy state. This contrasts with alternative approaches 
that have been applied to measure physiological aging, such as PCA [28]. Second, previous 
studies of allostatic load sometimes utilize a priori designations of “healthy” versus “unhealthy” 
levels of individual biomarkers, and then sum across biomarkers to create an overall score. Dm 
preserves biomarkers as continuous variables and avoids arbitrary cutoffs identifying 
directional values as indicative of poor health, and so averts the circularity of tallying up 
indicators of poor health (i.e. deficits) to create a measure of poor health and aging [29]. This 
makes Dm useful as a measure of an emergent process of dysregulation. Third, by 
simultaneously taking into account both means and covariances of biomarkers, Dm more 
directly captures a breakdown in the capacity of complex regulatory networks that maintain 
homeostasis [30], as embodied by the theoretical concepts of allostatic load [31], 
“homeostenosis” [32], and physiological dysregulation [33]. Finally, in principle Dm can be 
compared across physiological systems when appropriately standardized. Such utility is 
bolstered by the fact that Dm is robust to choice of biomarkers, with little marginal change 
beyond 10-15 biomarkers, and with Dms calculated from mutually exclusive sets of biomarkers 
showing correlations of 0.4-0.5 [34].  

A recent study comparing Dm with other measures of biological aging in New Zealanders 
showed low correlations with telomeres and epigenetic measures, and moderate correlations 
with other longitudinal, biomarker-based measures [35]. In that study, Dm was the best 
predictor of most health outcomes examined, including physical and cognitive condition, and 
self-reported health, yet associations were moderate. 

There are also several disadvantages to our usage of Dm. First, the calculation of Dm 
includes the assumption of multivariate normality, which is often unfeasible for high-dimension 
data sets. Second, Dm cannot traditionally be calculated with missing values, and thus requires 
multiple imputation or methodological procedures such as those employed here to enable 
estimation. Finally, unlike individual biomarker values, absolute values of Dm measure relative 



distance from a reference centroid and lack straightforward interpretation that would allow 
inference about how much dysregulation is “too high.” It therefore implicitly assumes that the 
average healthy reference biomarker profile is “ideal” for everyone. Individual studies can, 
however, evaluate determinants of Dm, and the extent to which different levels of Dm are 
associated with morbidity or mortality, to better interpret the meaning of Dm levels. 
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Supplemental tables and figures 
 
Table S1: List of biomarkers with published references containing more details about data 
collection. Reported means and SDs are untransformed. 
 

Biomarker Original units Transformation 
applied 

References Mean SD 

Cardiometabolic      
Fasting glucose mg/dL none [10] 80.6 16.1 
Triglycerides mg/dL natural log [10,36] 108.7 57.1 
LDL mg/dL none [10,36] 85.6 32.5 
HDL mg/dL none [10,36] 37.1 9.9 
Creatinine mg/dL none Unpublished 1.0 2.7 
Hemoglobin g/dL none [37] 13.1 1.6 
Systolic BP mmHg none [8] 109.9 12.8 
Diastolic BP mmHg none [8] 68.3 9.3 
Body fat % none [10] 21.2 7.8 
BMI kg/m2 none [38] 23.6 3.0 
VO2 Max ml*kg-1*min-1 none [12] 43.8 17.1 
RMR kcal/day none [39] 1794.6 423.5 
Oxidized LDL units/L none [10] 76.4 23.9 
Apolipoprotein B-100 mg/dL natural log [10] 97.8 40.8 
Immune      
C-reactive protein mg/dL natural log [10,14,36] 34.9 30.8 
Eosinophils % square root [11] 17.0 9.0 
Erythrocyte sedimentation 
rate 

