A fluoride-responsive genetic circuit enables *in vivo* biofluorination in engineered *Pseudomonas putida*

Calero et al.

Supplementary Table 1. Bacterial strains and plasmids used in this study.

Strains	Relevant characteristics ^a	Reference
E. coli DH5 $lpha$	Cloning host; F- λ - endA1 glnX44(AS) thiE1 recA1 relA1 spoT1	Meselson and
	gyrA96(Nal ^R) rfbC1 deoR nupG Φ 80(lacZ Δ M15) Δ (argF-lac)U169	Yuan ¹
	$hsdR17(r_{K} - m_{K})$	
P. putida KT2440	Wild-type strain; derivative of P. putida mt-2 cured of the TOL plasmid	Bagdasarian
	pWW0, <i>hsdR1(r⁻ m</i> ⁺)	et al. ²
P. putida KT2440∆crcB	<i>P. putida</i> KT2440 derivative, in-frame deletion of <i>crcB</i> (<i>PP_4001</i>)	This study
P. putida KT2440	P. putida KT2440 derivative, mini-Tn7 module with the gene encoding T7	This study
::FRS-T7RNAP	RNA polymerase under control of FRS integrated after <i>glmS</i> (<i>PP</i> _5409)	
<i>P. putida</i> KT2440∆crcB	<i>P. putida</i> KT2440 <i>∆crcB</i> derivative, mini-Tn7 module with the gene encoding	This study
::FRS-T7RNAP	T7 RNA polymerase under control of FRS integrated after <i>glmS</i> (<i>PP_5409</i>)	
Plasmids	Relevant characteristics	Reference
pSEVA441	Cloning vector;	Silva-Rocha
		$et al.^3$
pS441·FRSv1	Derivative of vector pSEVA441, FRSv1 \rightarrow msfGFP; Str ^R	This study
pS441 FRSV2	Derivative of vector pSEVA441, FRSV2 \rightarrow msrGFP; Str ^R	This study
pS441.FRSV3	Derivative of vector pSEVA441, FRSV3 \rightarrow msrGFP; Str ^R	This study
pS441·FRSV4	Derivative of vector pSEVA441, FRSV4 \rightarrow msrGFP; Str \sim	
	In / Integration vector; on v(Rok); Gmr Kmr	
pIn/::FRS·I/RNAP	Delivery plasmid for mini-in/[FRSVI \rightarrow 1/ <i>R</i> /VAP] integration; Gm [{] Km [{] }	
pinsz	transposase; <i>oriV</i> (R6K); Amp ^R	Choi et al.4
pPS23	ProUSER expression vector; xy/S/Pm, USER cassette; Km ^R	Calero et al.5
pFB·2F1	Derivative of vector pPS23, <i>xyIS/Pm→fIA1</i> ; Km ^R	This study
pFB·2F2	Derivative of vector pPS23, <i>xyIS/Pm→SxfIA</i> ; Km ^R	This study
pSEVA231	Cloning vector;	Silva-Rocha
		et al. ³
pS231T7	Derivative of vector pSEVA231 containing the T7 promoter; Km ^R	Volke et al.6
pFB·1F1	Derivative of vector pS231T7; <i>P</i> _{T7} → <i>fIA1</i> ; Km ^R	This study
pFB·1F2	Derivative of vector pS231T7; <i>P</i> _{T7} → <i>SxflA</i> ; Km ^R	This study
pFB·1F1P ^H 1	Derivative of vector pS231T7; <i>P</i> _{T7} → <i>fIA1-NHisfIB1</i> ; Km ^R	This study
pFB·1F2P [⊬] 2	Derivative of vector pS231T7; <i>P</i> _{T7} → <i>SxflA-NHisSxflB</i> ; Km ^R	This study
pFB·1F2P ^H 1	Derivative of vector pS231T7; <i>P</i> _{T7} → <i>SxfIA-NHisfIB1</i> ; Km ^R	This study
pFB·2F21P ^H 1	Derivative of vector pPS23, xyIS/Pm \rightarrow fIA1-NHisfIB1; Km ^R	This study
pFB·2F2P2	Derivative of vector pPS23, xy/S/Pm \rightarrow Sxf/A-Sxf/B; Km ^R	This study
pS231T7::msfGFP	Derivative of vector pS231T7; $P_{T7} \rightarrow msfgfp$; Km ^R	This study
pSEVA231-CRISPR	Helper plasmid for genome engineering;	Aparicio et al. ⁷
pSEVA231-CRISPR::crcB	Derivative of vector pS231-CRISPR with a target region for crcB	This study
pSEVA658-ssr	Helper plasmid for genome engineering; $xy/S/Pm \rightarrow ssr$; $oriV(RFS1010)$; Gm ^R	Aparicio et al. ⁷
pSEVA421-Cas9tr	Helper plasmid for genome engineering; cas9; oriV(RK2); Str ^R	Aparicio et al.7

