

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-036991
Article Type:	Original research
Date Submitted by the Author:	23-Jan-2020
Complete List of Authors:	Aars, Nils; UiT – The Arctic University of Norway, Department of Community Medicine; Nordlandssykehuset HF Beldo, Sigurd; UiT Arctic University of Norway, School of Sport Sciences Jacobsen, Bjarne; UiT – The Arctic University of Norway, Department of Community Medicine; UiT – The Arctic University of Norway, Centre for Sami Health Research Horsch, Alexander; UiT – The Arctic University of Norway, Department of Computer Science Morseth, Bente; UiT Arctic University of Norway, School of Sport Sciences; UiT – The Arctic University of Norway, Department of Community Medicine Emaus, Nina; Uit The Arctic University of Norway, Department of Health and Care Siences Furberg, Anne-Sofie; UiT The Arctic University of Norway, Department of Comunity Medicine; Universitetssykehuset Nord-Norge, Department of Microbiology and Infection Control Grimsgaard, Sameline; UiT The Arctic University of Norway, Department of Community Medicine
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SPORTS MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5	1	The association between objectively measured physical activity and longitudinal
6 7 8 9	2	changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.
10 11 12 13	3	Nils Abel Aars ^{1, 2*}
14 15 16 17	4	Sigurd Beldo ³
18 19 20 21	5	Bjarne K Jacobsen ^{1, 4}
22 23 24 25	6	Alexander Horsch ⁵
26 27 28 29	7	Bente Morseth ^{3, 1}
30 31 32 33	8	Nina Emaus ⁶
34 35 36 37	9	Anne-Sofie Furberg ^{1, 7}
38 39 40 41	10	Sameline Grimsgaard ¹
42 43 44 45 46	11	Sameline Grimsgaard
47 48 49 50	12	Affiliations
51 52 53 54	13	1. Department of Community Medicine, UiT the Arctic University of Norway, Tromsø,
55 56 57 58 59 60	14	Norway

1 2		
3 4 5 6	1	2. Nordland Hospital, Bodø, Norway.
7 8 9 10	2	3. School of Sport Sciences, UiT the Arctic University of Norway, Alta, Norway
11 12 13 14	3	4. Centre for Sami Health Research, Department of Community Medicine, UiT the
15 16 17 18	4	Arctic University of Norway, Tromsø, Norway
19 20 21 22	5	5. Department of Computer Science, UiT the Arctic University of Norway, Tromsø,
23 24 25 26	6	Norway
27 28 29	7	6. Department of Health and Care Sciences, UiT the Arctic University of Norway,
30 31 32 33	8	Tromsø, Norway
34 35 36 37	9	7. Department of Microbiology and Infection Control, University Hospital of North
38 39 40 41	10	Norway, Tromsø, Norway
42 43 44 45	11	* Corresponding author. Correspondence to <u>nils.a.aars@uit.no</u>
46 47 48 49	12	Nils Abel Aars
50 51 52 53	13	Department of Community Medicine
54 55 56 57	14	UiT the Arctic University of Norway
58 59 60	15	9037 Tromsø, Norway.

1 2 3		
4	1	
5 6 7 8 9 10	2	
11 12		
13 14 15 16		
17 18 19		
20 21 22 23		
24 25 26		
27 28 29 30		
31 32 33 34		
34 35 36 37 38		
38 39 40 41		
42 43 44		
42 43 44 45 46 47 48		
49 50		
51 52 53 54 55 56 57		
55 56 57		

Abstract

1 2 BMJ Open

Objectives: Physical activity may play an important role in deterring the world-wide

3 4 5	1
6 7 8 9	2
10 11 12	3
13 14 15 16	4
17 18 19 20	5
21 22 23	6
24 25 26 27	7
28 29 30 31	8
32 33 34	9
35 36 37 38 39	10
40 41 42	11
43 44 45 46	12
47 48 49	13
50 51 52 53	14
54 55 56 57	15
57 58 59 60	16

and waist circumference, and change in dual-energy x-ray absorptiometry measured

3	obesity epidemic. This study explored the effect of objectively measured physical
4	activity on changes in body composition over two years of follow up in an adolescent
5	population in Northern Norway.
6	Design: A longitudinal study of adolescents (60.5% girls, mean age 16 at baseline)
7	participating in the Fit Futures studies 1 (2010-11) and 2 (2012-13).
8	Setting: Upper secondary high schools in neighboring municipalities of Tromsø and
9	Balsfjord, northern Norway.
10	Participants: Students participating in both studies and under the age of 18 at
11	baseline, and with valid measurement of both exposure and outcomes. Physical
12	activity was measured using a hip-worn accelerometer, and provided measurements
13	of minutes per day spent in sedentary-, light and moderate-to-vigorous physical
14	activity.
15	Primary- and secondary outcomes: Change in objectively measured body mass index

2 3 4 5	1	fat mass index, lean mass index and appendicular lean mass index between baseline
6 7 8 9	2	and follow-up. Differences in measures of physical activity at baseline between sexes
10 11 12	3	was also compared.
13 14 15 16	4	Results : Boys had significantly higher physical activity volume (p=0.01) and spent
17 18 19 20	5	more minutes in moderate physical activity (MVPA) than girls (6.4 minutes, p <0.01).
21 22 23	6	In multivariate regression analyses there was no significant association between
24 25 26 27	7	either measure of physical activity and changes in body composition in boys. In girls
28 29 30	8	there was a significant association between sedentary- and light activity and changes
31 32 33 34	9	in lean mass index (p < 0.01) and appendicular lean mass index (p = 0.05).
35 36 37 38	10	Conclusions: In this cohort of Norwegian adolescents, sedentary and light physical
39 40 41	11	activity were associated with changes in indices of lean mass in girls, but not boys.
42 43 44 45	12	Minutes spent in moderate-to-vigorous physical activity was not associated with
46 47 48	13	changes in either measure of body composition in neither boys nor girls.
49 50 51 52	14	Strengths and limitations of this study
53 54 55 56 57 58 59 60	15	 This study used objective measures of physical activity.

1		
2 3 4 5	1	The study included objectively measured weight, height and waist
6 7 8 9	2	circumference, and dual-energy x-ray absorptiometry (DXA) measures of fat-
9 10 11 12	3	and lean mass.
13 14 15 16	4	• We were not able to fully adjust for nutrition and not for pubertal development.
10 17 18 19	5	The 431 participants with complete data from both baseline and follow-up
20 21 22	6	represents 41% of those attending Fit Futures 1, indicating a degree of
23 24 25 26	7	selection.
27 28 29	8	
30 31 32 33 34 35	9	selection.
36 37 38		
39 40 41 42		
43 44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57 58		
59 60		

1 Background

0		
7 8	2	The potential of physical activity to prevent or treat a number of diseases has been
9	-	
10		
11	3	highlighted by the World Health Organization,[1] with inactivity accounting for 9% of
12	5	
13		
14		
15	4	worldwide premature mortality.[2] Public health guidelines state that adolescents
16		
17		
18	5	should engage in Moderate-to-Vigorous Physical Activity (MVPA) ≥ 60 minutes per
19 20		
20 21		
21	6	day,[3] but in 2011, only 50% of Norwegian 15 year olds met these
23		
24		
25	7	recommendations.[4] During adolescence there is a decline in both total physical
26	,	
27		
28	0	activity and MV/DA [5, 6] and many suit as reduce participation in assessment [7]
29	8	activity and MVPA,[5, 6] and many quit or reduce participation in organized sports.[7]
30		
31		
32	9	As of 2013, the prevalence of overweight and obesity (Body Mass Index (BMI) \ge 25
33 34		
35		
36	10	kg/m ²) in Norwegians aged <20 years appear to be stabilizing at around 20% in boys
37		
38		
39	11	and 16% in girls - comparable to the Nordic countries.[8] This is lower than in the
40		
41		
42	12	United States (around 29% in boys and girls) [8], but the health effects for those
43		
44 45		
43 46	13	concerned may still be substantial over the long term.[9]
40 47	15	concerned may sum be substantial over the long term.[9]
48		
49		
50	14	While physical activity has many positive health effects, its relationship with adiposity
51		
52		
53	15	is less clear and it has proven difficult to determine causality, direction and magnitude
54	10	is less orear and it has proven difficult to determine causality, direction and mayilitude
55 56		
50 57	10	of this relationship [10] Cross sectional research tunically shows a strong paretive
58	16	of this relationship.[10] Cross-sectional research typically shows a strong negative
59		
60		

Page 9 of 46

BMJ Open

1 ว	
2 3 4 5	1
6 7 8	2
9 10 11 12	3
13 14 15	4
16 17 18 19	5
20 21 22 23	6
23 24 25 26	7
27 28 29	8
30 31 32 33	9
34 35 36 37	10
38 39 40	11
41 42 43 44	12
45 46 47	13
48 49 50 51	14
52 53 54	15
55 56 57 58	16
58 59 60	17

1	association between physical activity and weight status,[11] but temporality cannot be
2	ascertained using such study designs.[12] Longitudinal studies may ascertain if lower
3	physical activity precedes excess weight gain, but a review found no evidence for a
4	relationship between objectively measured physical activity and body fat gain in
5	adolescents.[12] The lack of congruent results may in part be explained by the
6	diverse and inadequate measures of both exposure and outcome used in research of
7	the association between physical activity and body composition.[10, 11]
8	Although many methods to measure physical activity are available, the most common
9	and most feasible is self-report which commonly overestimates the total amount of
10	physical activity.[13] Body composition is most commonly assessed using BMI, but
11	BMI does not distinguish between fat- and muscle mass.[14] This has the potential to
12	cause misclassification of overweight status and may attenuate a true association
13	between physical activity and fat or muscle mass. Thus, in the current study, we
14	sought to overcome these limitations by applying objective measures of both physical
15	activity and specific measures of body composition. Our aim was to investigate the
16	association between objectively measured physical activity and changes in five
17	different measures of body composition (body mass index, waist circumference, fat

2 3 4 5	1	mass index, lean mass index and appendicular lean mass index) over two years of
6 7 8 9	2	follow-up in a cohort of Norwegian adolescents.
10 11 12 13	3	
14 15 16 17	4	Methods and materials
18 19 20 21	5	We used data from the first and second Fit Futures cohort studies, performed in
22 23 24 25	6	2010-2011 and 2012-2013, respectively. The first study invited all students (n=1,117)
25 26 27 28	7	in their first year of upper secondary high school in the neighboring municipalities of
29 30 31 32	8	Tromsø and Balsfjord in northern Norway, and had a participation of 93%. The study
33 34 35	9	was repeated two years later, when the students were in their last year of upper
36 37 38 39	10	secondary high school or had started as apprentices if they studied vocational
40 41 42	11	subjects. The second study included 868 participants, giving an attendance of 77%.
43 44 45 46	12	Altogether 735 adolescents attended both surveys. We excluded those aged \ge 18
47 48 49	13	years of age at baseline (n = 38). Some participants (n = 240) did not have valid
50 51 52 53	14	measurements of physical activity at baseline, and were therefore not included in the
55 56 57 58 59 60	15	study. We also excluded those with missing data on outcomes or variables included

BMJ Open

2 3 4 5	1	in the model (n = 26). Thus, 431 participants were included in the present study
6 7 8 9	2	(60.3% girls).
10 11 12 13	3	Students were granted leave of absence from school to attend an examination at the
14 15 16 17	4	Clinical Research Unit at the University Hospital of Northern Norway in both surveys.
18 19 20	5	The participants signed a letter of informed consent and attended a clinical
21 22 23 24	6	examination where they also answered a questionnaire. Those under the age of 16
25 26 27 28	7	brought a letter of consent signed by their parent or guardian.
29 30 31	8	All measurements were performed by trained personnel. Height was measured to the
32 33 34 35	9	nearest centimeter and weight to the nearest 100 gram, wearing light clothing and
36 37 38	10	using an automatic electronic scale/stadiometer (Jenix DS 102 stadiometer, Dong
39 40 41 42	11	Sahn Jenix, Seoul, Korea). Body mass index was calculated as body weight in
43 44 45	12	kilograms/height in meters ² . Waist circumference was measured to the nearest 0.1
46 47 48 49	13	centimeter at the height of the umbilicus. Fat and soft tissue lean mass in grams was
50 51 52 53	14	estimated by whole-body dual energy X-ray absorptiometry (DXA) (GE Lunar
54 55 56	15	Prodigy, Lunar Corporation, Madison, WI, USA). Fat mass comprises all fat, while
57 58 59 60	16	soft tissue lean mass comprises all bodily tissue except fat and skeletal mass. These

Page 12 of 46

2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 20 20 20 20 20 20 20 20 20 2	
5 6	
7 8	
9	
10 11	
12	
14	
15 16	
17	
10	
20 21	
22	
23	
25 26	
27 28	
29	
30 31	
30 31 32 33 34 35 36 37 38	
34	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46	
47 48	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	

1

1	variables were used to calculate fat mass index (FMI, fat mass in kilograms/height in
2	meters ²) and lean mass index (LMI, lean mass in kilograms/height in meters ²). In
3	addition we calculated appendicular lean mass index (aLMI), which is the sum of soft
4	tissue lean mass in kilograms in all four extremities divided by height in meters ² .
5	Although most commonly used in studies of sarcopenia in elderly,[15] this variable is
6	arguably more specific to skeletal muscle mass than total lean mass index. The
7	ability of DXA to detect changes in appendicular lean mass in young adolescents is
8	good, and has been validated against Magnetic Resonance Imaging (MRI).[16]
9	Physical activity was objectively measured using the ActiGraph GT3X accelerometer
10	(ActiGraph, LLC, Pensacola, USA). Participants were instructed to wear the device
11	on their right hip for seven consecutive days, and to remove it only when showering,
12	swimming or sleeping. The ActiLife software was used to initialize the accelerometer
13	and download data, which was imported into the Quality Control & Analysis Tool
14	(QCAT) for data processing. This software was developed by the research group of
15	professor Horsch in Matlab (The MathWorks, Inc., Massachusetts, USA) for
16	processing of accelerometer data. The accelerometer was set in raw data mode, with
17	a sampling frequency of 30 Hertz and with normal filtering epochs of 10 seconds.

