
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The paper presents a deep learning approach to resolve structure-function relationships in the 

context of toehold switches. In order to train a model that maps a toehold sequence to its ON/OFF 

foldchange the group generated around 100 000 toehold sequences of length 148. From the 148 

bases roughly half of them remain fixed in order to deviate not too far from the canonical toehold 

structure. 

 

First of all, generating and characterizing such a library is in itself a huge endeavor. If released to 

the public, the dataset would be very valuable for the scientific community for follow-up studies 

etc. 

 

The trained neural network where the sequence is directly entered as a one-hot encoding shows a 

dramatic improvement in the predictive power over a network that only receives thermodynamic 

and kinetic features of the sequence or over purely biophysical models. 

 

Apart from that demonstration, the work makes some effort to trace back the biophysical basis of 

why certain toehold sequences score high. In particular, the second input encoding in terms of the 

complementarity map is well motivated and allows us to learn something about the secondary 

structure features by computing saliency maps. 

 

I have some remarks and questions that the authors should address: 

 

1.) I have some concerns regarding the data normalization as given in the M&M section. It appears 

as if authors are normalizing the ON and OFF flow-seq data separately to their maximum (see Fig. 

2 A & B). This would remove the actual foldchange and would only allow to rank structures relative 

to each other somehow. It would be not of a concern if both flow datasets are normalized to one 

common number. From flow-data in Fig S2 one finds (surprisingly) that the maximum of both, the 

ON and OFF library are roughly the same, which would indicate that the apparently performed 

separate normalization would not generate too much of a problem. However, simple calculus then 

says that the computed fold change is simply the log ratio of the raw data in the linear domain 

scaled by some constant (which might be easier to communicate). I do not believe that separate 

normalization is a good thing to do and the recurring theme in the paper that the biophysical 

models to do not perform well and do better on Spearman correlations, might relate to this 

normalization issue. Authors should make that exposition of data processing more precise. Perhaps 

it is worthwhile to plot the raw flow-seq data where the not normalized ON and OFF distributions 

are shown on one scale. 

 

2.) From Fig S2 it is also clear that the dataset is very unbalanced. For example, taking the ON 

dataset, the regression error will be dominated by structures that actually have a low ON level; 

same is true (and more severe) for the classification task. Hence, the network is provided with 

very few data points to learn switch features corresponding to high ON levels. That is consistent 

with Fig. S9, where one sees that the network (even the one-hot) poorly predicts high fold-change 

switches (more or less none is exceeding a ON/OFF ratio of 0.6 while experimental data goes up to 

one. The authors should state more clearly how they approached the problem that the dataset was 

unbalanced and be more explicit in the mentioned limitations. 

 

3.) Staying with S9, one sees clear artifacts of the performed Flow-seq pipeline, where the 

pronounced grid lines are apparently due to those sequences that were exclusively detected in one 

FACS bin. Those accumulation points are obviously not physics but artifacts (such artifacts only 

start to disappear at QC5 according to Fig S13). Although authors discuss different QCs, I would 

like to see a more thorough and transparent discussion about those things and how they may 

affect the overall conclusions – in particular those that the biophysical models are performing so 



poorly (in contrast to deep nets, biophysics cannot fit artifacts). 

 

4.) Complexity and data-requirements for training strongly depend on the input dimension of the 

problem. Hence, in the traditional one-hot encoding I do not see any point in inputting also 

sequence positions that remain unaltered through the entire dataset. A network of reduced input 

dimension would train faster and would generalize better and would require less training data. 

Even for the complementarity map input one can envision such a reduced input representation. 

The author may do the corresponding experiment for the supplement. 

 

5.) As ON and OFF level are also normalized and hence ON/OFF level follow a simple deterministic 

mapping, I do not see the point of trying to regress ON, OFF and ON/OFF values with the network. 

ON/OFF values can just be computed from the two ON and OFF network outputs. 

 

6.) The references appear incomplete, i.e. there has been earlier work on optimizing riboswitches 

using machine learning (Groher A-C, et al. ACS Synthetic Biology, 2018). As for the presented 

comparison of cell-free versus in-vivo for riboregulators, there has been work supporting the made 

point that the rank order of switches is preserved but generally not their fold-change (e.g. Lehr F-

X et al. ACS Synthetic Biology, 2019). 

 

7.) It remains unclear to me, why authors did not take the next logical step of using the deep 

network as an inverse model to find novel toeholds with a high fold-change. This can either be 

done by sampling in combination with active learning / Bayesian optimization as has been done for 

protein engineering already (e.g. review o Yang et al. Nature Methods, 2019) or with some other 

back-tracking algorithms. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This is an interesting paper on modeling RNA switches that can be published if a few minor issues 

are addressed: 

 

• Why were only 4 bins used for the flow-seq experimet? And how quantitative are off-state 

measurements given background fluorescence? More detail on the sequencing strategy should be 

included in the main paper. 

 

• The data in Fig. 2D suggest that flow-seq based measurements are not very correlated with in 

vitro fluorescence measurements. The fluorescence values vary over a 5-fold range even though 

all “good” switches presumably have similar fold change as measured by sequencing 

(ON/OFF>0.97). Would it be better to compare flow-seq data to measurements performed with 

individual switches in vivo (i.e. flow cytometry using just a single switch at a time) and is the 

relative lack of quantitative agreement due to different switch behavior in cells and in vitro or due 

to facs-seq noise? 

 

• What test set was used for the data shown in fig.3? please add this information. If it was 

randomly selected, it would be good to also try an alternative test set consisting of the most 

deeply sequenced switches. Such a test set (which should still be randomly distributed in sequence 

space) should help reduce noise due to the measurement. Even the best model presented only has 

R2=0.43 for On/Off predictions and I wonder whether this is an artifact of noisy measurements. 