^a *FRS*, fluoride-responsive riboswitch; *Antibiotic markers*: Amp, ampicillin; Gm, gentamicin; Km, kanamycin; Nal, nalidixic acid; and Str, streptomycin.

Supplementary Table 2. Oligonucleotides used in this study.

Name	Sequence $(5' \rightarrow 3')$	Purpose
flA1_F_Avrll	TCGACCTAGGAGGAGGAAAAACATATGGCC	fIA1 amplification for cloning using
fIA1_R_EcoRI	TCGAGAATTCTCAACGGGCCTCC	AvrII and EcoRI sites
Sxin <i>flA</i> *-U-F	AGGCGAUAGGAGGAGGAAAAACATATGTCCGCCG	SxflA amplification for USER cloning in
SxinflA*-U-R	AGGTGCGAUTCAGTTGGTTTCAACGCGCACCTTGAG	pPS23
PT7SxinflA_U_F	ATCCTCUAGGAGGAGGAAAAACATATGTCCGCCG	SxflA amplification for USER cloning in
PT7SxinflA_U_R	AGCTTGCAUTCAGTTGGTTTCAACGCGCACCTTGAG	pS231T7
flB1NHis-U-F	ATGCAAGCUAGGAGGAGGAAAAACATATGCATCATCACC	USER primers to clone flB1-NHis into
<i>flB1-</i> U-R	AGGCGAUTCACACGACCGGGGGGGATG	pFB·PT7fIA1
pSEVA_U_flB	ATCGCCUTGCGGCCGCGTCGTGACTG	USER primers to amplify vector
fIA1_RSv1_U_R	AGCTTGCAUTCAACGGGCCTCCACGCGC	pFB·PT7fIA1
SxflB-Histag-F	ACATGCAUCATCACCACCACCATAGAGAAACCAGAGGCG	SxflB-NHis amplification for USER
	CAGCATTCC	cloning in pFB·PT7SxflA
SxflB-Histag-R	ATGCATGUGTTTTTCCTCCTCTCGAGGAA	
pTn7-U-R	AGAGGAUTTAATTAAGACGTCTTGACATAAGCC	USER primers to amplify backbone
pTn7-U-F	ACGACCUAACACGATTAACATCGCTAAGAAC	pTn7-M
PsyrProm_U_F	ATCCTCUTTTGGCCCTCTTTCGTAAG	USER primer to amplify FRSv1 and
		FRSv2
Rib_EriC_U_R	ACTAGGUCGTCGAAATTTAGACATT	USER primer to amplify FRS1 and
		FRSv3
PEM7_U_F	ATCCTCUTTGTTGACAATTAATCATCG	USER primer to amplify FRSv3 and
		FRSv4
Rib_ATG_U_R	ACTCATUTGGCCAGCCACAAAAAATAAG	USER primer to amplify FRSv2 and
		FRSv4
GFPEriC_U_F	ACCTAGUAAAGGAGAAGAACTTTTC	USER primer to amplify <i>msfGFP</i> in
		FRSv1 and FRSv3
GFP_ATG_U_F	AATGAGUAAAGGAGAAGAACTTTTC	USER primer to amplify <i>msfGFP</i> in
		FRSv2 and FRSv4
GFP_U_R	AGCTTGCAUCTATTTGTATAGTTCATCC	USER primer to amplify <i>msfGFP</i>
pSEVA_U_F	ATGCAAGCUTGCGGCCGCGTC	USER primers to amplify pSEVA441
PSEVA_U_R	AGAGGAUCCCCGGGTACCGAGC	and pS231T7
RSv1-T7RNApol-U-R	AGGTCGUCGAAATTTAGACATTTGG	USER primer to amplify FRSv1
crcB-CRISPR	AAACTTTCCATCAGGCGCACGGTATCGAGCGAGAG	Primers for gRNA synthesis and
crcB-CRISPR-R	AAAACTCTCGCTCGATACCGTGCGCCTGATGGAAA	cloning into pSEVA231-CRISPR
crcBdel-Rec	GGAAICGAGCATATCGTTCTCTCGTTATATGTAGGTGTTG	Recombineering oligo for <i>crcB</i> deletion
	GIICACAIGGTTTTCTCCGCTGGCGGGGGGCTGTTGCGGT	in strain KT2440
	CGAGGICAGCC	