Page 13 of 46

BMJ Open

1 ว	
2 3 4 5	1
6 7 8	2
9 10 11 12	3
13 14 15	4
16 17 18 19	5
20 21 22 23	6
24 25	7
26 27 28 29	8
30 31 32 33	9
34 35 36	10
37 38 39 40	11
40 41 42 43	12
44 45 46 47	13
48 49 50 51	14
52 53 54	15
55 56 57 58	16
58 59 60	17

1	Data collection was initiated at 14:00 hours the first day, and concluded at 23:58 on
2	the 8 th day of measurement. We excluded data from the first day of measurement to
3	reduce reactivity bias. The criteria for a valid measurement of physical activity was
4	wear time of \geq four consecutive days, with \geq ten hours wear time per day. This has
5	been demonstrated as representative of activity over a full week.[17] The triaxial
6	algorithm developed by Hecht et al. was used to calculate wear time.[18] Minutes per
7	day in sedentary (0 – 99 CPM), light (100 – 1951 CPM), moderate (1952 – 5723
8	CPM) and vigorous (≥ 5724 CPM) physical activity was determined using the cut-offs
9	developed by Freedson.[19] The device collected data in both uniaxial- and triaxial
10	mode, but in the present study only the uniaxial data had been processed and
11	therefore available. Studies have shown that uniaxial data recorded from the GT3X
12	correlate well with uniaxial data recorded from previous ActiGraph models.[20]
13	Baseline characteristics were presented as means with standard deviation (SD) or
14	prevalence in percentages with number of subjects (n). Sex-specific difference in
15	body composition between baseline and follow-up was tested using a paired samples
16	t-test. The difference in physical activity between sexes was tested using a two-
17	sample t-test, while sex differences in categories of minutes spent in MVPA was

1 2 3 4	
4 5 6 7 8	
9 10 11 12 13	
14 15 16 17	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
24 25 26 27	
28 29 30 31	
32 33 34 35 36 37	
37 38 39 40 41	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58 59	
60	

1	tested using a chi-square test. Difference in linear trend across categories of minutes
2	spent in MVPA was tested using STATA's non-parametric test for trend, developed
3	by Cuzick.[21] Linear regression was used to determine the effect of baseline
4	physical activity on change in body composition, i.e., the change in BMI, waist
5	circumference, FMI, LMI and aLMI from the first to the second Fit Futures Study.
6	We used three different predictors of change in body composition, performing three
7	sets of analyses, with first; minutes per day spent in sedentary activity (Table 2)
8	second; minutes per day spent in light activity (Table 3) and third; minutes per day
9	spent in MVPA (Table 4). We divided the continuous variables sedentary- and light
10	activity by 30 and the continuous variable MVPA by 15 before inclusion in the
11	models, thus presenting the beta coefficient for change in outcome per 30 minutes of
12	sedentary- or light activity, or per 15 minutes of MVPA, with 95% confidence intervals
13	and a p-value. In model 1 we adjusted for the baseline measurement of the outcome.
14	In the adjusted models (models 2) we also included time between measurements
15	(mean: 730 days) and baseline values of device wear time, age in half years and
16	questionnaire data on screen time on weekdays (how many hours per weekday the
17	students spent in front of a computer or television - answers ranged from none to

BMJ Open

3 4 5	
5 6 7	
, 8 9	
10 11	
12 13	
14 15 16	
17 17 18	
19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31 32	
33 34	
35 36	
37 38	
39 40 41	-
41 42 43	
44 45	-
46 47	
48 49 50	
51 52	
53 54	
55 56	-
57 58 59	
60	-

1	more than ten hours per weekday) and regularity of eating breakfast as an indicator
2	of healthy meal patterns (answers ranging from rarely/never to every day). In the
3	analyses of sedentary- and light activity we also adjusted for minutes spent in MVPA
4	(models 3). In a subset of analyses (Appendix tables 1 and 2) we repeated the
5	analyses performed in Table 2 and 3, adjusting also for self-reported pubertal status
6	measured by either pubertal development scale (boys) or age at menarche (girls).
7	These analyses included the 143 boys and 256 girls with valid data on pubertal
8	status. In all the analyses, a p-value of < 0.05 was considered statistically significant.
9	All analyses were performed sex-specific as decided a-priori, using STATA version
10	14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX:
11	StataCorp LP.).
12	Patient and public involvement
13	No patients were involved in this study.
14	Results
15	Table 1 displays the participants' body composition measurements at baseline and
16	follow-up, as well as physical activity measurements at baseline. Boys had a

statistically significant increase in all measures of body composition. Girls had a

(aLMI kg/m2)

2	statistically significant increase in bo	dy weight, BMI	, fat mass in k	g and FMI, but n	ot
3	in LMI and appendicular lean mass.	Boys were stat	istically signific	cantly more	
4	physically active than girls in some a	spects, with hi	gher mean cou	ints per minute	
5	(p=0.01) and more minutes in MVPA	(p<0.01). Tim	e spent in sede	entary- or light	
6 7	intensities did not differ significantly b and 17% of girls complied with the re				S
8	Moderate-to-Vigorous Physical Activ	ity (MVPA).			
	Table 1. Characteristics of the longi and 2012-13 °.	tudinal cohort	of the Tromsø	Study; Fit Future	es 2010-11
		Boys (n	= 171)	Girls (n	= 260)
		FF1	FF2	FF1	FF2
	Age (years)	16.0 (0.4)	18.2 (0.4)	16.1 (0.4)	18.1 (0.4)
	Height (cm)	177.1 (6.6)	179.0 (6.5) [*]	165.4 (6.6)	166.1 (6.6)*
	Body weight (kg)	69.0 (12.3)	74.3 (13.0)*	60.8 (10.8)	63.4 (11.6) [*]
	Body mass index (BMI kg/m2)	22.0 (3.5)	23.2 (3.7)*	22.2 (3.7)	23.0 (4.0)*
	Waist circumference (cm)	81.0 (10.3)	83.9 (10.9)*	76.7 (9.8)	78.0 (10.8)*
	Total Body Fat Mass (kg)	13.3 (9.4)	15.6 (10.4)*	19.9 (8.3)	21.7 (9.1)*
	Fat Mass Index (FMI kg/m2)	4.2 (3.0)	4.9 (3.2)*	7.3 (3.0)	7.9 (3.3) [*]
	Total Body Lean Mass (kg)	54.0 (6.5)	56.4 (6.9)*	38.9 (4.5)	39.3 (4.7)*
	Lean Mass Index (LMI kg/m2)	17.2 (1.6)	17.6 (1.8)*	14.2 (1.3)	14.2 (1.4)
	Appendicular Lean Mass (kg)	25.3 (3.4)	26.2 (3.6)*	17.4 (2.3)	17.4 (2.3)
	Appendicular Lean Mass Index	8.1 (0.9)	8.2 (0.9)*	6.4 (0.7)	6.3 (0.7)*

Accelerometer variables		
Wear time per valid day	14.2 (1.2)	14.1 (1.1)
Counts per minute	362.9	334.0 (111.9)∞
	(137.5)	
Minutes per day in different		
intensities		
Sedentary (cpm 0 – 99)	573.3 (77.3)	565.3 (63.2)
Light (cpm 100 – 1951)	230.5 (58.8)	236.2 (48.4)
Moderate (cpm 1952 – 5723)	45.8 (20.6)	40.2 (17.7) [∞]
Vigorous (cpm ≥ 5724)	3.7 (5.8)	2.9 (4.1) [∞]
MVPA [#] (cpm ≥ 1952)	49.5 (23.4)	43.1 (19.6) ∞
Proportion of minutes in		
MVPA/day		
0 – 29 minutes	20.5 (35)	26.5 (69)
30 – 59 minutes	52.6 (90)	56.2 (146)
≥ 60 minutes	26.9 (46)	17.3 (45) [§]
◊: Values are means with standard deviation	n (SD) or prevalence in pe	rcentages (n). BMI: body weight
in kg/height in meters ² , FMI: fat mass in kg/h	neight in meters², LMI: lear	n mass in kg/height in meters ² ,
aLMI: appendicular lean mass in kg/height ir	n meters². Data on physica	al activity in FF2 was not
available.		
*: Significantly different from baseline measu	urement (p < 0.05)	
∞: Significantly different from boys (mean).		
#: MVPA: moderate to vigorous physical act	ivity, using cut-offs sugges	sted by Freedson.[19]
#: MVPA: moderate to vigorous physical act §: significantly different linear trend from boy		sted by Freedson.[19]
	/s (p<0.05)	2
§: significantly different linear trend from boy	/s (p<0.05)	2
§: significantly different linear trend from boy	vs (p<0.05) veen minutes spent in	sedentary activity at
§: significantly different linear trend from boy Table 2 displays the association betv	vs (p<0.05) veen minutes spent in osition between baseli	sedentary activity at ne and follow-up. There

circumference and FMI in neither boys nor girls. In girls, but not in boys, there was a

significant association between minutes spent in sedentary activity at baseline and

Table 2. Assoc (CPM 0 – 99) a			-		-	/ activity
		Boys (n = 17	1)		Girls (n = 260))
	Beta	95% CI	p value	Beta	95% CI	p value
∆ BMI						
Model 1	-0.02	-0.13, 0.09	0.76	-0.05	-0.15, 0.05	0.33
Model 2	-0.02	-0.17, 0.12	0.75	-0.11	-0.24, 0.03	0.12
Model 3	0.01	-0.17, 0.20	0.88	-0.11	-0.27, 0.05	0.16
Δ waist circumferenc						
е				6		
Model 1	0.17	-0.21, 0.56	0.37	-0.01	-0.41, 0.40	0.96
Model 2	0.27	-0.24, 0.78	0.30	-0.33	-0.87, 0.20	0.22
Model 3	0.42	-0.23, 1.07	0.20	-0.44	-1.06, 0.18	0.17
Δ FMI						
Model 1	0.00	-0.10, 0.10	0.99	-0.01	-0.11, 0.08	0.83
Model 2	-0.02	-0.16, 0.11	0.74	-0.06	-0.18, 0.07	0.36
Model 3	0.00	-0.17, 0.17	0.98	-0.05	-0.20, 0.09	0.48
Δ LMI						
Model 1	0.00	-0.05, 0.05	0.88	-0.06	-0.09, - 0.02	<0.01
Model 2	0.01	-0.06, 0.07	0.77	-0.07	-0.12, - 0.02	<0.01
Model 3	0.02	-0.06, 0.10	0.63	-0.08	-0.13, - 0.03	<0.01