 

• This statement is outdated: “One significant drawback of using deep learning to predict biological 

function is the inherent difficulty in understanding learned patterns in a way that helps researchers 

to elucidate biological mechanisms underlying model predictions.” There is extensive recent work 

on visualizing DNA and RNA sequence features, mapping filter motifs to biologically and even using 

such models to guide sequence design for synthetic biology. 



 

• The work shown in Fig. 5 is very interesting. The authors should use the model to explicitly 

predict on/off ratio for their switch test set and show that inclusion of secondary structure gives 

better results than sequence only models. 

 

• I’m a bit confused by the following statements: “We sought to visualize RNA secondary 

structures learned by our neural networks in a manner unconstrained by thermodynamic 

modeling.” Which is followed one paragraph later by “we first pre-trained a CNN to predict NUPACK 

MFE values from complementarity map representations of a randomly selected in silico RNA 

sequence dataset.” Aren’t these statements contradictory? 

 

• The title is too general. Toehold switches are interesting but constitute only a very specific 

subset of RNA synthetic biology. 

 

 



Response to Reviewers: 
 
We greatly appreciate the time the referees invested in reviewing our paper. We have 
conducted additional experiments and revised the paper to address each of the points 
raised by the reviewers. We think these additions and revisions have strengthened the 
paper considerably. Of note, we investigated 42 new instantiations of our deep learning 
models in order to thoroughly characterize the effect of various data skew-compensation 
methods, sequence input parameters, and library quality control thresholds on 
performance. These data support our previous conclusions and show a robust analysis of 
our high-throughput dataset. We also performed additional experiments analyzing 
differences between toehold switch performance in vivo and in vitro, clarifying 
previously confusing discrepancies. Lastly, in order to thoroughly validate our 
experimental approach, we performed additional experiments applying our flow-seq 
pipeline to a new panel of previously characterized toehold switches. These results 
demonstrate a strong correlation between individually assayed switches and high-
throughput assayed switches, and also show that the number of sorting bins used to 
produce our high-throughput toehold switch dataset was optimal. Guided by the 
reviewers’ comments and suggestions, we have also adjusted the language in the main 
text and supplementary information accordingly. Below we include a point-by-point 
response to all of the reviewers’ comments.  
 
Reviewer #1 (Remarks to the Author): 
 
The paper presents a deep learning approach to resolve structure-function relationships in 
the context of toehold switches. In order to train a model that maps a toehold sequence to 
its ON/OFF foldchange the group generated around 100 000 toehold sequences of length 
148. From the 148 bases roughly half of them remain fixed in order to deviate not too far 
from the canonical toehold structure. 
 
First of all, generating and characterizing such a library is in itself a huge endeavor. If 
released to the public, the dataset would be very valuable for the scientific community for 
follow-up studies etc. 
 
The trained neural network where the sequence is directly entered as a one-hot encoding 
shows a dramatic improvement in the predictive power over a network that only receives 
thermodynamic and kinetic features of the sequence or over purely biophysical models. 
 
Apart from that demonstration, the work makes some effort to trace back the biophysical 
basis of why certain toehold sequences score high. In particular, the second input 
encoding in terms of the complementarity map is well motivated and allows us to learn 
something about the secondary structure features by computing saliency maps. 
 
I have some remarks and questions that the authors should address: 
 
Reviewer 1 Comment 1: 
I have some concerns regarding the data normalization as given in the M&M section. 



It appears as if authors are normalizing the ON and OFF flow-seq data separately to their 
maximum (see Fig. 2 A & B). This would remove the actual foldchange and would only 
allow to rank structures relative to each other somehow. It would be not of a concern if 
both flow datasets are normalized to one common number. From flow-data in Fig S2 one 
finds (surprisingly) that the maximum of both, the ON and OFF library are roughly the 
same, which would indicate that the apparently performed separate normalization would 
not generate too much of a problem. However, simple calculus then says that the 
computed fold change is simply the log ratio of the raw data in the linear domain scaled 
by some constant (which might be easier to communicate). I do not believe that separate 
normalization is a good thing to do and the recurring theme in the paper that the 
biophysical models to do not perform well and do better on Spearman correlations, might 
relate to this normalization issue. Authors should make that exposition of data processing 
more precise. Perhaps it is worthwhile to plot the raw flow-seq data where the not 
normalized ON and OFF distributions are shown on one scale. 
 
Author Response: 

We appreciate the reviewer’s concerns on how the data were normalized, for which we 
have further clarified our normalization procedure in the revised text. It appears that due 
to unclear language in our manuscript, we were previously unable to convey the exact 
methodology used to normalize the collected ON and OFF signals. While the reviewer is 
correct in that the two states, ON and OFF, were normalized to an arbitrary number 
range, they were actually normalized on the same scale, namely, the four sorting bins 
used to sort both libraries that were held constant. The ON and OFF libraries were both 
sorted on the same instrument, one after the other on the same day under identical 
induction conditions, using fixed settings on the instrument bounded by a positive control 
high-performing switch for the highest bin (corresponding to GFP signal 1) and a 
negative control empty pUC19 vector for the lowest bin (corresponding to GFP signal 0). 
Because the four sorting bins used were the same for both the ON and OFF libraries, the 
minimum and maximum GFP signal bounded by the upper and lower bins used to 
normalize the data from 0 to 1 are the same for both ON and OFF, and hence the 
normalized values in the ON and OFF datasets are directly comparable. As the reviewer 
notes, “It would be not of a concern if both flow datasets are normalized to one common 
number,” and this is in fact the case. This is now presented more clearly in our 
manuscript with the following altered explanations in the Methods section “Flow-Seq 
Pipeline”:  

“To facilitate comparison between the ON and OFF libraries and to ensure both would 
be measured on the same scale of GFP signal, we utilized two control plasmids to anchor 
the lowest and highest GFP expression levels for sorting. A high-performing switch from 
Green et al. (1), referred to by the authors as Switch #4, was cloned both in its OFF state 
and in the modified, fused-trigger ON state. The Switch #4 ON state expressed at very 
high levels in our assay and, when compared to the full library distributions of all ON 
and OFF variants, this control switch marked the highest total levels of GFP signal (Fig. 
S2). We thus used the Switch #4 distribution to demarcate the highest bin of activity. We 
used the pUC19 plasmid as a negative control to mark the lowest bin of GFP signal (Fig. 
S2A), since it does not contain GFP.” 