Supplementary Table 3. Transition	ns and optimized	parameters for	fluorometabolites	detection by ma	SS
spectrometry. ^a					

Compound	Parent ion	Parent mass (m/z)	Probable product formula (Hill notation)	Product mass (m/z)	DP (V)	EP (V)	CE (V)	CXP (V)	RT (min)
5'-FDA	$C_{10}H_{11}FN_5O_3^-$	269	C₅H7FO3-	134	-65	-10	-64	-21	2.43
	$C_{10}H_{11}FN_5O_3^-$	269	$C_4H_8FO_2^-$	107	-65	-10	-14	-19	2.43
5'-FDRP	C₅H ₉ FO ₇ P-	231	HPO3-	79	-40	-10	-24	-7	7.5
	C₅H9FO7P [_]	231	C₅H7FO6P [_]	213	-40	-10	-52	-15	7.5

^a 5'-FDA, 5'-fluoro-5'-deoxyadenosine; 5'-FDRP, 5'-fluoro-5'-deoxy-D-ribose 1-phosphate; DP, declustering potential; EP, entrance potential; CE, collision energy; CXP, collision exit potential; RT, retention time.

5'-Fluoro-5'-deoxyadenosine (5'-FDA)			F5'	H ₂ N 8 9 N 0 1' 0H OH	N N 3
Atom	δ (¹ H)	Int., Mult., <i>J</i> (Hz)	δ (¹³ C) [Mult., <i>J</i> (Hz)]	δ _N (¹⁵ N)	δ (¹⁹ F) [Mult., <i>J</i> (Hz)]
1'	6.08	1, d, 5.1	87.4	-	-
2'	4.74	1, m	73.9	-	-
3'	4.54	1, m	69.4	-	-
4'	4.39	1, dm, 29	83.2 (d, 38)	-	-
5'	4.76	2, m	82.5 (d, 165)	_	-231 (td, 48;29)
1	_	-	_	_	_
2	8.25	1, s	151	_	-
3	_	-	_	219.2 ^b	-
4	_	-	149	_	-
5	-	_	118.7	_	-
6	_	-	155.5	_	-
7	_	_	_	233.3	-
8	8.32	1, s	140.1	_	-
9	-	-	-	170.4	-

Supplementary Table 4. NMR characterization of chemically-synthesized 5'-fluoro-5'-deoxyadenosine.ª

^a Int., integrals; Mult., multiplicities; s, singlet; d, doublet; t, triplet; m, multiplet.

^b This assignment is unambiguous and could also be for N₁. Assignments of the NH₂ group are not possible due to exchange of the labile protons.

Note: Both 1D as well as 2D homo- and hetero-nuclear spectra were used to assign all the resonances. The ¹H and ¹⁹F chemical shifts were obtained from 1D-NMR spectra, whereas the ¹³C and ¹⁵N chemical shifts were obtained from 2D-edited heteronuclear single quantum correlation (HSQC)-, heteronuclear multiple bond correlation (HMBC)- and heteronuclear 2 bond correlation (H2BC)-spectra. The presence of ¹⁹F in the molecule enables the extraction of both one and two bond *J* coupling constants between ¹⁹F and ¹³C (¹*J*_{FC5'} and ²*J*_{FC4'}) from the HSQC spectrum as well as two and three bond *J* coupling constants between ¹⁹F and ¹⁴H (²*J*_{FH5'} and ³*J*_{FH4'}) from the 1D-NMR spectra.