Model 1	0.00	-0.03, 0.03	0.84	-0.02	-0.04, - 0.00	0.02
Model 2	0.00	-0.03, 0.04	0.81	-0.03	-0.05, - 0.01	0.02
Model 3	0.01	-0.04, 0.05	0.71	-0.03	-0.06, 0.00	0.05
#: The table displa	ays the as	sociation betwee	n minutes s	spent in se	edentary activity	and differe
BMI (kg/m²), wais	t circumfe	ence, FMI (fat m	ass in kg/n	n²), LMI (le	ean mass in kg/r	n²) and aL
(appendicular lea	n mass in	kg/m²) between F	Fit Futures	1 (2010-20	011) and Fit Fut	ures 2 (20
The models give	the beta co	pefficient for 30 m	ninutes incr	ease in se	dentary activity	. All model
adjusted for base	line values	of the outcome.	In model 2	also adju	sted for time bet	ween mea
and baseline valu	es of scree	en time on weeko	lays, study	specialisa	ation, age in half	-years, reę
eating breakfast a	and device	wear time. In Mc	odel 3 adjus	sted also f	or minutes spen	t in Moder
vigorous physical	activity (C	PM ≥ 1952).				
Table 3 display	/s the as	sociation betw	een minu	utes sper	nt in light activ	vity at ba
and changes ir	n body co	omposition bet	ween ba	seline ar	nd follow-up.	There wa
and changes ir association be	-	-				
association be	tween th	e exposure an	d either d	outcome	in boys. In gi	rls there
association be	tween the	e exposure an est an associa	d either o ation with	outcome change	in boys. In gi in waist circu	rls there mferenc
some evidence =0.05), but the	tween the to sugg	e exposure an est an associa tion was atten	d either o ation with uated afte	outcome change er adjust	in boys. In gi in waist circu ments (p = 0.	rls there mferenc 17). Min
-	tween the to sugg associat	e exposure an est an associa tion was atten ctivity was als	d either o ation with uated afte o associa	outcome change er adjust ated with	in boys. In gi in waist circu ments (p = 0. changes in L	rls there mferenc 17). Min .MI (p < 1

		B	oys (n = 171))	Girls (n = 260)			
		Beta	95% CI	p value	Beta	95% CI	p value	
ΔBMI								
	Model 1	0.04	-0.11, 0.18	0.60	0.05	-0.09, 0.19	0.47	
	Model 2	0.01	-0.17, 0.18	0.93	0.12	-0.04, 0.27	0.13	
	Model 3	-0.01	-0.20, 0.17	0.88	0.11	-0.05, 0.27	0.16	
Δ waist		~						
circumfer	ence		5					
	Model 1	-0.11	-0.62, 0.40	0.68	0.54	0.01, 1.07	0.05	
	Model 2	-0.38	-1.00, 0.23	0.22	0.43	-0.19, 1.05	0.17	
	Model 3	-0.42	-1.07, (0.23	0.20	0.44	-0.19, 1.06	0.17	
Δ FMI								
	Model 1	0.03	-0.10, 0.16	0.67	0.02	-0.10, 0.15	0.71	
	Model 2	0.01	-0.15, 0.18	0.87	0.06	-0.09, 0.20	0.43	
	Model 3	-0.00	-0.17, 0.17	0.98	0.05	-0.09, 0.20	0.49	
Δ LMI								
	Model 1	-0.01	-0.07, 0.06	0.84	0.04	-0.01, 0.09	0.08	
	Model 2	-0.02	-0.09, 0.06	0.67	0.08	0.03, 0.13	<0.01	
	Model 3	-0.02	-0.10, 0.06	0.63	0.08	0.03, 0.13	<0.01	
Δ aLMI			0.00					

Model 1	0.00	-0.03,	0.87	0.02	-0.01, 0.04	0.16
		0.04				
Model 2	-0.01	-0.05,	0.73	0.03	0.00, 0.06	0.04
		0.04				
Model 3	-0.01	-0.05,	0.70	0.03	-0.00, 0.06	0.05
		0.04				
#: The table displays the	association	n between mini	utes spent	in light a	ctivity and differ	ence in BMI
kg/m²), waist circumfere	nce, FMI (fa	at mass in kg/r	n²), LMI (le	ean mass	s in kg/m²) and a	aLMI
appendicular lean mass	in kg/m²) b	etween Fit Fut	ures 1 (20	10-2011)	and Fit Futures	32 (2012-201
The models give the beta	a coefficient	for 30 minutes	s increase	in light a	ctivity. All mode	ls were adjus
or baseline values of the	e outcome.	In model 2 also	o adjusted	for time	between measu	rements and
baseline values of scree				-	-	
eating breakfast and dev			adjusted a	also for m	inutes spent in	Moderate-to-
vigorous physical activity	v (CPM ≥ 19	952).				
Table 4 displays the	associatio	on between	minutes	in MVP	A at baseline	and chang
in body composition between time spent i				-		
petween time spent i				-		
				-		
between time spent i	in MVPA a	and changes	s in eithe	r meas	ure of body co	omposition
between time spent i either sex. Table 4. Association	in MVPA a	and changes	s in eithe r day spe	r meas	ure of body co VPA (CPM ≥	omposition
between time spent i either sex. Table 4. Association	in MVPA a	and changes n minutes pe sition#.	s in eithe r day spe 71)	r meas	ure of body co VPA (CPM ≥ Girls (omposition 1952) at ba
between time spent i either sex. Table 4. Association	in MVPA a	and changes n minutes pe sition [#] . Boys (n = 1	s in eithe r day spe 71)	r meas	ure of body co VPA (CPM ≥ Girls (omposition 1952) at ba n = 260)
between time spent i either sex. Table 4. Association	in MVPA a	and changes n minutes pe sition [#] . Boys (n = 1	s in eithe r day spe 71)	r meas	ure of body co VPA (CPM ≥ Girls (omposition 1952) at ba n = 260) % CI
between time spent i either sex. Table 4. Association and changes in bod	in MVPA a	and changes n minutes pe sition [#] . Boys (n = 1	s in eithe r day spe 71)	r meast ent in M ue B	ure of body co VPA (CPM ≥ Girls (eta 955	omposition 1952) at ba n = 260) % CI
between time spent i either sex. Table 4. Association and changes in bod	n betweer ly compos Beta	and changes n minutes pe sition#. Boys (n = 1 95% Cl	r day spe 71) p va	r meast ent in M ue B	ure of body co VPA (CPM ≥ Girls (eta 955	omposition 1952) at ba n = 260) % CI
oetween time spent i either sex. Table 4. Association and changes in bod ∆ BMI Model 1	n betweer ly compos Beta 0.11	and changes n minutes pesition [#] . Boys (n = 1 95% Cl -0.07, 0.30	s in eithe r day spe 71) p val	r meast ent in M ue B	vPA (CPM ≥ Girls (eta 950 0.00 -0.17	omposition 1952) at ba n = 260) % CI 7, 0.16
between time spent i wither sex. Table 4. Association and changes in bod	n betweer ly compos Beta 0.11	and changes n minutes pe sition#. Boys (n = 1 95% Cl	r day spe 71) p va	r meast ent in M ue B	vPA (CPM ≥ Girls (eta 950 0.00 -0.17	omposition 1952) at ba n = 260) % CI

Δ waist						
circumference						
Model 1	0.25	-0.39,	0.44	-0.03	-0.68, 0.63	0.94
		0.89				
Model 2	-0.02	-0.75,	0.95	0.02	-0.70, 0.74	0.96
		0.71				
Δ FMI						
Model 1	0.02	-0.15,	0.83	-0.01	-0.17, 0.14	0.86
		0.19				
Model 2	0.06	-0.14,	0.57	0.05	-0.12, 0.22	0.54
		0.25				
Δ LMI						
Model 1	0.07	-0.02,	0.11	0.03	-0.03, 0.09	0.33
		0.15				
Model 2	0.01	-0.08,	0.86	0.02	-0.04, 0.09	0.44
		0.10				
∆ aLMI						
Model 1	0.03	-0.02,	0.19	0.02	-0.01, 0.05	0.13
		0.08				
Model 2	0.00	-0.05,	0.92	0.02	-0.01, 0.05	0.18
		0.05				

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity (MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time.

9 In Appendix Table 1-3, the analyses which gave the results displayed in Tables 2-4

10 were repeated with adjustment for pubertal development in those with complete data.

BMJ Open

r	
2	
3	
4	
F	
Э	
3 4 5 7 8 9 10	
7	
0	
0	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
17	
17	
12 13 14 15 16 17 18 19	
19	
20	
20 21	
21	
22	
23	
23 24 25 26 27 28 29 30 31 32 33 34	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
22	
33	
34	
35	
34 35 36 37	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Overall, adjustment for pubertal development had no substantial impact on an
2	association between sedentary, light and moderate-to-vigorous physical activity and
3	changes in body composition for either sex in complete case analyses. However, the
4	association between minutes spent in sedentary activity- and light activity and
5	changes in appendicular lean mass index was no longer significant for girls in Model
6	3. The point estimates did not differ from those from analyses without adjustments for
7	pubertal development, however.
8	Discussion
9	In this longitudinal population-based study of Norwegian adolescents there were no
10	associations between objectively measured physical activity and change in BMI,
11	waist circumference and FMI for either sex at two years of follow up. Both boys and
12	girls had statistically significant increases in the measures of body composition
13	(except lean mass index and appendicular lean mass in girls). Objectively measured
14	physical activity did not predict changes in boys. In girls there was a weak
15	association between minutes spent in sedentary- and light physical activity and
16	changes in indices of lean mass.

4 5 6 7 8 9 10 11 2 3 14 15 16 7 18 9 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3	
8 9 10 11 2 11 11 11 11 11 11 11 11 11 11 11 1	4 5 6 7	
24 25 26 27 28 9 31 32 33 34 35 37 38 39 41 42 43 44 50 51 52 53 54 55 57 58 59	, 8 9 10	
24 25 26 27 28 9 31 32 33 34 35 37 38 39 41 42 43 44 50 51 52 53 54 55 57 58 59	11 12 13	
24 25 26 27 28 9 31 32 33 34 35 37 38 39 41 42 43 44 50 51 52 53 54 55 57 58 59	15 16 17	
24 25 26 27 28 9 31 32 33 34 35 37 38 39 41 42 43 44 50 51 52 53 54 55 57 58 59	18 19 20 21	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59	22 23 24	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59	25 26 27 28	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	31	
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	33	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	38	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	40 41	
47 48 49 50 51 52 53 54 55 56 57 58 59	44 45	
51 52 53 54 55 56 57 58 59	47 48	
54 55 56 57 58 59	51 52	
57 58 59	54 55 56	
	58 59	

1	Although the magnitude of change differed, both sexes experienced increases in
2	measures of body composition. In boys, FMI increased by 0.7 units, (+ 16.7%),
3	whereas LMI increased by 0.4 units (+ 2.3 %) from baseline. Similar relative
4	changes were observed in girls, (FMI +8.2 %) and (LMI + 0.7%), indicating that FMI
5	increases more than LMI during late adolescence. We observed statistically
6	significant differences in minutes spent in moderate ($p < 0.01$) and vigorous ($p =$
7	0.04) intensity between boys and girls, but time spent in other intensity levels did not
8	differ. Discrepancies in physical activity by sex is consistent with previous
9	research.[22, 23] Differences in changes in body composition by sex are biologically
10	determined during adolescence, with sex hormones resulting in fat mass accrual in
11	girls and lean mass accrual in boys.[24, 25] The observation that sedentary- and light
12	activity predicted changes in indices of lean mass in girls, but not boys, may be
13	explained by these expected biological differences. Physical activity may have
14	somewhat greater potential to influence lean mass accrual in girls than in boys during
15	this period, as fat-free mass is relatively stable in girls in late adolescence whereas it
16	increases up to 18 years of age in boys.[26]

BMJ Open

2 3 4	
- 5 6	
7 8	
9 10	
11	
12 13 14	
15 16	
17 18	
19 20	
21 22	
23 24 25	
25 26 27	
28 29	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
32 33	
34 35	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