 
This is also now presented more clearly in the Methods section “Deep Sequencing, Read 
Data Processing and Read Count Analysis”: 
 
“Frequencies of each variant were tabulated for each cell-sorted bin and normalized to 
the total reads per bin. Each variant’s functional value was computed as the weighted 
mean of its normalized frequencies across all bins. Because each library was sorted 
using the same gates established by the control plasmids (see Methods for “Flow-seq 
Pipeline”), and since each library spanned a remarkably similar range of minimum and 
maximum GFP intensity (Fig. S2A,B), we scaled the ON and OFF values for each variant 
to fall between [0,1]. A value of 0 was given to a variant if all corresponding reads were 
found only in the lowest bin and a value of 1 if all corresponding reads were found only 
in the highest bin. An ON/OFF metric was calculated by subtracting these individual ON 
and OFF signal metrics (Fig. 1E), which resulted in values between [-1,1].” 
 
We have also added panels to Fig. S2 showing the scaled dataset values converted from 
[0,1] back to their original raw log-scale GFP fluorescence, as per the reviewer’s 
suggestion.  
 
The reviewer also points out the interesting fact that the maximum and minimum GFP 
signals in both the OFF and ON state libraries are the same, which is in fact the case. 
Many faulty OFF-state switches with high degrees of leakage yielded fully ON-like states 
with a maximum GFP intensity, and many faulty ON-state switches were fully OFF with 
no detectable GFP intensity. These findings can be explained by OFF state switches that 
do not fold correctly and leave the RBS exposed, or ON state switches whose triggers do 
not efficiently unfold the switch hairpin stem and leave the RBS sequestered. To avoid 
any confusion surrounding this counterintuitive finding, we have added language to the 
Methods section “Flow-Seq Pipeline”, specifically pointing it out: 
 
“We found the GFP expression levels for each library for ON and OFF variants 
contained a full spectrum of activity between the levels of the control plasmids utilized 
(Fig. S2). For example, faulty OFF-state switches with high degrees of leaky GFP 
expression yielded fully ON-like states with maximum GFP intensity, likely because 
incorrect folding resulted in leaving the RBS exposed. Similarly, faulty ON-state switches 
had the lowest, negative control levels of GFP intensity, presumably because those 
variants’ triggers could not efficiently unfold the switch hairpin stem thus leaving the 
RBS sequestered. “ 
 
We have also added the following language to the main text section “Library synthesis, 
characterization, and validation”: 
 
“Both ON and OFF data spanned the full range of measured GFP signals, meaning that 
some ON switches failed to induce and expressed no measurable GFP signal, while some 
OFF switches failed to repress ribosome binding and leaked the maximum measurable 
GFP signal.” 
 



Reviewer 1 Comment 2: 
From Fig S2 it is also clear that the dataset is very unbalanced. For example, taking the 
ON dataset, the regression error will be dominated by structures that actually have a low 
ON level; same is true (and more severe) for the classification task. Hence, the network is 
provided with very few data points to learn switch features corresponding to high ON 
levels. That is consistent with Fig. S9, where one sees that the network (even the one-hot) 
poorly predicts high fold-change switches (more or less none is exceeding a ON/OFF 
ratio of 0.6 while experimental data goes up to one. The authors should state more clearly 
how they approached the problem that the dataset was unbalanced and be more explicit in 
the mentioned limitations. 
 
Author Response: 
 
We thank the reviewer for highlighting important concerns regarding the distribution of 
the functional data and improvements that can be made when modeling such unbalanced 
data. The reviewer correctly points out that the distribution of GFP signal in the flow-
sorting data displayed in Figure S2 is highly unbalanced for both the ON and OFF 
libraries. A large fraction of this experimental unbalancing was determined by high-
throughput sequencing to be due to low-signal cells that contained incorrectly 
synthesized oligomers with one of the following: truncations lacking a start codon, 
truncations lacking an SD sequence, or variants containing a frameshift. Error-containing 
constructs were thus disproportionately high in the lowest GFP sorting bin, so we divided 
the read counts for each correct design by the total for all designs for each bin. We have 
adjusted the language in the Methods section “Deep Sequencing, Read Data Processing 
and Read Count Analysis” to clarify this technical consideration: 
 
“The distribution of GFP signal in the flow-sorting data displayed in Fig. S2A is highly 
imbalanced for both the ON and OFF libraries. A large fraction of the oligo library pool 
contained incorrectly synthesized oligomers. These were largely truncated products 
lacking a start codon, lacking an SD sequence, or containing a frameshift that we would 
expect to lead to low GFP signal. We estimate that at least 50% of the cells that we 
sorted contained such a truncated variant, and most of these ended up in the lowest bin. 
Thus, only sequences matching our intended designs were retained for further analysis. 
For the ON and OFF libraries, respectively, 10,390,207 reads and 20,788,966 reads 
were mapped to a correct switch sequence. The final ON and OFF libraries seen in Fig. 
2 are notably less skewed than the flow-sorting data seen in Fig. S2 thanks to the 
exclusion of reads corresponding to incorrectly synthesized switches.” 
 
As a result, the toehold switch dataset itself is not as imbalanced as the raw fluorescence 
measurements obtained during sorting, because the toehold switch dataset excludes the 
relatively large fraction of constructs corresponding to incorrectly synthesized constructs, 
most of which are truncation variants falling in the lowest bin. The ON state library in 
particular is quite close to being uniformly distributed. 
 
