Supplemental information for:

CRISPRoff enables spatio-temporal control of CRISPR editing

Carlson-Stevermer et. al

SUPPLEMENTAL FIGURES

Supplementary Figure 1: a.) Chemical structure of *o*-nitrobenzyl photocleavable (PC) linker incorporated into backbone of CRISPRoff sgRNAS. **b.)** Absorption spectrum of PC linker phosphoramidite solution in acetonitrile. Upon absorbing light at indicated wavelengths, PC linker undergoes selective bond cleavage, resulting in fragmentation of the DBsgRNA backbone. Dotted lines indicate the major wavelengths of light sources used in this work. **c.)** Sequence of CRISPRoff sgRNA backbone, including incorporated

PC linkers (red 'X'). Top and Bottom: overlay of PCR primers used for amplification of sgRNA backbone for ddPCR quantification. d.) Spectral output of Sunray UV curing system, the main light source used in this work. e.) Fragment analysis of cleaved CRISPRoff sgRNAs with a single replacement nucleotide. All lanes corresponding to CRISPRoff sgRNA show a decrease in full-length RNA and exhibit two bands corresponding to the length of each RNA fragment split at the indicated nucleotide. In these assays some full length sqRNA remained. f.) Editing activity of various CRISPRoff spacer locations targeting three genomic loci (DNMT1, FANCF, and VEGFA). Replacing nucleotides with a photocleavable linker in some positions (22) abolished editing efficiency, while others (57, 74) preserved activity (n=2 experimental replicates, data is presented as mean). g.) CRISPRoff sgRNA fragments following cleavage. CRISPRoff sgRNAs can be cleaved at either or both locations and rendered inactive. CRISPRoff sgRNAs cleaved at position 57 give rise to fragments of 18 kDa and 14 kDa. CRISPRoff sgRNAs cleaved only at position 74 give rise to fragments of 24 kDa and 8 kDa. CRISPRoff sgRNAs cleaved at both locations give rise to fragments of 18 kDa, 5 kDa, and 8 kDa. All of these species are seen in ESI traces (Figure 1b). Source data are provided as a Source Data file.

а

Supplementary Figure 2: a.) Effect of UV light from curing lamp on cell viability. Cells were left in the dark or exposed to light under a 345 nm longpass filter. This filter removes all wavelengths shorter than 345 nm that may cause DNA damage. Using these filters, cell viability was not significantly different compared to unexposed cells (n=3 technical replicates p=0.27, one-way ANOVA, data is presented as mean±1 SD). **b.)** Effect of light exposure duration on ablation of editing. Longer periods of exposure were more efficient at cleaving DBsgRNAs, achieving complete ablation between 45-60 seconds (n=2 biological replicates, data is presented as mean). c.) Indel profile of CAMK1 DBsgRNA and standard sgRNA. Indel profiles of both sgRNAs are similar, suggesting that DBsgRNAs do not change the repair mechanism of DSBs. d.) High resolution analysis of editing time course at the FANCF locus. Transfected cells were exposed to light 15 minutes post-transfection. Genomic DNA was harvested 15, 30, 60, 90, 120 minutes and 4 and 24 hours post-transfection. Using standard sgRNAs, 45% of alleles had already undergone a DSB and been repaired with an indel mutation 4 hours post-transfection. This activity was not seen using CRISPRoff sgRNAs suggesting editing at this locus can be controlled. e.) Editing using a DBsgRNA with an off-target site in a known essential gene. Lack of inactivation caused high degree in cell death as seen through loss of confluency. Inactivation of DBsgRNA rescued viability in these cells (image representative of 3 independent experiments, scale bar: 130 µm). Source data are provided as a Source Data file.

Supplementary Figure 3: a.) Ratio of on:off-target editing at various time points post transfection at the FANCF locus. On-target gene editing happens quickly and reaches saturation while off-target editing lags before becoming saturated at later timepoints. Identification of these inflection points can minimize the harm of off-target editing events.

b.) Absolute values of on and off-target editing events at seven genomic loci. Cells were transfected with either standard sgRNAs or CRISPRoff sgRNAs. Cell pools were then illuminated at either 4, 8, 16, 24, or 48 hours post transfection. At these same time points, separate cell pools were harvested and analyzed for the presence of indels. Off-target effects were lower at assay endpoint in samples that were illuminated sooner after transfection. Source data are provided as a Source Data file.