Supplementary Fig. 1. Structural organization of *FluoroBricks*. (A) The standard design followed to test different parts of the biofluorination pathway includes a defined set of synthetic biology parts; i.e. promoters, ribosome binding sites (RBS), coding sequences, His tags and transcriptional terminators. All coding sequences used in this work were codon-optimized to ensure proper expression and translation in *P. putida*. Individual transcriptional units (*FluoroBrick*) are easily composable into more complex designs by one-step USER cloning or restriction/ligation according to the rules of the Standard European Vector Architecture^{3,8}. (B) Nomenclature used for the plasmids containing FluoroBricks. Plasmids are named with the initials *FB* followed by a code of numbers and letters, standing out for the promoter and coding sequence used. An *H* superscript indicates the presence of a 6× histidine tag in the sequence.

Supplementary Fig. 2. Chemical synthesis of 5'-fluoro-5'-deoxyadenosine. The starting point was 2',3'isopropylidene-6-chloropurine riboside [6-Chloro-9-(2,3-O-isopropylidene-β-D-ribofuranosyl)-9H-purine] (1), which was converted to the primary fluoride (2) by treatment with tosyl fluoride (TsF) and tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF). Next, (2) was aminated to 2',3'isopropylidenated-5'-fluoro-5'-deoxy-adenosine (3) with NH₃ in *tert*-butanol (*t*-BuOH). The last step, carried at room temperature (rt), was the deprotection of (3) with 90% (v/v) formic acid to yield 5'-fluoro-5'deoxyadenosine. This protocol is based on the synthesis proposed by Ashton & Scammells⁹.

Supplementary Fig. 3. NMR characterization of chemically-synthesized 5'-fluoro-5'-deoxyadenosine.
(A) 1D ¹H-NMR spectrum of 5'-fluoro-5'-deoxyadenosine (5'-FDA).
(B) Overview ¹⁹F-NMR spectrum. The large hums are background signals originating from the probe.
(C) Zoom-in of the decoupled ¹⁹F-NMR spectrum.

Supplementary Fig. 4. Measurement of fluorometabolites by LC-MS/MS. (A) Chromatograms of cell-free extracts of *P. putida* KT2440 bearing plasmid pFB·1F1 (or an empty plasmid, used as a negative control), compared to the chromatogram obtained for a chemically-synthesized 5'-fluoro-5'-deoxyadenosine (5'-FDA) standard. The characteristic retention time for 5'-FDA (in min) is shown above the peak corresponding to the fluorometabolite. (B) Chromatograms of cell-free extracts of *P. putida* KT2440 bearing plasmid pFB·1F1PH1 (or plasmid pFB·1F1, used as a negative control), compared to the chromatogram obtained for an enzymatically-synthesized 5'-fluoro-5'-deoxy-D-ribose 1-phosphate (5'-FDRP) standard. The characteristic retention time for 5'-FDRP (in min) is shown above the peak corresponding to the fluorometabolite. Souce data are provided as a Source Data file.

Supplementary Fig. 5. In vivo biosynthesis of 5'-fluoro-5'-deoxyadenosine in a ∆crcB mutant of P. putida. (A) Growth curves of P. putida KT2440∆crcB::FRS-T7RNAP containing the plasmid modules with the fluorinase of S. xinghaiensis (pFB·1F2, blue circles) compared to the growth of P. putida KT2440∆crcB::FRS-T7RNAP with an empty plasmid (gray circles). Addition of NaF at 5 mM to the cultures is indicated with a vertical black arrow (F⁻). Error bars correspond to standard deviations of three different biological replicates. (B) Intracellular concentration of 5'-FDA in the cells after 24 and 48 h of induction of the fluoride-dependent riboswitch with 5 mM NaF. CDW, cell dry weight. Data are presented as mean values and error bars correspond to standard deviations of three different biological replicates. Source data are provided as a Source Data file.