However, the reviewer is correct that the OFF state library remains unbalanced, even 
after accounting for the removal of truncated low-signal constructs during data analysis. 



We now realize this was not clearly stated in the main text of our manuscript, and in 
order to bring attention to it as a potential limitation we have added the following 
language to the main text section “Library synthesis, characterization, and validation”: 
 
“Additionally, it should be noted that while ON data are relatively uniform in 
distribution, OFF data are highly skewed towards low-signal variants (see 
Supplementary methods section for a detailed discussion of data balancing).” 
 
To follow up on the reviewer’s concern, we also performed new experiments evaluating 
the performance of our MLP models on balanced categorical and continuous data, using 
four common approaches: (1) rank-order transformation of continuous data to a uniform 
distribution, and (2) re-sampling of under-represented continuous data points to achieve a 
balanced distribution, (3) removal of excess categorical classes, and (4) duplication of 
under-represented categorical classes. The new data are presented in Fig. S14 and Fig. 
S15. Interestingly, none of these efforts to create a less skewed dataset improved 
accuracy, suggesting that our models were already optimally compensating for this 
limitation. The following detailed discussion of these considerations has been added to 
the new Methods section “Data Balancing”: 
 
“As part of a wide-reaching parameter search performed while optimizing our deep 
learning models, we attempted four approaches to address the limitation of skewed OFF 
state data (enumerated below). Interestingly, we found that these only gave at most very 
small improvements in model accuracy as measured by R2, AUROC, or AUPRC (Fig. 
S14, S15). This suggested to us that by using un-transformed and unbalanced data our 
models were already achieving nearly the best performance possible with those 
architectures. A trade-off of using unbalanced data is predictions often center around the 
total mean of the distribution. We utilized a variety of performance metrics, especially the 
AUPRC, to aid interpretation of modeling unbalanced data. To compare the performance 
of various balancing strategies, we performed the following: 
  

1. During regression, we transformed ON, OFF, and ONOFF data into a uniform 
distribution using sklearn QuantileTransform before training the model, and then 
transformed predicted test set data back to their original values to calculate 
accuracy metrics. This transformation retained the rank-order of the data.  

2. During regression, we balanced ON, OFF, and ONOFF data into a uniform 
distribution by splitting the data into twenty bins and randomly re-sampling data 
points from under-represented bins, done only for training and validation data. 
For withheld testing data, data points were randomly removed from over-
represented bins until a uniform distribution was achieved in order to show 
predictive performance across the range of datapoints. 

3. During binary classification of ON/OFF, we balanced the high and low classes by 
randomly removing entries from the over-represented lower class until the two 
classes contained the same number of entries.  

4. During binary classification of ON/OFF, we balanced the high and low classes by 
randomly duplicating entries from the under-represented higher class until the 
two classes contained the same number of entries. 



  
One factor that affected model accuracy was the cutoff for binary classification of 
ON/OFF. Increasing the cutoff for the high and low classes changed how imbalanced the 
ON/OFF data was, and had a significant effect on both AUROC and AUPRC. We 
carefully analyzed the implications of this technical consideration and described the 
decision we made to place the cutoff at ON/OFF=0.7 (classifying for the top 8.3% of 
ON/OFF values) in Fig. S8.” 
 
Reviewer 1 Comment 3: 
Staying with S9, one sees clear artifacts of the performed Flow-seq pipeline, where the 
pronounced grid lines are apparently due to those sequences that were exclusively 
detected in one FACS bin. Those accumulation points are obviously not physics but 
artifacts (such artifacts only start to disappear at QC5 according to Fig S13). Although 
authors discuss different QCs, I would like to see a more thorough and transparent 
discussion about those things and how they may affect the overall conclusions – in 
particular those that the biophysical models are performing so poorly (in contrast to deep 
nets, biophysics cannot fit artifacts). 
 
Author Response: 
 
We thank the reviewer for requesting a more thorough discussion of the binning and QC 
approaches. We agree with the observation that deep neural network models might 
perform better in fitting such artifacts and that a simple comparison at the lowest QC 
levels would not be fair or appropriate. We had this in mind when developing the various 
QC levels, and have added a new Fig. S16 carefully comparing the correlation of existing 
biophysical parameters against all datasets at quality control levels above QC2, and have 
also added new data to Fig. S4 comparing the performance of a neural network trained on 
those biophysical parameters at higher quality control levels (with QC5 being the most 
stringent set that did not contain any sorting artifacts). Importantly, we did not observe 
any correlation values between our data and the biophysical rational parameters that 
meaningfully differed at higher QC levels compared with the data presented in Fig. 3 
(which was at QC2), and in fact many correlations were lower at higher QC levels. A 
notable exception is the correlation between the Salis Lab RBS Calculator OFF 
prediction and the ON/OFF measurement, which increases from 0.011 in QC3 to 0.061 in 
QC5. However, an R2 accuracy of 0.061 is still reasonably negligible, and consequently 
is not relevant enough to change the overall conclusions of these results. Given this 
information, it seems unlikely that the failure of the biophysical rational parameters to 
predict our data was due to sorting-based artifacts in the dataset. Nonetheless, we 
highlight these important considerations with additional language in the Methods section 
“Library Quality Control” in order to improve the transparency and thoroughness of our 
descriptions of model comparisons: 
 
“Artifacts of the flow-seq pipeline are also clearly visible in lower-QC datasets (see Fig. 
S13). These manifest as “spikes” of intensity at the borders of the sorting gates, 
corresponding to an overrepresentation of variants with reads in only one bin. As read 
count thresholds increase and sampling improves, such variants become rarer – the 



artifacts are visible in QC1 and QC2, less visible in QC3 and QC4, and largely absent in 
QC5. Given the possibility that models trained on different data inputs (sequence-only vs 
biophysical) might fit data with such local distortions to differing degrees, we also 
analyzed the performance of existing biophysical models and neural network models 
trained on biophysical parameters against all datasets at QC levels above QC2, with 
QC5 being the most stringent set that did not contain any apparent sorting artifacts (Fig. 
S4). We did not observe a meaningful improvement in R2 accuracy using an MLP trained 
on the biophysical rational parameters at QC levels 1-4 and then tested on QC5. Neither 
were significant improvements in R2 correlation seen between the data and individual 
biophysical parameters at higher QC levels (Fig. S16). We are therefore confident that at 
the quality control level chosen for the final dataset (QC2), the sorting artifacts did not 
differentially impact model performance.” 
 