1	In the present study sedentary- and light activity had opposing effects on lean mass
2	in girls. In a study using iso-temporal substitution models, positive prospective effects
3	on fat mass was found when substituting 30 minutes of sedentary activity with MVPA,
4	but not when substituted with light activity.[27] We did not use such modelling
5	techniques, but it is reasonable that sedentary- and light physical activity have
6	opposing effects on lean mass.[28] Sedentary- and light activity was correlated (r = -
7	0.39), but minutes spent in different intensity levels are not directly a function of each
8	other as wear time in the participants varies between individuals. Based on wear time
9	inclusion criteria, the theoretical time span for wear time lies between 10 and 24
10	hours. Thus, minutes spent in sedentary activity may not be deduced from the sum of
11	minutes spent in other intensities and vice versa, but it is plausible that higher wear
12	time results in more sedentary time. This was evident in an exploratory analyses on
13	the same cohort (not included in the present study), where higher wear time was
14	significantly associated with more sedentary activity and less light activity ($p < 0.01$).
15	Adjusting for wear time (Models 2) did not change the associations substantially for
16	sedentary activity (Table 2), but had some effect on the associations with light
17	physical activity (Table 3). Because of the inverse relationship between minutes

1 2

3 4 5	1	spent sedentary and in light activity, it is not possible to determine whether it is
6 7 8	2	sedentary time or light activity-time that is associated with change in LMI. The
9 10 11 12	3	practical consequences are nevertheless that being active increases lean mass in
13 14 15	4	girls.
16 17 18 19 20	5	When interpreting results, we must acknowledge the limitations of DXA in the
21 22 23	6	estimation of lean mass, which can be affected by both biological factors and
24 25 26 27	7	measurement error.[29] Because the relative increase in lean mass was small, only
28 29 30	8	slight differences in for instance individual hydration status at the two time-points may
31 32 33 34	9	influence estimates and thus the association.
35 36 37	10	There was no associations between objectively measured physical activity and
38 39 40 41	11	change in BMI, waist circumference and FMI for either sex. It may be that the
42 43 44 45	12	negative effects of less physical activity have not yet had time to manifest themselves
46 47 48	13	in a population still undergoing physiological changes as a result of natural growth,
49 50 51 52	14	especially considering the relatively short follow-up. Our results are in line with a
53 54 55	15	systematic review suggesting that objectively measured PA is not an important
56 57 58 59 60	16	predictor of change in adiposity in children, adolescents and adults.[12] In contrast,

BMJ Open

2 3 4 5	1	another systematic review found a protective effect of physical activity on adiposity in
6 7 8 9	2	adolescents.[10] There were however several methodological weaknesses in the
10 11 12	3	included studies of this review, particularly regarding the validity of the measurement
13 14 15 16	4	of both physical activity and body composition. In contrast, our study employed
17 18 19	5	robust measures of both these exposures- and outcomes, a combination which is
20 21 22 23	6	lacking in much past research on the association between the two.[10-12]
24 25 26	7	In adolescents, physical activity is influenced by friends, family and other social
27 28 29 30	8	support,[30] and is less stable than in adults.[31-33] Follow-up data on objectively
31 32 33	9	measured physical activity was not available in the present study. Observations from
34 35 36 37	10	the same cohort showed that change in self-reported physical activity between
38 39 40	11	baseline and follow-up was a stronger predictor of change in body composition than
41 42 43 44	12	self-reported baseline physical activity[34]. Other studies have suggested that
45 46 47	13	change in activity during follow-up might obscure an association with body
48 49 50 51	14	composition.[35, 36] In a subset of analyses, one of four in both the highest and
52 53 54	15	lowest categories of MVPA at baseline reported decreased (high MVPA at baseline)
55 56 57 58	16	and increased (low MVPA at baseline) self-reported physical activity at follow up,
59 60	17	thus indicating that physical activity in adolescents is fluctuant. These two

2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠ ו ככ
4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 8 9 20 21 22 23 24 5 6 27 28 9 30 31 2 33 34 5 6 37 8 9 30 31 2 33 34 5 6 37 8 9 30 31 2 33 34 35 36 37 8 9 30 31 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
∠⊃ 24
24
25
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 49
49 50
50 51
52
52 53
55 54
54 55
56
57
58
59
60

1 2

1	observations, assuming that measurement of both MVPA and self-reported hours per
2	week of physical activity are representative of actual physical activity behavior at the
3	time, work in opposing directions with regard to the effect of physical activity on
4	changes in adiposity. This phenomenon is known as regression dilution bias and
5	may flatten the regression slope and cause an underestimate of the actual
6	association.[37] With an annual decline in total physical activity of 7% in adolescents,
7	researchers must consider the possibility that measured physical activity has a "best
8	before-date". It remains questionable whether baseline measurements of a fluctuant
9	behavior such as physical activity is representative of actual habits during the period
10	of follow-up. It may be that the measurement represents current, but not future (or
11	even prior) habits.[12, 38] This has implications for longitudinal studies of the
12	relationship between physical activity and body composition.[36]
13	
14	Strengths and limitations
15	The primary strength of this study are objective measures of both exposure and
16	outcome, and the use of tissue-specific measures of body composition. Some

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
9 10	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	limitations have to be considered. As the Fit Futures study did not include a validated
2	food frequency questionnaire or similar instrument for nutritional assessment, we
3	were not able to fully adjust for the potential confounding effects of nutrition and
4	changes in food habits of adolescents on changes in body composition.
5	Accelerometer-measured physical activity has limitations. A hip worn accelerometer
6	such as the ActiGraph GT3X is not able to correctly measure cycling and
7	swimming.[39] Furthermore, accelerometers are dependent on user-compliance, and
8	non-wear time therefore affects the amount of activity which is actually measured.
9	Subjective judgement determines data management and analyses, e.g. the decision
10	to exclude participants with wear time < 10 hours and < 4 consecutive days, is a
11	trade-off between quality of data and the number of participants with valid data. We
12	lacked complete data on physical activity and adjustment variables in 212
13	participants, but changes in BMI, waist circumference, FMI, LMI (except in girls, p =
14	0.04) and aLMI were not significantly different between those with- and without
15	complete exposure data. Lastly, although longitudinal observational studies are
16	superior to cross-sectional studies to examine causation, they are also susceptible to

1		
2		
3 4	1	directional bias, since participants may avoid physical activity because they are
5		
6		
7	2	overweight, and not be overweight because they are inactive.[40, 41]
8	2	overweight, and not be overweight because they are indetive.[+0, +1]
9		
10		
11	3	
12	5	
13		
14		
15	4	Conclusion
16		
17		
18		
19 20	5	Objectively measured physical activity was not significantly associated with change in
20 21		
22		
23	6	objectively measured BMI, waist circumference or FMI after two years in this cohort
24	0	objectively measured bin, wast chedimerence of 1 millater two years in this conort
25		
26	_	A New your address of a Theory of a subdate of the tendenters and light
27	7	of Norwegian adolescents. There was evidence to suggest that sedentary- and light
28		
29		
30	8	activity affected indices of lean mass in girls, but not boys.
31		
32		
33		
34 25	9	
35 36		
37		
38	10	
39	10	
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

1 Acknowledgements

The authors thank the participants in the study, as well as the staff at the Clinical Research Unit at the University Hospital of North Norway for data collection and clinical measurements. We also thank the Fit Futures Steering Committee in both studies. Footnotes **Contributors** NAA wrote the draft of the manuscript, which was revised and edited by all authors several times during the process. SB produced the accelerometer variables in close collaboration with AH, who wrote the software which converted raw accelerometer data to variables. BKJ contributed to the statistical analyses, and BM specifically contributed to the discussion of physical activity. NE and ASF were among the principal investigators in FF1 and FF2 and contributed significantly to the acquisition of data. SG formulated the research question and conceived the study. All authors have substantially contributed to the study, and have read and approved the final manuscript.

Funding

6 7 8	2	This particular manuscript has not received any specific funding, while the Fit Futures
8 9 10	-	
11 12 13	3	surveys were funded by, inter alia, the Northern Norway Regional Health Authority
14 15 16	4	and UiT – The Arctic University of Norway, Tromsø, the National Public Health
17 18 19 20	5	Institute, Oslo, and the Troms County Council.
21 22 23 24	6	<u>Competing interests</u>
25 26 27 28 29	7	The authors declare that they have no competing interests.
30 31 32 33	8	Consent for publication
34 35 36 37	9	Not applicable
38 39 40 41	10	Ethics approval
42 43 44 45	11	This study was approved by The Regional Committee of Medical and Health
46 47 48 49	12	Research Ethics (2014/1666/REK nord).
50 51 52 53 54 55 56 57 58 59 60	13	Data availability statement

2 3 4 5	1
6 7	2
8 9	-
10 11	E
12 13	
14 15	
16	
17 18	
19 20 21	
21 22 23	
24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
57 58 59	
59 60	

1 The data that support the findings of this study are available from UiT – The Arctic

2 University of Norway. Restrictions apply to the availability of these data, which were

used under license for the current study, and are thus not publicly available.

to been terien only

1	
2	
2	
7	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 23 24 25 26 27 28 29 30 31 33 34 35 37 37 37 37 37 37 37 37 37 37	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50	
57	
58	
59	
60	

1 References

2	1. World Health Organization. Global action plan on physical activity 2018–2030:
3	more active people for a healthier world. Geneva 2018.
4	2. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-
5	communicable diseases worldwide: an analysis of burden of disease and life
6	expectancy. <i>Lancet</i> 2012;380:219-29.
7	3. World Health Organization. Global Recommendations on Physical Activity for
8	Health. WHO Guidelines. Geneva 2010.
9	4. Kolle E SJ, Hansen BH, Anderssen SA. [Fysisk aktivitet blant 6-, 9- og 15-åringer i
10	Norge. Resultater fra en kartlegging i 2011]. The Norwegian Directorate of Health,
11	Oslo, Norway. 2012.
12	5. Dumith SC, Gigante DP, Domingues MR, et al. Physical activity change during
13	adolescence: a systematic review and a pooled analysis. Int J Epidemiol.
14	2011;40:685-98.
15	6. Collings PJ, Wijndaele K, Corder K, et al. Magnitude and determinants of change
16	in objectively-measured physical activity, sedentary time and sleep duration from

BMJ Open

3 4 5	1	ages 15 to 17.5y in UK adolescents: the ROOTS study. Int J Behav Nutr Phys Act.
6 7 8 9	2	2015;12:61.
10 11 12	3	7. Crane J, Temple V. A systematic review of dropout from organized sport among
13 14 15 16	4	children and youth. <i>Eur Phys Educ Rev.</i> 2015;21:114-31.
17 18 19	5	8. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
20 21 22 23	6	overweight and obesity in children and adults during 1980-2013: a systematic
24 25 26	7	analysis for the Global Burden of Disease Study 2013. <i>Lancet</i> . 2014;384:766-81.
27 28 29 30	8	9. NCD Risck Factor Collaboration (NCD-RisC). Worldwide trends in body-mass
31 32 33	9	index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of
34 35 36 37	10	2416 population-based measurement studies in 128.9 million children, adolescents,
38 39 40	11	and adults. <i>Lancet</i> . 2017. doi:10.1016/S0140-6736(17)32129-3.
41 42 43	12	10. Reichert FF, Baptista Menezes AM, Wells JC, et al. Physical activity as a
44 45 46 47	13	predictor of adolescent body fatness: a systematic review. Sports Med. 2009;39:279-
48 49 50	14	94.
51 52 53 54	15	11. Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured
55 56 57	16	habitual physical activity and adiposity in children and adolescents: Systematic
58 59 60	17	review. Int J Pediatr Obes. 2010;5:3-18.

2
3
4
5
6
7
8
9
10
11
12
12
13 14
14
16
17
18
19
20
20
22
23
23 24
25 26
27 29
28
29 30
30 31
32
33
34 25
35
36
37
38
39
40
41
42
43
44
45 46
40 47
47 48
40 49
49 50
51
52
53
55 54
55
56
50 57
58
59

1

1	12. Wilks DC, Besson H, Lindroos AK, et al. Objectively measured physical activity
2	and obesity prevention in children, adolescents and adults: a systematic review of
3	prospective studies. <i>Obes Rev</i> . 2011;12:e119-29.
4	13. Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus
5	accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46:99-106.
6	14. Aars NA, Jacobsen BK, Furberg AS, et al. Self-reported physical activity during
7	leisure time was favourably associated with body composition in Norwegian
8	adolescents. Acta Paediatr. 2018. doi:10.1111/apa.14660.
9	15. Goulding A, Taylor RW, Grant AM, et al. Relationships of appendicular LMI and
10	total body LMI to bone mass and physical activity levels in a birth cohort of New
11	Zealand five-year olds. <i>Bone</i> . 2009;45:455-9.
12	16. Bridge P, Pocock NA, Nguyen T, et al. Validation of longitudinal DXA changes in
13	body composition from pre- to mid-adolescence using MRI as reference. <i>J Clin</i>
14	<i>Densitom.</i> 2011;14:340-7.
15	17. Trost SG, Pate RR, Freedson PS, et al. Using objective physical activity
16	measures with youth: how many days of monitoring are needed? Med Sci Sports

⁵⁹₆₀ 17 *Exerc*. 2000;32:426-31.