Supplementary Fig. 6. *In vitro* biosynthesis of 5'-fluoro-5'-deoxyadenosine and 5'-fluoro-5'-deoxy-Dribose 1-phosphate. (A) Structure of plasmid constructs carrying the genes encoding fluorinases and phosphorylases from *Streptomyces* sp. MA37 (*flA1* and *flB1*) and *S. xinghaiensis* (*SxflA* and *SxflB*) under transcriptional regulation of the XylS/*Pm* expression system. FIB1 was tagged in the *N*-terminal domain using a 6× histidine tag (NHis); T0 and T1 indicate synthetic transcriptional terminators. (B) *In vitro* biosynthesis of 5'-fluoro-5'-deoxyadenosine (5'-FDA) and 5'-fluoro-5'-deoxy-D-ribose 1-phosphate (5'-FDRP) using cell-free extracts of *P. putida* KT2440 with selected fluorinases and phosphorylases in the configurations described in (A). Data are presented as mean values and error bars correspond to the standard deviations of three different biological replicates. Source data underlying Supplementary Figure 6b are provided as a Source Data file.

Supplementary Fig. 7. Quantification of alive and dead *P. putida* cells under biofluorination conditions. Cultures of *P. putida* KT2440::FRS-T7RNAP bearing plasmid pFB·1F2 (encoding a fluorinase from *S. xinghaensis*) or plasmid pFB·1F2P^H1 (encoding fluorinase and phosphorylase from *S. xinghaensis* and *Streptomyces* sp. MA37, respectively), were added or not with 15 mM NaF (indicated as +F and -F, respectively). Cells harvested from these cultures were treated with propidium iodide, and the fraction of dead cells was determined measuring fluorescence at an excitation/emission wavelength of 544/612 nm (blue bars). Growth was determined by measuring OD₆₀₀ (grey bars), and the *specific death* was determined by normalizing the fluorescence reading corresponding to dead cells to the OD₆₀₀ (orange bars). A culture of the same strain bearing an empty plasmid, added (+F) or not (-F) with NaF, was used as a control. Further controls included cultures supplemented with 15 mM NaCl (+Cl) or heated at 95°C for 5 min as indicated in the figure. Representative results from three different biological replicates are shown, and dots indicate individual measurements. Source data are provided as a Source Data file.

Supplementary References

- 1. Meselson, M. & Yuan, R. DNA restriction enzyme from *E. coli. Nature* **217**, 1110-1114 (1968).
- Bagdasarian, M. *et al.* Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in *Pseudomonas*. *Gene* 16, 237-247 (1981).
- 3. Silva-Rocha, R. *et al.* The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. *Nucleic Acids Res.* **41**, D666-D675 (2013).
- 4. Choi, K.H. *et al.* A Tn7-based broad-range bacterial cloning and expression system. *Nat. Methods* **2**, 443-448 (2005).
- Calero, P., Jensen, S.I. & Nielsen, A.T. Broad-host-range *ProUSER* vectors enable fast characterization of inducible promoters and optimization of *p*-coumaric acid production in *Pseudomonas putida* KT2440. ACS *Synth. Biol.* 5, 741-753 (2016).
- 6. Volke, D.C., Turlin, J., Mol, V. & Nikel, P.I. Physical decoupling of XylS/*Pm* regulatory elements and conditional proteolysis enable precise control of gene expression in *Pseudomonas putida*. *Microb. Biotechnol.* **13**, 222-232 (2020).
- 7. Aparicio, T., de Lorenzo, V. & Martínez-García, E. CRISPR/Cas9-based counterselection boosts recombineering efficiency in *Pseudomonas putida*. *Biotechnol. J.* **13**, e1700161 (2018).
- 8. Sánchez-Pascuala, A., de Lorenzo, V. & Nikel, P.I. Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable *GlucoBricks* for implantation of glycolytic modules in Gram-negative bacteria. *ACS Synth. Biol.* **6**, 793-805 (2017).
- 9. Ashton, T.D. & Scammells, P.J. An improved synthesis of 5'-fluoro-5'-deoxyadenosines. *Bioorg. Med. Chem. Lett.* **15**, 3361-3363 (2005).