Reviewer 1 Comment 4: 
Complexity and data-requirements for training strongly depend on the input dimension of 
the problem. Hence, in the traditional one-hot encoding I do not see any point in inputting 
also sequence positions that remain unaltered through the entire dataset. A network of 
reduced input dimension would train faster and would generalize better and would 
require less training data. Even for the complementarity map input one can envision such 
a reduced input representation. The author may do the corresponding experiment for the 
supplement. 
 
Author Response: 
 
We thank the reviewer for bringing to attention the fact that a reduced input 
representation is possible since portions of the sequence are held constant. As the 
reviewer notes, the use of a smaller input representation would train faster. However, we 
did not approach any limitations on training time for the already short sequences (<150 
bases) containing the constant regions. We chose to include the full sequence due to the 
possibility of secondary structure interactions between variable regions and constant 
regions, which we had hoped certain models would capture, particularly higher-order 
models such as the CNN and the LSTM. These sequence interactions were especially 
important to model explicitly for the VIS4Map application, in order to provide a 
physically interpretable visual complementarity map representation, since eliminating the 
constant regions from the input would obscure interactions between the constant and 
variable regions (for example, putative GFP linker−stem interactions observed in Fig. 
S12). In order to address the reviewer’s concern, we performed a comparison between an 
MLP model trained on a one-hot representation of either the entire toehold switch 
sequence, or the trigger sequence only. We found that very slight but statistically 
significant differences were observable, and have included this data figure in a new Fig. 
S14C, as per the reviewer’s recommendation.  
 
Reviewer 1 Comment 5: 
As ON and OFF level are also normalized and hence ON/OFF level follow a simple 
deterministic mapping, I do not see the point of trying to regress ON, OFF and ON/OFF 



values with the network. ON/OFF values can just be computed from the two ON and 
OFF network outputs. 
 
Author Response: 
 
The reviewer is correct in pointing out that the ON/OFF values can be computed directly 
from the prediction of ON and OFF values, separately. However, the ON/OFF value will 
be a more practically useful metric for many readers, given that it is the ultimate 
performance metric desired for most applications of toehold switches. Many readers will 
want to know how well the various models perform in predicting both ON and OFF at the 
same time, which is more difficult than predicting them separately (hence why ON/OFF 
accuracy is consistently lower than ON or OFF accuracy). While one can 
deterministically calculate the ON/OFF value of any individual switch from its ON and 
OFF, it would not be possible (or at least be difficult) for a reader to calculate the R2 
accuracy of a model in predicting ON/OFF based on its R2 in predicting ON and OFF 
separately. Hence, we respectfully argue that it actually benefits the paper to report the 
performance of our tested models in regressing ON, OFF, and also ON/OFF as shown in 
Fig. 2, especially for readers interested in the practical implementation of our methods. 
 
Reviewer 1 Comment 6: 
The references appear incomplete, i.e. there has been earlier work on optimizing 
riboswitches using machine learning (Groher A-C, et al. ACS Synthetic Biology, 2018). 
As for the presented comparison of cell-free versus in-vivo for riboregulators, there has 
been work supporting the made point that the rank order of switches is preserved but 
generally not their fold-change (e.g. Lehr F-X et al. ACS Synthetic Biology, 2019). 
 
Author Response: 
 
We thank the reviewer for alerting us to these associated contributions and we have 
added the following references to the revised manuscript accordingly: 
 
22. Groher, Ann-Christin, et al. “Tuning the Performance of Synthetic Riboswitches 

Using Machine Learning.” ACS Synthetic Biology, vol. 8, no. 1, Apr. 2018, pp. 
34–44., doi:10.1021/acssynbio.8b00207. 

24. Peterman, Neil, and Erel Levine. “Sort-Seq under the Hood: Implications of 
Design Choices on Large-Scale Characterization of Sequence-Function 
Relations.” BMC Genomics, vol. 17, no. 1, Sept. 2016, doi:10.1186/s12864-016-
2533-5. 

25. Cambray, Guillaume, et al. “Evaluation of 244,000 Synthetic Sequences Reveals 
Design Principles to Optimize Translation in Escherichia Coli.” Nature 
Biotechnology, vol. 36, no. 10, 2018, pp. 1005–1015., doi:10.1038/nbt.4238. 

26. Kinney, J., McCandlish, D. (2019). Massively Parallel Assays and Quantitative 
Sequence-Function Relationships. Annual Review of Genomics and Human 
Genetics. 20(1), 99-127. doi: 10.1146/annurev-genom-083118-014845 

27. Kinney, J., Murugan, A., Callan, C., Cox, E. (2010). Using deep sequencing to 
characterize the biophysical mechanism of a transcriptional regulatory sequence/ 



Proceedings of the National Academy of Sciences. 107(20), 9158-9163. doi: 
10.1073/pnas.1004290107 

28. François-Xavier Lehr, Maleen Hanst, Marc Vogel, Jennifer Kremer, H. Ulrich 
Göringer, Beatrix Suess, and Heinz Koeppl Cell-Free Prototyping of AND-Logic 
Gates Based on Heterogeneous RNA Activators ACS Synthetic Biology 2019 8 
(9), 2163-2173 