Page 37 of 46

BMJ Open

2 3 4 5	
4 5 6 7 8	
9 10 11 12	
12 13 14 15	
16 17 18 19	
20 21 22	
20 21 22 23 24 25 26	
20 27 28 29	
30 31 32 33 34 35	
33 34 35 36	1
37 38 39	1
40 41 42 43	1
44 45 46	1
47 48 49 50	1
50 51 52 53	1
54 55 56	1
57 58 59 60	1

1	18. Hecht A, Ma S, Porszasz J, et al. Methodology for using long-term accelerometry
2	monitoring to describe daily activity patterns in COPD. COPD. 2009;6:121-9.
3	19. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and
4	Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777-81.
5	20. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity
6	monitors. <i>J Sci Med Sport</i> . 2011;14:411-6.
7	21. Cuzick J. A Wilcoxon-type test for trend. <i>Stat Med</i> . 1985;4:87-90.
8	22. Kolle E, Steene-Johannessen J, Andersen LB, et al. Objectively assessed
9	physical activity and aerobic fitness in a population-based sample of Norwegian 9-
10	and 15-year-olds. <i>Scand J Med Sci Sports</i> . 2010;20:e41-7.
11	23. Van Hecke L, Loyen A, Verloigne M, et al. Variation in population levels of
12	physical activity in European children and adolescents according to cross-European
13	studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act.
14	2016;13:70.
15	24. Baxter-Jones AD, Eisenmann JC, Mirwald RL, et al. The influence of physical
16	activity on lean mass accrual during adolescence: a longitudinal analysis. J Appl

Physiol (1985). 2008;105:734-41.

3
4
5
6
7
8
9
9
10
11
12
13
14
10 11 12 13 14 15 16 17 18 19
16
17
18
19
20
20 21
∠ I 22
22
21 22 23
24
25
26
27
28
29
30
31
31 32 33
22
22
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
58 59
60

1 2

1	25. Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in
2	2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with
3	dual X-ray absorptiometry. <i>Eur J Clin Nutr</i> . 2014;68:664-70.
4	26. Siervogel RM, Demerath EW, Schubert C, et al. Puberty and body composition.
5	Horm Res. 2003;60:36-45.
6	27. Sardinha LB, Marques A, Minderico C, et al. Cross-sectional and prospective
7	impact of reallocating sedentary time to physical activity on children's body
8	composition. <i>Pediatr Obes</i> . 2017;12:373-9.
9	28. Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise. Seventh
10	edition. Champaign, IL: Human Kinetics; 2020.
11	29. Lohman TG, Milliken LA. ACSM's body composition assessment. Champaign, IL:
12	Human Kinetics; 2020.
13	30. Mendonca G, Cheng LA, Melo EN, et al. Physical activity and social support in
14	adolescents: a systematic review. <i>Health Educ Res</i> . 2014;29:822-39.
15	31. Telama R, Yang X. Decline of physical activity from youth to young adulthood in
16	Finland. Med Sci Sports Exerc. 2000;32:1617-22.

1 2		
2 3 4 5	1	32. Varma VR, Dey D, Leroux A, et al. Re-evaluating the effect of age on physical
6 7 8	2	activity over the lifespan. <i>Prev Med</i> . 2017;101:102-8.
9 10 11 12	3	33. Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in
13 14 15	4	the United States, by sex and cross-sectional age. Med Sci Sports Exerc.
16 17 18 19	5	2000;32:1601-9.
20 21 22	6	34. Aars NA, Jacobsen BK, Morseth B, et al. Longitudinal changes in body
23 24 25	7	composition and waist circumference by self-reported levels of physical activity in
26 27 28 29	8	leisure among adolescents: the Tromsø study, Fit Futures. BMC Sports Sci Med
30 31 32	9	Rehabil. 2019;11:37.
33 34 35 36	10	35. O'Loughlin J, Gray-Donald K, Paradis G, et al. One- and two-year predictors of
37 38 39	11	excess weight gain among elementary schoolchildren in multiethnic, low-income,
40 41 42 43	12	inner-city neighborhoods. Am J Epidemiol. 2000;152:739-46.
44 45 46	13	36. Collings PJ, Wijndaele K, Corder K, et al. Objectively measured physical activity
47 48 49 50	14	and longitudinal changes in adolescent body fatness: an observational cohort study.
51 52 53	15	<i>Pediatr Obes</i> . 2016;11:107-14.
54 55 56 57	16	37. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression
57 58 59 60	17	dilution bias. <i>BMJ</i> . 2010;340:c2289.

1	
~	
2 2	
1	
4	
S	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
2J 2/	
∠4 2⊑	
20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 34 25 26 27 28 9 30 31 22 33 34	
27	
28	
29	
30	
31	
32 33 34 35 36 37	
33	
34	
25	
26	
30 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	38. Kettaneh A, Oppert JM, Heude B, et al. Changes in physical activity explain
2	paradoxical relationship between baseline physical activity and adiposity changes in
3	adolescent girls: the FLVS II study. Int J Obes (Lond). 2005;29:586-93.
4	39. Herman Hansen B, Bortnes I, Hildebrand M, et al. Validity of the ActiGraph GT1M
5	during walking and cycling. <i>J Sports Sci</i> . 2014;32:510-6.
6	40. van Sluijs EM, Sharp SJ, Ambrosini GL, et al. The independent prospective
7	associations of activity intensity and dietary energy density with adiposity in young
8	adolescents. <i>Br J Nutr</i> . 2016;115:921-9.
9	41. Hjorth MF, Chaput JP, Ritz C, et al. Fatness predicts decreased physical activity
10	and increased sedentary time, but not vice versa: support from a longitudinal study in
11	8- to 11-year-old children. Int J Obes (Lond). 2014;38:959-65.
12	

Appendix

Appendix Table 1. Association between minutes per day spent in sedentary activity (CPM 0-99) at baseline and changes in body composition, adjusted for puberty[#].

		Boys (n = 14	3)	Girls (n = 256)		
	Beta	95% CI	p value	Beta	95% CI	p value
Δ BMI						
Model 1	-0.02	-0.14, 0.09	0.70	-0.05	-0.15, 0.05	0.32
Model 2	-0.02	-0.17, 0.13	0.82	-0.10	-0.24, 0.03	0.14
Model 3	0.02	-0.18, 0.22	0.85	-0.10	-0.26, 0.06	0.20
∆ waist circumferenc e			~			
Model 1	0.12	-0.27, 0.51	0.55	-0.01	-0.42, 0.40	0.96
Model 2	0.24	-0.28, 0.76	0.37	-0.38	-0.92, 0.16	0.16
Model 3	0.38	-0.30, 1.05	0.27	-0.52	-1.15, 0.11	0.10
Δ FMI				4		
Model 1	-0.01	-0.12, 0.09	0.84	-0.01	-0.11, 0.08	0.80
Model 2	-0.02	-0.16, 0.13	0.83	-0.06	-0.18, 0.07	0.36
Model 3	0.01	-0.18, 0.19	0.96	-0.05	-0.20, 0.10	0.49
Δ LMI					5	
Model 1	0.00	-0.05, 0.06	0.90	-0.06	-0.09, - 0.02	< 0.01
Model 2	0.00	-0.07, 0.08	0.90	-0.07	-0.11, - 0.02	< 0.01
Model 3	0.02	-0.07, 0.10	0.73	-0.07	-0.13, - 0.02	< 0.01
Δ aLMI						
Model 1	-0.00	-0.03, 0.03	0.91	-0.02	-0.04, - 0.00	0.02

1	
1 ว	
2	
4	
5	
2 3 4 5 6 7	
7	
8	
9	
10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20	
21	
22	
23	
24	
20 21 22 23 24 25	
26 27	
27	
28	
29	
30 21	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
ĽO	

Model 2	0.00	-0.04, 0.04	0.97	-0.03	-0.05, - 0.00	0.03
Model 3	0.01	-0.04, 0.06	0.65	-0.03	-0.05, 0.00	0.08

#: The table displays the association between minutes spent in sedentary activity and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in sedentary activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \ge 1952).

· ·								
	В	oys (n = 14	3)	Girls (n = 256)				
	Beta	95% CI	p value	Beta	95% CI	p value		
∆ BMI								
Model 1	0.05	-0.10, 0.20	0.53	0.04	-0.10, 0.18	0.56		
Model 2	0.00	-0.18, 0.19	0.98	0.11	-0.05, 0.27	0.17		
Model 3	-0.02	-0.22, 0.18	0.85	0.10	-0.06, 0.26	0.20		
Δ waist circumference								
Model 1	-0.01	-0.53, 🧹 0.51	0.97	0.53	-0.01, 1.06	0.05		
Model 2	-0.34	-0.97, 0.29	0.29	0.51	-0.11, 1.13	0.11		
Model 3	-0.38	-1.05, 0.30	0.27	0.52	-0.11, 1.15	0.11		
Δ FMI								
Model 1	0.05	-0.09, 0.18	0.51	0.02	-0.11, 0.14	0.80		
Model 2	0.01	-0.16, 0.18	0.93	0.06	-0.09, 0.20	0.43		
Model 3	-0.01	-0.19, 0.18	0.96	0.05	-0.10, 0.20	0.49		
Δ LMI								
Model 1	-0.01	-0.08, 0.06	0.84	0.04	-0.01, 0.09	0.09		
Model 2	-0.01	-0.10, 0.07	0.80	0.08	0.02, 0.13	< 0.0		

Model 3	-0.02	-0.10, 0.07	0.73	0.07	0.02, 0.13	< 0.01
Δ aLMI						
Model 1	0.00	-0.04, 0.04	0.93	0.02	-0.01, 0.04	0.19
Model 2	-0.01	-0.05, 0.04	0.78	0.03	-0.00, 0.06	0.06
Model 3	-0.01	-0.06, 0.04	0.65	0.03	-0.00, 0.05	0.08

#: The table displays the association between minutes spent in light activity and difference in BMI (kg/m^2) , waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in light activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \ge 1952).

	nges in body composition, adjus Boys (n = 143)			Girls (n = 256)			
			· · · · · · · · · · · · · · · · · · ·				
	Beta	95% CI	р	Beta	95% CI	р	
			value			valu	
ΔΒΜΙ							
Model 1	0.11	-0.08,	0.24	-0.01	-0.17, 0.16	0.9	
		0.31					
Model 2	0.06	-0.15,	0.55	0.07	-0.12, 0.25	0.4	
		0.28					
Δ waist							
circumference							
Model 1	0.28	-0.38,	0.40	-0.03	-0.69, 0.63	0.9	
		0.95					
Model 2	-0.03	-0.77,	0.95	-0.00	-0.72, 0.72	0.9	
		0.72					
Δ FMI							
Model 1	0.02	-0.16,	0.80	-0.01	-0.17, 0.14	0.8	
		0.20					
Model 2	0.04	-0.16,	0.68	0.05	-0.12, 0.22	0.5	
		0.24					
ΔLMI				O			
Model 1	0.08	-0.02,	0.11	0.03	-0.03, 0.09	0.3	
		0.17					
Model 2	0.01	-0.09,	0.81	0.02	-0.04, 0.09	0.4	
		0.11			·		
Δ aLMI							
Model 1	0.05	-0.01,	0.09	0.02	-0.01, 0.05	0.1	
		0.10			,		
Model 2	0.02	-0.04,	0.60	0.02	-0.01, 0.05	0.2	
		0.07	2.00			0.2	

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity (MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time.