SUPPLEMENTARY TABLES

Target	Protospacer Sequence
AAVS1	GGGGCCACTAGGGACAGGAT
BUB1B	AGTGAAGCCATGTCCCTGGA
CAMK1_sg1	TGCCAGGATCACCTCCGAGA
CAMK1_sg2	GCGTCCTCTTATCTTCTGCC
CEL	AACCAGTTGCAGGCGCCCCA
Chr8q23_sg1	TTATAGTTACGATGTTTGAT
Chr8q23_sg2	AGTCTACTATGAGTTTTCTG
CXCR4	GATAACTACACCGAGGAAAT
DNMT1	GGAGTGAGGGAAACGGCCCC
EMX1	GAGTCCGAGCAGAAGAAGAA
FAM163A	CTGCAGGGCTCGCTGGTGAG
FANCF	GCTGCAGAAGGGATTCCATG
GAA	AGGAGCCGGTGGGAGCAGGG
GRK1	GCCGTCAAAGCTGCCTCGGG
ITGA7	GGTGCTGGAGGGCGAGGCTG
IRAK4	GTCCTGTCTTTGTCACAGAA
MAPRE1	TTCTCTGCAGATAATTCCTG
MIP	GCTGGGGTCCTCACTGCGCT
OMP	GAACTGTAGCCGCTGCTGCT
OPN1SW	ACAGGGGCAATGTGGTACTG
PRGN	CAGATGCCTGCTCAGTGTTG
PRKAG3_sg1	AGCAAGAAAACAGCAGCTCA
STK3_sg1	AAAGCAATACACAAGGAATC
STK3_sg2	CCATAATGCAGCAATGTGAC
VEGFA	GGTGAGTGAGTGTGTGCGTG
GFP-C1	CTTCAGGGTCAGCTTGCCGT

Supplementary Table 1: List of sgRNAs used

Supplementary	/ Table 2:	List of	primers	used
---------------	------------	---------	---------	------

Target	Primer F	Primer R	Primer Seq
AAVS1	GCCCCTATGTCCACTTCAG G	CTCAGGTTCTGGGAGAGGGT	CTCCATCGTAAGCAAACCTTAGAGG
BUB1B	AGAAATCCTCCCACTTCGG C	GCAGATTCTTGTGCCAGTGC	CAGCTAACAAAGAAGCTTAGGCATATAA
CAMK1_sg1	ACAACCCTGCCAAGTGGAA A	ACTAGGGGAGGGTCATCCAC	CATTTTATAAAGGGGCAATTTAAGGCTT AG
CAMK1_sg2	ACAACCCTGCCAAGTGGAA A	ACTAGGGGAGGGTCATCCAC	CATTTTATAAAGGGGCAATTTAAGGCTT AG
CEL	CTGAGGGTGTAGAGGGGAG G	GTTCTACCTGGCACCTGTCC	CCTGAGAGCTCATGAACAAGCAT
Chr8q23_sg1	CTCGTCAAAACAAGGGTAA GCA	GTTTGAGTTGACCAAACGCA	CAAGGGTAAGCAAAGAAATAAAATCTCT TC
Chr8q23_sg2	ACCTGTCACATTGCTGCAT T	GTTTGAGTTGACCAAACGCA	TTGATTATTTCCTGAAGATCTGATTCAA CA
CXCR4	TTGTGCCCTTAGCCCACTA C	CCAGAAGGGAAGCGTGATGA	GTACTTGTCCGTCATGCTTCTCAGTTT
DNMT1	GATCAAGCTTTGTATGTTG GCCAA	AATCCAGAATGCACAAAGTA CTGC	GATCAAGCTTTGTATGTTGGCCAA
EMX1	CAGCTCTGTGACCCTTTGT TTG	ACTAAACTACAGTGGTGCCT GG	CAGCTCTGTGACCCTTTGTTTG
FAM163A	GAGTGGTGGGAGGGGAAAA G	CATGTCAGCCGTCCGTATGT	CTTGCAAAGCTGGGATTAGAAACTT
FANCF	GATATTTCCAAAGCGAAAG GAAGC	ATCAGAGAGTCCTCCTGGAG ATTT	GATATTTCCAAAGCGAAAGGAAGC
GAA	GGTGAGTCTCCTCCAGGAC T	CAGACTGTGCAAGTGCTCTG	CTTTTCTCGCCCTTCCTTCTGG
GRK1	GTCTCTCTCGTCCAGCAAG GG	ATGTCTTTCCAGAGCTCCAG GG	GTCTCTCTCGTCCAGCAAGGG
ITGA7	GGTTGTCGCCAAACCTTCA C	GGGATTGGGGAGTCAAGAGC	GAGTCAAGAGCACAAGAAACATGAGAAC AT
IRAK4	GCTTCTTGTGTGTGCTGTG AG	GCCTGTGATTGCTGCACAAA	CAAGTTTCTAGTTTAACTTTTTCACAAC CA
MAPRE1	GGTACTCTTGAAGGCAAAC TGC	CGCTGAATGAATATCTGGAA CGC	ACTGCATGAAACTTGCTTTATAAATTT AGG
MIP	TCAGCCAACCATTACCGTG T	TAAAGGGGACTGTCCACCCA	CATTACCGTGTTGAGTGCTAGGTTTC
OMP	TTGAGAACTGAGTGGGGCT G	GCGTGTCATGAGGTTGGTGA	TTGAGAACTGAGTGGGGCTG
OPN1SW	CCCCTAACCCCTTTTTCCC C	GTTTTGTGGGGTGGGAGGAT	CTAACCCCTTTTTCCCCTGCAGTAC
PRGN	TGAGCTGGGTGGCCTTAAC A	CATTGGCAGGGCCCTTTTAT C	CCAGATGGTCAGTTCTGCCC
PRKAG3_sg1	ATGTAGGGAGACTGAGGCC A	GCCCATTGGAAGCTTGCAAA	TTGGGTCCAACTCTGTGTTATGGAG
STK3_sg1	ACGGCAAAACCCTGTCTCA A	TCCACAGAAAACTCATAGTA GACTT	АААСААGGGTAAGCAAAGAAATAAAATC TC