 
Regarding the comparison we present between cell-free vs in-vivo toehold switches, the 
reviewer is right to point to the apparent lack of correlation between them in Fig. 3D. 
While it is certainly true that in many contexts the rank order of riboswitch performance 
can be directly compared between in vivo and in vitro environments, in our own hands 
and with the particular toehold switch architecture selected for this dataset, the 
correlation has been relatively weaker. One possible explanation might involve 
differences in the hybridization of short RNA strands (with potentially low Tm as our 
toehold is 12nt long) in the cellular environment which experiences significant molecular 
crowding versus more dilute environments like the PURExpress system. In order to 
demonstrate this, we have performed additional experiments measuring the cell-free 
induction signal observed from twenty previously published in vivo switches, now 
present in Fig. S1C. Additionally, in order to make clearer to the reader differences 
between in vitro and in vivo use of this particular toehold switch, we have altered our 
language describing said relationship in the main text: 
 
“All low-performance switches showed no induction, while the high-performance 
switches showed a spread of ON/OFF ratios between 2 and 10 (p<0.0001 between high 
and low switches, two-tailed t-test). The wide range of GFP expression seen from the 
high-performance switches results from a relatively weak rank-order correlation we have 
observed between the performance of our toeholds in vivo and in vitro (Fig. S1C), which 
differs from other work comparing RNA actuators in living cells and cell-free systems 
(28). The effect may stem from differences in trigger-toehold interactions between the in 
vivo cellular environment and the in-vitro cell-free environment. Nonetheless, these 
results indicate that while the performance of toehold switches in vivo and in vitro may 
differ, in vivo measurements can still be used to classify categorically whether a switch 
will function in vitro.” 
 
Reviewer 1 Comment 7: 
It remains unclear to me, why authors did not take the next logical step of using the deep 
network as an inverse model to find novel toeholds with a high fold-change. This can 
either be done by sampling in combination with active learning / Bayesian optimization 
as has been done for protein engineering already (e.g. review o Yang et al. Nature 
Methods, 2019) or with some other back-tracking algorithms. 
 
Author Response: 
 
We thank the reviewer for the insight to use the model for novel toehold prediction. For 
our manuscript, we focused on the application of toeholds for known targets, as opposed 
to arbitrary targets. The known target space we sampled included the full genomes of 



more than a dozen pathogenic viruses and nearly 1,000 coding regions of human 
transcription factors. The improved modeling and associated predictive power are 
primarily geared towards the selection of the best target-switch combination when many 
possible targets can be selected, such as for the detection of a novel virus or new 
transcript. We therefore have chosen not to use the deep neural network as an inverse 
model to find novel toeholds with a high fold-change. This reviewer may be interested to 
know that such an application is a distinguishing focus of a companion manuscript 
entitled, “Sequence-to-function deep learning frameworks for engineered riboregulators”, 
that has been co-submitted to Nature Communications by a collaborative team led by our 
colleagues, Timothy Lu (MIT) and Diogo Camacho (Wyss Institute, Harvard). 
 
 
Reviewer #2 (Remarks to the Author): 
 
This is an interesting paper on modeling RNA switches that can be published if a few 
minor issues are addressed: 
 
Reviewer 2 Comment 1: 
Why were only 4 bins used for the flow-seq experiment? And how quantitative are off-
state measurements given background fluorescence? More detail on the sequencing 
strategy should be included in the main paper. 
 
Author Response: 
 
We appreciate the reviewer’s request for more clarification on the experimental design, 
including the choice of number of bins for cell sorting and the background level of 
fluorescence. In the revised manuscript, we have included a more thorough discussion of 
these issues. Each bin corresponds to log10 increase in fluorescence intensity, such that 
our sorting scheme bins across four orders of magnitude. We used a weighted averaging 
approach for a given variant that takes the abundance of the variant in each bin, which 
produces a continuous value across the range of detection. Our preliminary studies of 
clonal toehold variants transformed into millions of cells showed a normal distribution of 
intensity that roughly spanned a full order of magnitude. Additional bins at the lowest 
and highest end of the detection range would not have logically increased fidelity of those 
mean intensities. Nonetheless, in order to empirically assess any limitations due to the 
number of bins used, we have performed additional experiments applying our flow-seq 
pipeline to a panel of 20 previously characterized switches from Green et al. (2014), 
using identical induction and sorting conditions as for our main toehold switch dataset. 
These results are now presented in Fig. S1D,E, and show no significant change in signal 
when splitting the four previously used bins into eight bins. We have added more detail 
about the sequencing protocol and strategy in the Methods section “Flow-Seq Pipeline”: 
 
“The number of bins used was chosen based on a preliminary study of our flow-seq 
pipeline characterizing a panel of 20 previously published switches from Green et al (1) 
(Fig. S1D). Clonal toehold variants showed a normal distribution of intensity that 
roughly spanned an order of magnitude (as seen for Switch #4 in Figure S2), and no 



difference in measured flow-seq signal was observed when sorting on four or eight bins, 
suggesting that four bins was sufficient to accurately measure fluorescence across four 
orders of magnitude in high-throughput (Fig. S1E). Nonetheless it should be noted that at 
lower read sampling thresholds, artifacts were observable at the borders of the four bins 
(Figure S13, see “Library Quality Control” for a further discussion of these artifacts).” 
 
Reviewer 2 Comment 2: 
The data in Fig. 2D suggest that flow-seq based measurements are not very correlated 
with in vitro fluorescence measurements. The fluorescence values vary over a 5-fold 
range even though all “good” switches presumably have similar fold change as measured 
by sequencing (ON/OFF>0.97). Would it be better to compare flow-seq data to 
measurements performed with individual switches in vivo (i.e. flow cytometry using just 
a single switch at a time) and is the relative lack of quantitative agreement due to 
different switch behavior in cells and in vitro or due to facs-seq noise? 
 