<text>

STROBE statement for submitted manuscript entitled "*The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.*"

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) P. 1,lines. 1-2.
		(<i>b</i>) P. 3, lines 1-23
Introduction		
Background/rationale	2	P. 5, lines 1-25 and P. 6, lines 1-3.
Objectives	3	P. 6, lines 3-8.
Methods		
Study design	4	P. 6, lines 11-12.
Setting	5	P. 6, lines 12-17 and P. 6, lines 22-23.
Participants	6	(<i>a</i>) P. 6, lines 18-21.
1		
Variables	7	P. 8, lines 7-10, lines 15-25. P. 9, lines 1-14.
Data sources/ measurement	8*	P. 6, lines 22-24. P. 7, lines 3-25. P. 8, lines 1-11.
Bias	9	P. 9, lines 10-14.
Study size	10	P. 6, lines 17-21.
Quantitative variables	11	P. 9, lines 1-3.
Statistical methods	12	(a) P. 8, lines 14-25 and P. 9, lines 1-16.
		(<i>b</i>) P. 9, lines 10-15.
		(<i>c</i>) P. 6, lines 17-21.
		(<u>e</u>) P. 17, lines 22-25
Results		
Participants	13*	(a) P. 6, lines 12-21.
I I I I I	-	(b) See (a).
Descriptive data	14*	(a) See Table 1.
1		(b) See 13a
		(c) See Table 1.
Outcome data	15*	See Table 1.
Main results	16	(a) See Tables and P. 9, lines 4-15.
		(b) See Table 1.
Other analyses	17	P. 9, lines 11-15, and P. 16, lines 19-22. P. 17, lines 22-25.
Discussion		
Key results	18	P. 14, lines 4-10.
Limitations	19	P. 15, lines 20-24. P. 17, lines 2-8 and 11-25. P. 18, lines 1-3.
Interpretation	20	P. 14, lines 11 – 24. P. 15, 1-24. P. 16, lines 1-25. P. 17, lines 1-
Generalisability	20	,,,,,,,
	21	
Other information		
Funding	22	P. 19, lines 15-19.

BMJ Open

The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-036991.R1
Article Type:	Original research
Date Submitted by the Author:	29-Apr-2020
Complete List of Authors:	Aars, Nils; UiT – The Arctic University of Norway, Department of Community Medicine; Nordlandssykehuset HF Beldo, Sigurd; UiT Arctic University of Norway, School of Sport Sciences Jacobsen, Bjarne; UiT – The Arctic University of Norway, Department of Community Medicine; UiT – The Arctic University of Norway, Centre for Sami Health Research Horsch, Alexander; UiT – The Arctic University of Norway, Department of Computer Science Morseth, Bente; UiT Arctic University of Norway, School of Sport Sciences; UiT – The Arctic University of Norway, Department of Community Medicine Emaus, Nina; Uit The Arctic University of Norway, Department of Health and Care Siences Furberg, Anne-Sofie; UiT The Arctic University of Norway, Department of Comunity Medicine; Universitetssykehuset Nord-Norge, Department of Microbiology and Infection Control Grimsgaard, Sameline; UiT The Arctic University of Norway, Department of Community Medicine
Primary Subject Heading :	Public health
Secondary Subject Heading:	Sports and exercise medicine, Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SPORTS MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	The association between objectively measured physical activity and longitudinal
5 6 7 8	2	changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.
9 10 11 12 13	3	Nils Abel Aars ^{1, 2*}
14 15 16 17	4	Sigurd Beldo ³
17 18 19 20 21	5	Bjarne K Jacobsen ^{1, 4}
21 22 23 24 25	6	Alexander Horsch ⁵
23 26 27 28 29	7	Bente Morseth ^{3, 1}
30 31 32 33	8	Nina Emaus ⁶
34 35 36 37	9	Anne-Sofie Furberg ^{1, 7}
38 39 40 41	10	Sameline Grimsgaard ¹
42 43 44 45	11	Sameline Grinsgaard
46 47 48 49	12	Affiliations
50 51 52 53	13	1. Department of Community Medicine, UiT the Arctic University of Norway, Tromsø,
54 55 56 57	14	Norway
58 59 60		

1 2		
3 4 5	1	2. Nordland Hospital, Bodø, Norway.
6 7 8 9	2	3. School of Sport Sciences, UiT the Arctic University of Norway, Alta, Norway
10 11 12 13	3	4. Centre for Sami Health Research, Department of Community Medicine, UiT the
14 15 16 17	4	Arctic University of Norway, Tromsø, Norway
18 19 20 21	5	5. Department of Computer Science, UiT the Arctic University of Norway, Tromsø,
22 23 24 25	6	Norway
26 27 28 29	7	6. Department of Health and Care Sciences, UiT the Arctic University of Norway,
30 31 32	8	Tromsø, Norway
33 34 35 36	9	7. Department of Microbiology and Infection Control, University Hospital of North
37 38 39 40	10	Norway, Tromsø, Norway
41 42 43 44	11	* Corresponding author. Correspondence to <u>nils.a.aars@uit.no</u>
45 46 47 48	12	Nils Abel Aars
49 50 51 52	13	Department of Community Medicine
53 54 55 56	14	UiT the Arctic University of Norway
57 58 59 60	15	9037 Tromsø, Norway.

1 2 3			
3	1		
4 5	1		
5 6 7			
7 8	2		
8 9 10			
10			
11 12			
13			
14 15			
16			
17 18			
19			
20 21			
22			
23			
24 25			
26			
27 28			
29			
30 31			
32			
33 34			
35			
35 36 37 38			
38			
39 40			
41			
42 43			
43 44 45 46 47 48			
45 46			
47			
48 49			
50			
51 52 53 54 55 56			
53			
54 55			
56			
57 50			
57 58 59			

Abstract

1 2 BMJ Open

2 3 4 5 6	1
7 8 9	2
10 11 12	3
13 14 15 16	4
17 18 19	5
20 21 22 23	6
24 25 26 27	7
28 29 30 31	8
32 33 34	9
35 36 37 38	10
39 40 41 42	11
43 44 45 46	12
47 48 49 50	13
51 52 53	14
54 55 56 57	15
58 59 60	16

2	Objectives: Physical activity may play an important role in deterring the world-wide
3	obesity epidemic. This study aimed to determine if objectively measured physical
4	activity in first year of upper secondary high school predicted changes in body
5	composition over two years of follow up in a cohort of Norwegian adolescents (n
6	=431).
7	Design: A longitudinal study of adolescents (60.3% girls, mean age 16 (SD 0.4) at
8	baseline) participating in the Fit Futures studies 1 (2010-11) and 2 (2012-13).
9	Setting: All eight upper secondary high schools in neighbouring municipalities of
10	Tromsø and Balsfjord, Northern Norway.
11	Participants: Students participating in both studies and under the age of 18 at
11 12	Participants: Students participating in both studies and under the age of 18 at baseline, and with valid measurement of physical activity at baseline and body
12	baseline, and with valid measurement of physical activity at baseline and body
12 13	baseline, and with valid measurement of physical activity at baseline and body composition at both time points.

16 fat mass index, lean mass index and appendicular lean mass index between baseline

Page 6 of 45

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\\37\end{array}$	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

1	and follow-up. Differences in physical activity at baseline between sexes was also
2	compared.
3	Results : At baseline, boys had significantly higher physical activity volume (p=0.01)
4	and spent on average 6.4 (95% CI: 2.1, 10.6) more minutes in moderate-to-vigorous
5	physical activity (MVPA) than girls (p <0.01). In multivariate regression analyses
6	there was no significant association between either measure of baseline physical
7	activity and changes in body composition parameters in boys. In girls there was a
8	significant association between sedentary- and light activity and changes in lean
9	mass index (p < 0.01) and appendicular lean mass index (p = 0.05).
10	Conclusions: In this cohort of Norwegian adolescents, sedentary and light physical
11	activity were associated with changes in indices of lean mass in girls, but not boys.
12	Minutes spent in moderate-to-vigorous physical activity was not associated with
13	changes in either measure of body composition in either sex.
14	Strengths and limitations of this study
15	This study used objective measures of physical activity.

1		
2 3 4 5	1	The study included objectively measured weight, height and waist
6 7 8 9	2	circumference, and dual-energy x-ray absorptiometry (DXA) measures of fat-
9 10 11 12	3	and lean mass.
13 14 15 16	4	• We were not able to fully adjust for nutrition and not for pubertal development.
10 17 18 19	5	The 431 participants with complete data from both baseline and follow-up
20 21 22	6	represents 41% of those attending Fit Futures 1, indicating a degree of
23 24 25 26	7	selection.
27 28 29	8	
30 31 32 33 34 35	9	selection.
36 37 38		
39 40 41 42		
43 44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57 58		
59 60		

1 Background

0		
7 8	2	The potential of physical activity to prevent or treat a number of diseases has been
9	_	
10		
11	3	highlighted by the World Health Organization,[1] with inactivity accounting for 9% of
12		
13		
14 15	4	worldwide premature mortality.[2] Public health guidelines state that adolescents
16		······································
17		
18	5	should engage in Moderate-to-Vigorous Physical Activity (MVPA) ≥ 60 minutes per
19	_	
20		
21 22	6	day,[3] but in 2011, only 50% of Norwegian 15 year olds met these
22	Ū	
24		
25	7	recommendations.[4] During adolescence there is a decline in both total physical
26	-	
27		
28	8	activity and MVPA,[5, 6] and many quit or reduce participation in organized sports.[7]
29 30	Ũ	
31		
32	9	As of 2013, the prevalence of overweight and obesity (Body Mass Index (BMI) ≥ 25
33	5	7 to of 20 to, the provalence of overweight and obcondy (body mass mass (binn) = 20
34		
35	10	kg/m²) in Norwegians aged <20 years appear to be stabilizing at around 20% in boys
36 37	10	
38		
39	11	and 16% in girls - comparable to the Nordic countries.[8] This is lower than in the
40		
41		
42	12	United States (around 29% in boys and girls) [8], but the health effects for those
43 44		
44 45		
46	13	concerned may still be substantial over the long term.[9]
47		······································
48		
49 50		
50 51	14	While physical activity has many positive health effects, its relationship with adiposity
52		
53		
54	15	is less clear and it has proven difficult to determine causality, direction and magnitude
55		
56		
57 58	16	of this relationship.[10] Cross-sectional research typically shows a strong inverse
58 59		
60		

Page 9 of 45

BMJ Open

1	
2 3 4 5	1
6 7 8	2
9 10 11 12	3
13 14 15	4
16 17 18 19	5
20 21 22	6
23 24 25 26	7
27 28 29 30	8
31 32 33	9
34 35 36 37	10
37 38 39 40	11
41 42 43 44	12
44 45 46 47	13
48 49 50	14
51 52 53 54	15
55 56 57	16
58 59 60	17

1	association between physical activity and weight status,[11] but temporality cannot be
2	ascertained using such study designs.[12] Longitudinal studies may ascertain if lower
3	physical activity precedes excess weight gain, but a review found no evidence for a
4	relationship between objectively measured physical activity and body fat gain in
5	adolescents.[12] The lack of congruent results may in part be explained by the
6	diverse and inadequate measures of both exposure and outcome used in research of
7	the association between physical activity and body composition.[10, 11]
8	Although many methods to measure physical activity are available, the most common
9	and most feasible is self-report which commonly overestimates the total amount of
10	physical activity.[13] Body composition is most commonly assessed using BMI, but
11	BMI does not distinguish between fat- and muscle mass.[14] This has the potential to
12	cause misclassification of overweight status and may attenuate a true association
13	between physical activity and fat or muscle mass. Thus, in the current study, we
14	sought to overcome these limitations by applying objective measures of both physical
15	activity and specific measures of body composition. Our aim was to investigate the
16	association between objectively measured physical activity and changes in five
17	different measures of body composition (body mass index, waist circumference, fat

2 3 4 5	1	mass index, lean mass index and appendicular lean mass index) over two years of
6 7 8 9	2	follow-up in a cohort of Norwegian adolescents.
9 10 11 12 13	3	
14 15 16 17	4	Methods and materials
18 19 20 21	5	We used data from the first and second Fit Futures cohort studies, performed in
22 23 24 25	6	2010-2011 and 2012-2013, respectively. The first study invited all students (n=1,117)
26 27 28	7	in their first year of upper secondary high school in the neighbouring municipalities of
29 30 31 32	8	Tromsø and Balsfjord in Northern Norway, and had a participation of 93%. The study
33 34 35	9	was repeated two years later, when the students were in their last year of upper
36 37 38	10	secondary high school or had started as apprentices if they studied vocational
39 40 41 42	11	subjects. The second study included 868 participants, giving an attendance of 77%.
43 44 45	12	All eight upper secondary high schools in the two municipalities participated in both
46 47 48 49	13	studies. Altogether 735 adolescents attended both surveys. For the present study we
50 51 52	14	excluded those aged \geq 18 years of age at baseline (n = 38). Some participants (n =
53 54 55 56	15	240) did not have valid measurements of physical activity at baseline, and were
57 58 59 60	16	therefore not included in the study. We also excluded those with missing data on