mm/hr natural log [10] 30.0 20.1 

IgE IU/mL none [11,36,40] 10,175 6526 
IgG mg/dL none [11,36] 11.0 3.4 
Interleukin 2 pg/mL natural log [10] 2.0 5.6 
Interleukin 5 pg/mL natural log [10] 2.4 6.7 
Interleukin 6 pg/mL natural log [10] 3.1 6.7 
Interleukin 10 pg/mL natural log [10] 4.8 7.4 
Leukocytes cells/ml3 natural log [11] 9866 3235 
Lymphocytes % none [11] 29.0 7.9 
Neutrophils % none [11] 53.3 10.6 
Tumor necrosis factor 
alpha 

pg/mL natural log [10] 9.2 22.5 

Other (Oxidative stress)      
8-hydroxy-2'-
deoxyguanosine (8-OH-dG) 

ng/specific 
gravity 

natural log Unpublished 9.8 9.1 



Isoprostanes ng/specific 
gravity 

natural log Unpublished 2.1 1.7 

Other (Endocrine)      
Cortisol pg/mL (specific 

gravity 
corrected) 

natural log [41] 244,651 191,399 

Other (Respiratory)      
Respiratory rate breaths/min none Unpublished 20.2 4.4 
Forced expiratory volume L square root Unpublished 2.1 0.9 
Peak expiratory flow  L/min square root Unpublished 318.9 131.4 
Musculoskeletal      
Hand strength kg none [42] 27.6 9.3 
Radial speed of sound m/s none [43] 3873 130 
Tibial speed of sound m/s none [43] 3798 130 
Vertebral bone mineral 
density 

g/cm2 none [44] 165.3 41.5 

Calcaneal broadband 
ultrasound attenuation 

dB/MHz none [45] 64.7 14.0 

Calcaneal speed of sound m/s none [45] 1527.1 24.6 
Other      
Body temperature °C none Unpublished 36.7 0.5 

 
 
 
 
 
 
 
  



 
 
 
 
 
Figure S1. Age profiles of study biomarkers. Lines and shaded 95% confidence intervals 
represent splines for age from generalized additive mixed models with individual-level random 
intercepts. All variables are standardized to units of standard deviations. 
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Figure S2: Forest plots (means ± 95% CIs) of models testing for robustness. Models were run 
on restricted data sets with different minimum thresholds for the number of biomarkers an 
observation required to be included in the analysis. Note that the >= 2 biomarker condition 
represents the model included in the main analysis. 
 
 
 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Age

Sex x Age

Sex

Number of biomarkers

−0.50 −0.25 0.00 0.25 0.50
Estimates

●

●

●

●

●

●

>= 2 biomarkers

>= 5 biomarkers

>= 10 biomarkers

>= 15 biomarkers

>= 20 biomarkers

>= 25 biomarkers



 
Figure S3: Physiological dysregulation (Dm) as a function of age (linear) and sex. Trend lines 
and confidence intervals are calculated from non-quadratic models in Table 2. Mahalanobis 
distance (Dm) on the y-axis was natural log-transformed and standardized (subtracted from the 
mean and divided by the standard deviation). Each point represents a “person-observation”, 
and point size denotes the number of biomarkers measured. Points with only a single 
biomarker were excluded from the analysis. The range of the y-axis omits some points to 
improve view of the main trends.  
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Figures S4-S6: Correlation matrices of biomarkers and Dm by physiological systems. Numbers 
represent Pearson correlation coefficients. Correlations involving Dm are weighted by the total 
number of biomarkers measured at each observation. Question marks represent combinations 
of variables that were not available in tandem.   
 

 
Figure S4: Cardiometabolic correlation plot, including Dm (last row/column). 
 
 
 
 
 
 



 
Figure S5: Immune correlation plot, including Dm (last row/column). 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S6: Musculoskeletal correlation plot, including Dm (last row/column). 
 
 
 
 
 
 
 
 
 
 



 
 
Figure S7: Individual age trajectories of Dm as a function of age at first measurement. There 
was a very minor relationship between age at first measurement and Dm trajectory (βage of first 

measurement = 1x10-4, p = 0.0004, βsex x age of first measurement = 1x10-5, p = 0.81). Variability in age slopes 
is notably greater at later ages.  
 
 
 
 