Author Response: 
 
The reviewer is correct that the correlation between our flow-seq measurements and 
switches tested under cell-free conditions is not as strong as one might expect. However, 
we do not think this stems from noise in our flow-seq pipeline. The 16 switches tested 
under cell-free conditions for Figure 2D were taken from the highest-quality portion of 
our dataset (QC5, with read counts over 300 per switch), and the correlation between 
flow-seq replicates in that portion of the dataset was quite high (R2~0.8, Figure S3B), 
suggesting that the flow-seq assay reliably measured in-vivo fluorescence in a way that 
should at least preserve rank-order correlation. Nonetheless, to address this concern, we 
have performed additional experiments applying our flow-seq pipeline to a panel of 20 
previously characterized switches from Green et al. (2014), using identical induction and 
sorting conditions as for our main toehold switch dataset. These results are now presented 
in a new Fig. S1D,E, and show a strong correlation between individually measured 
fluorescence as previously reported and the pooled measurements of our flow-seq 
pipeline (Pearson R=0.788, Spearman R=0.842). 
 
We believe the majority of this noise stems from differences between the behavior of our 
toehold switches in cells compared with cell-free expression systems. To further illustrate 
this, we performed additional experiments assaying 20 switches in a cell-free expression 
system that had previously been assayed in vivo by Green et al. (2014). Comparing the 
in-vivo ON state induction from Green et al. to cell-free ON state induction, we can see 
that while low-signal switches in vivo are reliably low in cell-free conditions, many 
switches that induce well in vivo do not produce proportionally as much signal in cell-
free conditions. One possible explanation for this behavior is that trigger binding 
behavior might differ between the two environments. We have included these data in a 
new Fig. S1C, and have included additional language to the main text section “Library 
synthesis, characterization, and validation” addressing these concerns: 
 
“All low-performance switches showed no induction, while the high-performance 
switches showed a spread of ON/OFF ratios between 2 and 10 (p<0.0001 between high 



and low switches, two-tailed t-test). The wide range of GFP expression seen from the 
high-performance switches results from a relatively weak rank-order correlation we have 
observed between the performance of our toeholds in vivo and in vitro (Fig. S1C), which 
differs from other work comparing RNA actuators in living cells and cell-free systems 
(28). The effect may stem from differences in trigger-toehold interactions between the in 
vivo cellular environment and the in-vitro cell-free environment. Nonetheless, these 
results indicate that while the performance of toehold switches in vivo and in vitro may 
differ, in vivo measurements can still be used to classify categorically whether a switch 
will function in vitro.” 
 
Reviewer 2 Comment 3: 
What test set was used for the data shown in fig.3? please add this information. If it was 
randomly selected, it would be good to also try an alternative test set consisting of the 
most deeply sequenced switches. Such a test set (which should still be randomly 
distributed in sequence space) should help reduce noise due to the measurement. Even the 
best model presented only has R2=0.43 for On/Off predictions and I wonder whether this 
is an artifact of noisy measurements. 
 
Author Response: 
 
The reviewer is correct that the test sets used during cross validation in Fig. 3 were 
randomly selected at the sequence depth cutoff of 10 reads or higher for both ON and 
OFF measurements (the QC2 dataset, see Table S1), and points out that this information 
is relevant to include in the figure caption and not merely in the Methods section. We 
have therefore altered the caption of Fig. 3 as follows: 
 
“(D) Box and whisker plots for R2 between experimental and regression-based 
predictions for best performing rational features, logistic regression models and MLPs 
using ten-fold cross validation (test sets randomly selected from quality control process 
#2, QC2 in Fig. S13 and Table S1). (E) Mean absolute error (MAE) between 
experimental and predicted values for these same models. (F) Box and whisker plots for 
area under the curve (AUC) of the receiver-operator curve (ROC) and the precision-
recall curve (P-R) in classification-mode predictions compared to experimental values 
using three-fold cross validation (test sets randomly selected from quality control process 
#2, QC2 in Fig. S13 and Table S1).” 
 
The reviewer further suggests that a test set consisting of the most deeply sequenced 
switches be withheld before training, allowing for the model to predict data that is less 
influenced by measurement noise caused by lower read count sampling. We perform such 
an analysis in Fig. S4 using an MLP trained either on a one-hot sequence encoding, or on 
thirty rational thermodynamic features. We withheld the QC5 dataset for testing (which 
contains variants with read counts of 300 or more and with high/low standard deviation 
cutoffs, details in Table S1) and trained with datasets of increasingly stringent read depth 
(QC1, QC2, QC3, QC4). Notably we did not observe increased performance of the MLP 
on the QC5 test set compared with random test sets from QC2 (the results of Figure 3), 
nor did we observe improved results with read count depths more stringent than that of 



the QC2 dataset. Therefore while the reviewer is correct in wondering whether greater 
read depth would improve the results of our models, we conclude from these results that 
the QC2 level of read depth is optimal for balancing dataset size with flow-seq 
measurement noise. 
 
Reviewer 2 Comment 4: 
This statement is outdated: “One significant drawback of using deep learning to predict 
biological function is the inherent difficulty in understanding learned patterns in a way 
that helps researchers to elucidate biological mechanisms underlying model predictions.” 
There is extensive recent work on visualizing DNA and RNA sequence features, mapping 
filter motifs to biologically and even using such models to guide sequence design for 
synthetic biology. 
 
Author Response: 
 
We appreciate the reviewer’s correction of the outdated statement and have added several 
new references supporting the recent work in visualizing sequence features: 
 
45. Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the 

accessible genome with deep convolutional neural networks Genome Res. 2016 
Jul;26(7):990-9. doi: 10.1101/gr.200535.115. 

46. Simon Höllerer, Laetitia Papaxanthos, Anja Cathrin Gumpinger, Katrin Fischer, 
Christian Beisel, Karsten Borgwardt, Yaakov Benenson, Markus Jeschek (2020) 
Large-scale DNA-based phenotypic recording and deep learning enable highly 
accurate sequence-function mapping. bioRxiv 2020.01.23.915405; doi: 
https://doi.org/10.1101/2020.01.23.915405 

50. Singh, J., Hanson, J., Paliwal, K. et al. RNA secondary structure prediction using 
an ensemble of two-dimensional deep neural networks and transfer learning. Nat 
Commun 10, 5407 (2019). 