BMJ Open

2 3 4 5	1	change in body composition parameters or variables included in the model (n = 26).
6 7 8 9	2	Thus, 431 participants were included in the present study (60.3% girls).
10 11 12 13	3	Students were granted leave of absence from school to attend an examination at the
14 15 16 17	4	Clinical Research Unit at the University Hospital of Northern Norway in both surveys.
18 19 20	5	The participants attended a clinical examination where they also completed a
21 22 23 24	6	questionnaire, which included questions on lifestyle, screen time, dietary habits etc.
25 26 27	7	The participants signed a letter of informed consent, and those under the age of 16
28 29 30 31	8	brought a letter of consent signed by their parent or guardian.
32 33 34 35	9	All measurements were performed by trained personnel. Height was measured to the
36 37 38	10	nearest centimeter and weight to the nearest 100 gram, wearing light clothing and
39 40 41 42	11	using an automatic electronic scale/stadiometer (Jenix DS 102 stadiometer, Dong
43 44 45	12	Sahn Jenix, Seoul, Korea). Body mass index was calculated as body weight in
46 47 48 49	13	kilograms/height in meters ² . Waist circumference was measured to the nearest 0.1
50 51 52 53	14	centimeter at the height of the umbilicus. Fat and soft tissue lean mass in grams was
55 54 55 56	15	estimated by whole-body dual energy X-ray absorptiometry (DXA) (GE Lunar
57 58 59 60	16	Prodigy, Lunar Corporation, Madison, WI, USA). Fat mass comprises all fat, while

Page 12 of 45

2 3 4 5	1
6 7 8	2
9 10 11 12	3
13 14 15	4
16 17 18 19	5
20 21 22	6
23 24 25 26	7
27 28 29	8
30 31 32 33	9
34 35 36 37	10
38 39 40	11
41 42 43 44	12
45 46 47	13
48 49 50 51	14
52 53 54	15
55 56 57 58	16
58 59 60	17

1

1	soft tissue lean mass comprises all bodily tissue except fat and skeletal mass. These
2	variables were used to calculate fat mass index (FMI, fat mass in kilograms/height in
3	meters ²) and lean mass index (LMI, lean mass in kilograms/height in meters ²). In
4	addition we calculated appendicular lean mass index (aLMI), which is the sum of soft
5	tissue lean mass in kilograms in all four extremities divided by height in meters ² .
6	Although most commonly used in studies of sarcopenia in elderly,[15] this variable is
7	arguably more specific to skeletal muscle mass than total lean mass index. The
8	ability of DXA to detect changes in appendicular lean mass in young adolescents is
9	good, and has been validated against Magnetic Resonance Imaging (MRI).[16]
10	Physical activity was objectively measured using the ActiGraph GT3X accelerometer
11	(ActiGraph, LLC, Pensacola, USA). Participants were instructed to wear the device
12	on their right hip for seven consecutive days, and to remove it only when showering,
13	swimming or sleeping. The ActiLife software was used to initialize the accelerometer
14	and download data, which was imported into the Quality Control & Analysis Tool
15	(QCAT) for data processing. This software was developed by the research group of
16	professor Horsch in Matlab (The MathWorks, Inc., Massachusetts, USA) for
17	processing of accelerometer data. The accelerometer was set in raw data mode, with

Page 13 of 45

1

BMJ Open

1 2	
3 4	
5	
6 7	
8 9	
10	
11 12	
13 14	
15 16	
17	
18 19	
20 21	
22 23	
24	
25 26	
27 28	
29 30	
31	
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59	
60	

1	a sampling frequency of 30 Hertz and with normal filtering epochs of 10 seconds.
2	Data collection was initiated at 14:00 hours the first day, and concluded at 23:58 on
3	the 8 th day of measurement. We excluded data from the first day of measurement to
4	reduce reactivity bias. The criteria for a valid measurement of physical activity was
5	wear time of \geq four consecutive days, with \geq ten hours wear time per day. This has
6	been demonstrated as representative of activity over a full week.[17] The triaxial
7	algorithm developed by Hecht et al. was used to calculate wear time.[18] Minutes per
8	day in sedentary (0 – 99 CPM), light (100 – 1951 CPM), moderate (1952 – 5723
9	CPM) and vigorous (≥ 5724 CPM) physical activity was determined using the cut-offs
10	developed by Freedson.[19] The choice of these cut-offs enables direct comparisons
11	as the cohort ages, and although these cut-offs are not commonly used for
12	adolescents, we consider the bodily proportions of an adolescent to resemble that of
13	an adult in terms of measured acceleration. The device collected data in both
14	uniaxial- and triaxial mode, but in the present study only the uniaxial data had been
15	processed and therefore available. Studies have shown that uniaxial data recorded
16	from the GT3X correlate well with uniaxial data recorded from previous ActiGraph

3 4 5	1	models.[20] Data on objectively measured physical activity was only available from
6 7 8 9	2	Fit Futures 1.
10 11 12 13	3	Baseline characteristics were presented as means with standard deviation (SD) or
14 15 16	4	prevalence in percentages with number of subjects (n) (Table 1). Sex-specific
17 18 19 20	5	difference in body composition between baseline and follow-up was tested using a
21 22 23	6	paired samples t-test. The difference in physical activity between sexes was tested
24 25 26 27	7	using a two-sample t-test, while sex differences in categories of minutes spent in
28 29 30	8	MVPA was tested using a chi-square test. Difference in linear trend across categories
31 32 33 34	9	of minutes spent in MVPA was tested using STATA's non-parametric test for trend,
35 36 37	10	developed by Cuzick.[21] Linear regression was used to determine the effect of
38 39 40 41	11	baseline physical activity on change in body composition, i.e., the change in BMI,
42 43 44	12	waist circumference, FMI, LMI and aLMI from the first to the second Fit Futures
45 46 47 48	13	Study.
49 50 51 52	14	We used three different predictors of change in body composition, performing three
53 54 55	15	sets of analyses, with first; minutes per day spent in sedentary activity (Table 2)
56 57 58 59 60	16	second; minutes per day spent in light activity (Table 3) and third; minutes per day

Page 15 of 45

BMJ Open

1		
2 3 4 5	1	spent in MVPA (Table 4). We divided the continuous variables sedentary- and light
6 7 8 9	2	activity by 30 and the continuous variable MVPA by 15 before inclusion in the
9 10 11 12	3	models, thus presenting the beta coefficient for change in body composition
13 14 15 16	4	parameter per 30 minutes of sedentary- or light activity, or per 15 minutes of MVPA,
17 18 19	5	with 95% confidence intervals and a p-value. In model 1 we adjusted for the baseline
20 21 22 23	6	measurement of the body composition parameter. In the adjusted models (models 2)
23 24 25 26	7	we also included time between measurements (mean (SD): 730 (74) days) and
27 28 29	8	baseline values of device wear time, age in half years and questionnaire data on
30 31 32 33	9	screen time on weekdays (how many hours per weekday the students spent in front
34 35 36	10	of a computer or television - answers ranged from none to more than ten hours per
37 38 39 40	11	weekday) and regularity of eating breakfast as an indicator of healthy meal patterns
41 42 43	12	(answers ranging from rarely/never to every day). In the analyses of sedentary- and
44 45 46 47	13	light activity we also adjusted for minutes spent in MVPA (models 3). In a subset of
48 49 50	14	analyses (Appendix tables 1 and 2) we repeated the analyses performed in Table 2
51 52 53 54	15	and 3, adjusting also for self-reported pubertal status measured by either pubertal
55 56 57 58 59 60	16	development scale (boys) or age at menarche (girls). These analyses included the

1 143 boys and 256 girls with valid data on pubertal status. In all the analyses, a p-

value of < 0.05 was considered statistically significant.

All analyses were performed sex-specific as decided a-priori, using STATA version

14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX:

5 StataCorp LP.).

6 Patient and public involvement

7 Participating schools were consulted and included in the design phase of the study.

8 Results

Table 1 displays the participants' body composition measurements at baseline and follow-up, as well as physical activity measurements at baseline. Boys had a statistically significant increase in all measures of body composition. Girls had a statistically significant increase in body weight, BMI, fat mass in kg and FMI, but not in LMI and appendicular lean mass. Boys were statistically significantly more physically active than girls in some aspects, with higher mean counts per minute (p=0.01) and more minutes in MVPA (p<0.01). Time spent in sedentary- or light intensities did not differ significantly between sexes. Twenty-seven percent of boys

1 2						
3 4 5	1	and 17% of girls complied with the r	recommendation	ns of 60 minute	es per day	
6 7 8	2	Moderate-to-Vigorous Physical Acti	vity (MVPA).			
9 10						
11 12	3					
13						
14 15	4					
16 17	•					
18 19						
20	5					
21 22						
23 24	6					
25 26						
27 28	7					
29	,					
30 31						
32 33	8					
34 35						
36	9					
37 38						
39 40		Table 1. Characteristics of the long	nitudinal appart	of the Tromag		0 2010 11
41 42		and 2012-13 $^{\circ}$.			Study, Fit Future	5 2010-11
43			Boys (r	n = 171)	Girls (n	= 260)
44 45			FF1	FF2	FF1	FF2
46 47			16.0 (0.4)	18.2 (0.4)	16.1 (0.4)	18.1 (0.4
48 49		Age (years)				166.1 (6.
50		Height (cm)	177.1 (6.6)	179.0 (6.5)*	165.4 (6.6)	
51 52		Body weight (kg)	69.0 (12.3)	74.3 (13.0)*	60.8 (10.8)	63.4 (11.
53 54		Body mass index (BMI kg/m2)	22.0 (3.5)	23.2 (3.7)*	22.2 (3.7)	23.0 (4.0
55 56		Waist circumference (cm)	81.0 (10.3)	83.9 (10.9)*	76.7 (9.8)	78.0 (10.
57		Total Body Fat Mass (kg)	13.3 (9.4)	15.6 (10.4)*	19.9 (8.3)	21.7 (9.1
58 59		Fat Mass Index (FMI kg/m2)	4.2 (3.0)	4.9 (3.2) [*]	7.3 (3.0)	7.9 (3.3
60		Total Body Lean Mass (kg)	54.0 (6.5)	56.4 (6.9)*	38.9 (4.5)	39.3 (4.7

18.1 (0.4)

166.1 (6.6)*

63.4 (11.6)^{*}

 $23.0(4.0)^*$

78.0 (10.8)*

21.7 (9.1)*

7.9 (3.3)*

39.3 (4.7)*

Lean Mass Index (LMI kg/m2)	17.2 (1.6)	17.6 (1.8)*	14.2 (1.3)	14.2 (1.4)
Appendicular Lean Mass (kg)	25.3 (3.4)	26.2 (3.6)*	17.4 (2.3)	17.4 (2.3)
Appendicular Lean Mass Index (aLMI kg/m2)	8.1 (0.9)	8.2 (0.9)*	6.4 (0.7)	6.3 (0.7)*
Accelerometer variables				
Wear time per valid day	14.2 (1.2)		14.1 (1.1)	
Counts per minute	362.9 (137.5)		334.0 (111.9)∞	
Minutes per day in different intensities				
Sedentary (cpm 0 – 99)	573.3 (77.3)		565.3 (63.2)	
Light (cpm 100 – 1951)	230.5 (58.8)		236.2 (48.4)	
Moderate (cpm 1952 – 5723)	45.8 (20.6)		40.2 (17.7) [∞]	
Vigorous (cpm ≥ 5724)	3.7 (5.8)		2.9 (4.1) [∞]	
MVPA [#] (cpm ≥ 1952)	49.5 (23.4)		43.1 (19.6) ∞	
Meeting MVPA guidelines per day				
0 – 29 minutes	35 (20.5)		69 (26.5)	
30 – 59 minutes	90 (52.6)		146 (56.2)	
≥ 60 minutes	46 (26.9)		45 (17.3) [§]	
Values are means with standard deviation in kg/height in meters ² , FMI: fat mass in kg/h aLMI: appendicular lean mass in kg/height in available.	neight in meters ² ,	LMI: lean mass i	n kg/height in meters	-
*: Significantly different from baseline measu	urement (p < 0.05)			
∞: Significantly different from boys (mean).				
#: MVPA: moderate to vigorous physical act	ivity, using cut-off	s suggested by F	reedson.[19]	