STK3_sg2	AAGCCATCCTCATCTGCCT	ACACAAGGAATCCGGTCAAG	GGAGAAACCCATCTCTACTAAAAATACA
	T	T	AA
VEGFA	GAAGCAACTCCAGTCCCAA ATATG	GTTCACAGCCTGAAAATTACC CAT	GAAGCAACTCCAGTCCCAAATATG

Supplementary Table 3: ddPCR primers

Primer Name	Sequence
sgRNA_F	CGTTTTAGAGCTAGAAATAGC
sgRNA_R	GACTCGGTGCCACTTT

Supplementary Table 4: List of off-target sites

Target	On Target Sequence	Off Target Sequence
MIP_OT1	GCTGGGGTCCTCACTGCGCT	AGTGGGGTCCTCACTGCACT
MIP_OT2	GCTGGGGTCCTCACTGCGCT	TGTGGGGCACTCACTGCGCT
FAM163_OT1	CTGCAGGGCTCGCTGGTGAG	CTGCAGGGCCCGCTGGAGAG
FAM163_OT2	CTGCAGGGCTCGCTGGTGAG	CTGCAGGGGACACTGGTGAG
OMP_OT1	GAACTGTAGCCGCTGCTGCT	AGGCTGTAGCCCCTGCTGCT
OMP_OT2	GAACTGTAGCCGCTGCTGCT	GAACTACAGCCACTGCTGCT
FANCF_OT1	GCTGCAGAAGGGATTCCATG	GCTGCAGAAGGGATTCCAAG
MAPRE_OT1	TTCTCTGCAGATAATTCCTG	ATCTCTGCAGATAATCCCTG
OPN1SW_OT1	ACAGGGGCAATGTGGTACTG	TTAGAGGCAATGTGGTACTG
VEGFA_OT1	GGTGAGTGAGTGTGTGCGTG	TGTGGGTGAGTGTGTGCGTG

Supplementary Table 5: List of off-target sequencing primers

Target	Primer F	Primer R	Primer Seq
MIP_OT1	CTCACAGCAAGGTCGACC	CACCCCTACACACTGCCT	CATTCGAAATCCTATGCTGAGCT
	AC	ТТ	TTCATAG
MIP_OT2	CGGCTCCAGTGCTCTTTC	GGAGGGTACGCAAGGTTT	
	ТТ	GG	GCCTTTCTGACTCCCATCCTTC
FAM163_O	GTGGATAGGAGCATCTGC	GTGGGAGAAGGAGGTCAT	
T1	CC	GC	CCTCCCCATATGCTTGGAGTAAG
FAM163_O	GCCCACATTTGCACTGAC	GATCATGGTGATGTGCGC	AGACAAGACACCACAGCAATTCC
T2	TC	AC	AATTTTG
OMP_OT1	AGATCCTGGGGGTCTCTG	CGCCTGCTTATCATTTGG	GAACTAGAGACTTATGAGTGGTT
_	TG	GC	CTAAGAT
OMP_OT2	TTGCAACACCAGGGCTTT	CTTCACAGGCTTCAGGGA	TAGCATTTCCTTCTTTAGAGGTT
_	СТ	GG	GATTATG
FANCF_OT	AGTTTCACATCCCTGTCT	AGACTCACAACATCCATC	AGTTTCACATCCCTGTCTTACCT
1	TACCTC	AGAACA	С
MAPRE_O	ACAGTTTGTGGGCTTTTT	GCATTCTGCCCTGTTTGT	CATTTTGAGCAAGGTCAGAAGGA
T1	GGT	GG	С
OPN1SW_	TGGCCATAGGAAGCACAG	ATGATCCCCCTGTCTCTG	CTACCTCCCTCTCCTTAGCTTCT
OT1	ТС	СТ	С
VEGFA_OT	AGGGACTTGAGTATCTGC	TGAAGAGATATCTGCACC	AGGGACTTGAGTATCTGCAGTTT
1	AGTTTT	CTCATG	Т