 
We have also added language mentioning the recent work and describing how our 
secondary structure method complements and extends the work in the field in the main 
text section “Visualizing learned RNA secondary structure motifs with VIS4Map”: 
 
“Recent work has been developed to visualize sequence features by mapping learned 
convolutional filters to biologically-relevant sequence motifs (45, 46). Additional 
methods have been established to address how models link biological theory, including 
alternative network architectures (47), and the use of saliency maps (48, 49), which 
reveal the regions of an input that deep learning models weigh most heavily and 
therefore pay the most attention to when making predictions. While saliency maps have 
been previously used to visualize model attention in one-hot representations of sequence 
data (10, 17, 18, 20, 48), such implementations focus only on the primary sequence and 
have not been developed to identify salient secondary structure interactions, which are 
especially relevant in the operation of RNA synthetic biology elements. Furthermore, 
prior work related to RNA secondary structure prediction using deep learning (50) has 
not utilized saliency techniques to highlight relevant secondary structure regions that 



lead to improved function in RNA sensors. Instead, visualized representations have been 
constrained to predetermined structures based on the predictions of thermodynamic 
models (43, 44), whose abstractions we have found cause significant information loss.” 
 
Reviewer 2 Comment 5: 
The work shown in Fig. 5 is very interesting. The authors should use the model to 
explicitly predict on/off ratio for their switch test set and show that inclusion of 
secondary structure gives better results than sequence only models. 
 
Author Response: 
 
We appreciate the reviewer’s comments in this regard. As seen in Fig. 4, we conducted a 
thorough comparison of the regression and classification accuracies exhibited by our 
models including a three-layer MLP, a CNN trained on a one-hot sequence input, an 
LSTM trained on a one-hot sequence input, as well as the model seen in Fig. 5, which 
corresponds to a CNN with a 2D one-hot complementarity map input.  
 
Upon evaluating both the R2 and MAE of predictions for ON, OFF, and ON/OFF in 
regression mode, and the AUROC and AUPRC of predictions for ON/OFF in 
classification mode for these models (Fig. 4), we concluded that while the 2D-input CNN 
does provide more insight regarding the relevance of secondary structure for predicting 
function, this specific neural network architecture did not achieve higher predictive 
accuracy as compared to the sequence-based, three-layer MLP. This appears to be caused 
by an increased model capacity, which requires larger dataset sizes to provide the same 
level of training. To ensure that the reader does not misunderstand this, we have altered 
the following language in the main text section “Visualizing learned RNA secondary 
structure motifs with VIS4Map”: 
 
“Encouraged by our CNN’s ability to elucidate putative RNA secondary structure 
features directly from in silico-generated training data, we applied VIS4Map to our 
entire experimental toehold switch function dataset. When trained on a complementarity 
map representation both in regression mode and classification mode (Fig. 5D), VIS4Map 
significantly outperformed an MLP trained on rational thermodynamic features. 
However, VIS4Map did not significantly outperform an MLP trained on a one-hot 
sequence input (as was the case when predicting NUPACK MFE). The failure of 
VIS4Map to improve predictions compared with a simpler three-layer MLP model likely 
results from over- or under-fitting of the higher-dimensional input, similar to the case of 
our other higher capacity models (Fig. 4A,B,C,D).” 
 
Reviewer 2 Comment 6: 
I’m a bit confused by the following statements: “We sought to visualize RNA secondary 
structures learned by our neural networks in a manner unconstrained by thermodynamic 
modeling.” Which is followed one paragraph later by “we first pre-trained a CNN to 
predict NUPACK MFE values from complementarity map representations of a randomly 
selected in silico RNA sequence dataset.” Aren’t these statements contradictory? 
 



Author Response: 
 
We agree with the reviewer that the selected statements are unclear in succession. We 
have adjusted to text around each statement to clarify the meaning in the context of each 
statement. The first statement concerns the use of our modeling approach to ascertain 
secondary structure elements associated with functions that are based on a 
complementarity map representation, as opposed to traditional thermodynamic structure 
prediction. The second statement is primarily intended to validate whether the new 
approach recapitulates the predictions of the traditional approach. We have adjusted the 
wording and organization of these statements to provide the reader with additional 
context and to clarify the motivation of these separate points: 
 
“Importantly, because the complementarity map is unconstrained by a priori hypotheses 
of RNA folding (similarly to our sequence-based MLP models), we anticipated this 
approach to be able to identify secondary structures that might be overlooked by 
commonly used thermodynamic and kinetic algorithms, such as NUPACK and Kinfold. 
 
To first validate whether our visualization approach could capture any meaningful RNA 
structure features, we trained a CNN to predict NUPACK MFE values from a 
complementarity map representation of a randomly selected in silico RNA sequence 
dataset. Because NUPACK’s calculated MFE is directly determined by a predicted RNA 
secondary structure, we anticipated that a CNN undergoing this training would likely pay 
attention to secondary structure features, a situation that was confirmed through 
visualization of individual attention maps (Fig. 5B,C).”  
Reviewer 2 Comment 7: 
The title is too general. Toehold switches are interesting but constitute only a 
very specific subset of RNA synthetic biology. 
 
Author Response: 
 
We agree with the reviewer that a more appropriate title better captures the contributions 
made in the manuscript and have adjusted the title accordingly to: “A deep learning 
approach programmable RNA switches”. 
 
 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors responded to all my questions and concerns. Where necessary, they performed 

additional analyses and adapted the MS accordingly. I am happy with the paper and recommend 

acceptance. 

 

 

 

Reviewer #2: 

None 

 


