Supporting information

Comparison of Vitamin C and Its Derivative Antioxidant Activity: Evaluated by Using Density Functional Theory

Yuyang Liu,† Chuanqun Liu,‡ and Jianjun Li \star,\dagger

†Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University,

Shenyang, China

‡School of Energy and Power Engineering, Northeast Electric Power University, JiLin, China

Corresponding author: cmuljj@126.com

List of supporting information:

Table S1: BDE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S2: IP values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S3: PDE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S4: PA values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S5: ETE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S5: ETE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level. Table S6: Total energy requirements related to the HAT, SET-PT, and SPLET mechanisms of VC and its derivatives calculated in the water and gas phase.

Figure S1: Optimized geometries of TS in the reaction between VC and its derivatives with OH•.

Spagiog	BDE(kJ/mol)		
Species	water	gas	
AA-O_7	308.89	323.24	
AA-O_8	301.78	297.19	
AA-O_12	502.84	404.85	
AA-O_10	509.69	417.28	
AA2G-O_25	580.30	407.50	
AA2G-O_22	420.20	418.20	
AA2G-O_19	409.30	401.40	
AA2G-O_30	410.10	408.10	
AA2G-O_1	309.00	302.80	
AA2G-O_7	423.20	402.60	
AA2G-0_9	410.20	398.80	
AAE-O_4	545.85	399.32	
AAE-O_3	525.71	400.66	
AAE-O_5	306.15	300.91	
AA6P-O_7	310.87	307.02	
AA6P-O_6	309.62	296.91	
AA6P-O_11	424.11	412.05	

Table S1: BDE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level(the lowest values are highlighted in BOLD).

Table S2: IP values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level(the lowest values are highlighted in BOLD).

Spacios	IP(kJ/mol)		
species	water	gas	
AA	575.01	796.79	
AA2G	607.79	826.74	
AAE	582.45	762.35	
AA6P	623.08	796.74	

Table S3: PDE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level.

Spacios	PDE(kJ/mol)		
species	water	gas	
AA-0_7	1055.25	873.71	
AA-O_8	1062.33	847.73	
AA-O_12	1256.18	967.81	
AA-O_10	_10 1173.75 95		
AA2G-0_25	G-O_25 1313.20 912		
AA2G-O_22	1153.51	922.96	
AA2G-0_19	1142.27	823.28	
AA2G-O_30	1143.19	921.87	
AA2G-O_1	1042.00	927.95	
AA2G-O_7	1156.17	937.24	
AA2G-0_9	1152.78	78 928.60	
AAE-O_4	1297.28	968.25	
AAE-O_3	1284.10	985.54	
AAE-O_5	1064.55	885.78	
AA6P-O_7	1029.20	902.22	
AA6P-O_6	1026.33	904.52	
AA6P-O 11	1140.93	1011.01	

Species	PA(kJ/mol)		
species	water	gas	
AA-0_7	1217.20	1415.28	
AA-O_8	1180.96	1361.72	
AA-O_12	1688.17	1347.80	
AA-O_10	1178.14	1350.33	
AA2G-O_25	1257.45	1484.60	
AA2G-O_22	1241.80	1449.93	
AA2G-0_19	1252.78	1486.09	
AA2G-O_30	1251.46 1453.		
AA2G-O_1	1168.33	1285.85	
AA2G-O_7	1168.37	1285.85	
AA2G-0_9	1290.09 1511.		
AAE-O_4	1291.10	1465.17	
AAE-O_3	1289.67	1462.15	
AAE-O_5	1225.33	1443.71	
AA6P-O_7	1227.12	1421.62	
AA6P-O_6	1210.90	1376.87	
AA6P-0_11	1280.24	1513.86	

Table S4: PA values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level(the lowest values are highlighted in BOLD).

Table S5: ETE values of VC and its derivatives calculated in the water and gas phase at the B3LYP/6-31G* level(the lowest values are highlighted in BOLD).

Species	ETE(kJ/mol)		
species	water	gas	
AA-O_7	434.35	246.08	
AA-O_8	461.57	282.66	
AA-O_12	-42.07	303.24	
AA-O_10	476.95	302.96	
AA2G-0_25	663.50	270.08	
AA2G-O_22	2 526.50 320		
AA2G-0_19	497.38	262.56	
AA2G-O_30	499.24	303.32	
AA2G-O_1	_1 485.98 354.5		
AA2G-O_7	485.97 354.5		
AA2G-0_9	460.99	234.92	
AAE-O_4	474.81	280.37	
AAE-O_3	466.19 273.72		
AAE-O_5	421.59	204.41	
AA6P-O_7	422.79	281.63	
AA6P-O_6	452.72	281.23	
AA6P-O 11	483.76	247.54	

Spacios	BDE(kJ/mol)		IP+PDE(kJ/mol)		PA+ETE(kJ/mol)	
species	water	gas	water	gas	water	gas
AA	301.78	297.19	1630.26	1644.51	1642.53	1644.38
AA2G	309.03	302.75	1649.79	1650.02	1654.31	1640.37
AAE	306.15	300.91	1647.01	1648.13	1646.92	1648.12
AA6P	309.62	296.91	1649.41	1698.96	1649.91	1658.10

Table S6: Total energy requirements related to the HAT, SET-PT, and SPLET mechanisms of VC and its derivatives calculated in the water and gas phase.

Figure S1: Optimized geometries of TS in the reaction between VC(A), AA2G(B), AAE(C), and AA6P(D) with OH•. Oxygen atoms are shown in red; gray is carbon; white is hydrogen.