Table 2 displays the association between minutes spent in sedentary activity at

baseline and changes in body composition between baseline and follow-up. There

was no associat	tion bet	ween sedenta	ry activity	and cha	anges in BMI,	waist			
circumference a	and FMI	in neither boy	rs nor girls	s. In girls	s, but not in b	oys, there			
significant asso	ciation t	between minut	tes spent i	in seder	ntary activity a	at baseline			
changes in both LMI ($p < 0.01$) and aLMI ($p = 0.02$). Adjustment for covariates a									
-					-				
MVPA slightly a	ttenuate	ed the associa	ition with a	aLMI (p	= 0.05).				
Table 2. Assoc			•	•	•	/ activity			
(CPM 0 – 99) a	at baseli			y compo					
	Data	Boys (n = 17	-	D-1-	Girls (n = 260	-			
	Beta	95% CI	p value	Beta	95% CI	p value			
ΔBMI									
Model 1	-0.02	-0.13, 0.09	0.76	-0.05	-0.15, 0.05	0.33			
Model 2	-0.02	-0.17, 0.12	0.75	-0.11	-0.24, 0.03	0.12			
Model 3	0.01	-0.17, 0.20	0.88	-0.11	-0.27, 0.05	0.16			
Δ waist									
circumferenc									
е					3				
Model 1	0.17	-0.21, 0.56	0.37	-0.01	-0.41, 0.40	0.96			
Model 2	0.27	-0.24, 0.78	0.30	-0.33	-0.87, 0.20	0.22			
Model 3	0.42	-0.23, 1.07	0.20	-0.44	-1.06, 0.18	0.17			
Δ FMI									
Model 1	0.00	-0.10, 0.10	0.99	-0.01	-0.11, 0.08	0.83			
Model 2	-0.02	-0.16, 0.11	0.74	-0.06	-0.18, 0.07	0.36			
Model 3	0.00	-0.17, 0.17	0.98	-0.05	-0.20, 0.09	0.48			
Δ LMI									
Model 1	0.00	-0.05, 0.05	0.88	-0.06	-0.09, - 0.02	<0.01			

2									-			
3 4		Model 2	0.01	-0.06, 0.07	0.77	-0.07	-0.12, -	<0.01				
5 6							0.02					
7		Model 3	0.02	-0.06, 0.10	0.63	-0.08	-0.13, -	<0.01				
8 9							0.03					
10 11		Δ aLMI							_			
12		Model 1	0.00	-0.03, 0.03	0.84	-0.02	-0.04, -	0.02	-			
13 14							0.00					
15 16		Model 2	0.00	-0.03, 0.04	0.81	-0.03	-0.05, -	0.02	-			
17 18				,			0.01					
19		Model 3	0.01	-0.04, 0.05	0.71	-0.03	-0.06, 0.00	0.05	-			
20 21	1	#: The table display		sociation betwee					ence in			
22 23	2	BMI (kg/m²), waist	circumfe	rence, FMI (fat m	ass in kg/m	n²), LMI (le	ean mass in kg/i	m²) and aLl	MI			
24	3	(appendicular lean	mass in	kg/m²) between I	Fit Futures	1 (2010-2	011) and Fit Fut	tures 2 (20 ⁻	12-2013).			
25 26	4	The models give the beta coefficient for 30 minutes increase in sedentary activity. All models were										
27 28	5	adjusted for baseline values of the body composition parameter. In model 2 also adjusted for time										
29 6 between measurements and baseline values of screen time on weekdays, study spe									on, age in			
30 31	7	half-years, regularit	ty of eati	ng breakfast and	device wea	ar time. In	Model 3 adjuste	ed also for r	minutes			
32 33	8	spent in Moderate-to-vigorous physical activity (CPM ≥ 1952).										
34	9											
35 36												
37 38												
39	10	Table 3 displays	s the as	sociation betw	een minu	ites spe	nt in light acti	vity at ba	seline			
40 41												
42 43	11	and changes in	body co	omposition bet	tween bas	seline ar	nd follow-up.	There wa	s no			
44												
45 46	12	association betw	veen th	e exposure ar	nd either b	ody cor	nposition para	ameter in	boys. In			
47 48												
49	13	girls there was s	some ev	vidence to sug	igest an a	ssociati	on with chang	ge in wais	st			
50 51												
52 53	14	circumference (p =0.05), but the asso	ciation w	as atten	uated after a	djustment	ts (p =			
54												
55 56	15	0.17). Minutes s	pent in	light physical	activity w	as also	associated w	ith chang	es in LMI			
57 58		·	-		2			5				
59	16	(p < 0.01 (Mode	ls 2 an	d 3)) and aLM	l (p = 0.04	1 (Mode	l 2) and 0.05	(Model 3))).			
60		M ²		,,	₩. 	(,	(,			

1

Minutes spent in light physical activity was also associated with chang	jes in LMI
0.01 (Models 2 and 3)) and aLMI (p = 0.04 (Model 2) and 0.05 (Model 3	;)).

	В	oys (n = 171)	Girls (n = 260)			
	Beta	95% CI	p value	Beta	95% CI	p valu	
Δ BMI							
Model 1	0.04	-0.11, 0.18	0.60	0.05	-0.09, 0.19	0.47	
Model 2	0.01	-0.17, 0.18	0.93	0.12	-0.04, 0.27	0.13	
Model 3	-0.01	-0.20, 0.17	0.88	0.11	-0.05, 0.27	0.16	
Δ waist circumference		0					
Model 1	-0.11	-0.62, 0.40	0.68	0.54	0.01, 1.07	0.05	
Model 2	-0.38	-1.00, 0.23	0.22	0.43	-0.19, 1.05	0.17	
Model 3	-0.42	-1.07, 0.23	0.20	0.44	-0.19, 1.06	0.17	
Δ FMI							
Model 1	0.03	-0.10, 0.16	0.67	0.02	-0.10, 0.15	0.71	
Model 2	0.01	-0.15, 0.18	0.87	0.06	-0.09, 0.20	0.43	
Model 3	-0.00	-0.17, 0.17	0.98	0.05	-0.09, 0.20	0.49	
Δ LMI							
Model 1	-0.01	-0.07, 0.06	0.84	0.04	-0.01, 0.09	0.08	
Model 2	-0.02	-0.09, 0.06	0.67	0.08	0.03, 0.13	<0.0	

Model 3	-0.02	-0.10,	0.63	0.08	0.03, 0.13	<0.01		
	0.02		0.00	0.00	0100, 0110	0.01		
		0.06						
$\Delta aLMI$								
Model 1	0.00	-0.03,	0.87	0.02	-0.01, 0.04	0.16		
		0.04						
Model 2	-0.01	-0.05,	0.73	0.03	0.00, 0.06	0.04		
		0.04						
Model 3	-0.01	-0.05,	0.70	0.03	-0.00, 0.06	0.05		
		0.04						
#: The table displays the association between minutes spent in light activity and difference in BMI								
(kg/m ²), waist circumfer	ence, FMI (f	fat mass in kg/r	m²), LMI (le	ean mass	s in kg/m²) and aLM	I		
(appendicular lean mass	s in kg/m²) t	petween Fit Fut	ures 1 (20	10-2011)) and Fit Futures 2 (2012-2013)		

4 The models give the beta coefficient for 30 minutes increase in light activity. All models were adjusted

5 for baseline values of the body composition parameter. In model 2 also adjusted for time between

6 measurements and baseline values of screen time on weekdays, study specialisation, age in half-

years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent
 in Moderate-to-vigorous physical activity (CPM ≥ 1952).

14.

10 Table 4 displays the association between minutes in MVPA at baseline and changes

in body composition between baseline and follow-up. There was no association

12 between time spent in MVPA and changes in either measure of body composition for

13 either sex.

Table 4. Association between minutes per day spent in MVPA (CPM \ge 1952) at baseline and changes in body composition[#].

B	oys (n = 171	1)		Girls (n = 260)	
Beta	95% CI	p value	Beta	95% CI	p value

Page 23 of 45

Δ BMI							
	Model 1	0.11	-0.07,	0.22	-0.00	-0.17, 0.16	0.97
			0.30				
	Model 2	0.08	-0.13,	0.47	0.07	-0.11, 0.25	0.47
			0.29				
Δ waist							
circumfer	ence						
	Model 1	0.25	-0.39,	0.44	-0.03	-0.68, 0.63	0.94
			0.89				
	Model 2	-0.02	-0.75,	0.95	0.02	-0.70, 0.74	0.96
			0.71				
Δ FMI							
	Model 1	0.02	-0.15,	0.83	-0.01	-0.17, 0.14	0.86
			0.19				
	Model 2	0.06	-0.14,	0.57	0.05	-0.12, 0.22	0.54
			0.25				
Δ LMI							
	Model 1	0.07	-0.02,	0.11	0.03	-0.03, 0.09	0.33
			0.15				
	Model 2	0.01	-0.08,	0.86	0.02	-0.04, 0.09	0.44
			0.10				
Δ aLMI							
	Model 1	0.03	-0.02,	0.19	0.02	-0.01, 0.05	0.13
			0.08				
	Model 2	0.00	-0.05,	0.92	0.02	-0.01, 0.05	0.18
			0.05				

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity
(MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass
in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit
Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both
models were adjusted for baseline values of the body composition parameter. In model 2 also
adjusted for time between measurements and baseline values of screen time on weekdays, study
specialisation, age in half-years, regularity of eating breakfast and device wear time.

2 3 4 5	1	
6 7 8 9	2	In Appendix Tables 1-3, we present sub-analyses restricted to those with complete
10 11 12 13	3	data on pubertal development, confirming the results displayed in Tables 2-4 also
14 15 16	4	after adjustments for pubertal development. Overall, adjustment for pubertal
17 18 19 20	5	development had no substantial impact on an association between sedentary, light
21 22 23	6	and moderate-to-vigorous physical activity and changes in body composition for
24 25 26 27	7	either sex in complete case analyses. However, the association between minutes
28 29 30	8	spent in sedentary activity- and light activity and changes in appendicular lean mass
31 32 33 34	9	index was no longer significant for girls in Model 3. The point estimates did not differ
35 36 37 38	10	from those from analyses without adjustments for pubertal development, however.
39 40 41 42	11	Discussion
43 44 45 46	12	In this longitudinal population-based study of Norwegian adolescents there were in
40 47 48 49	13	both boys and girls no associations between objectively measured physical activity at
50 51 52 53	14	baseline and two-year changes in BMI, waist circumference and FMI. Both boys and
54 55 56	15	girls had statistically significant increases in the measures of body composition
57 58 59 60	16	(except lean mass index and appendicular lean mass in girls). Objectively measured

Page 25 of 45

1 2 BMJ Open

3 4 5	1	physical activity did not predict changes in boys. In girls there was a weak
6 7 8 9	2	association between minutes spent in sedentary- and light physical activity and
10 11 12	3	changes in indices of lean mass.
13 14 15 16	4	Although the magnitude of change differed, both sexes experienced increases in
17 18 19 20	5	measures of body composition. In boys, FMI increased by 0.7 units, (+ 16.7%),
21 22 23	6	whereas LMI increased by 0.4 units (+ 2.3 %) from baseline. Similar relative changes
24 25 26 27	7	were observed in girls, (FMI +8.2 %) and (LMI + 0.7%), indicating that FMI increases
28 29 30 31	8	relatively more than LMI during late adolescence. We observed statistically significant
32 33 34	9	differences in minutes spent in moderate ($p < 0.01$) and vigorous ($p = 0.04$) intensity
35 36 37 38	10	between boys and girls, but time spent in other intensity levels did not differ.
39 40 41	11	Differences in physical activity by sex is consistent with previous research.[22, 23]
42 43 44 45	12	Differences in changes in body composition by sex are biologically determined during
46 47 48	13	adolescence, with sex hormones resulting in fat mass accrual in girls and lean mass
49 50 51 52	14	accrual in boys.[24, 25] The observation that sedentary- and light activity predicted
53 54 55	15	changes in indices of lean mass in girls, but not boys, may be explained by these
56 57 58 59	16	expected biological differences. Physical activity may have somewhat greater
60	17	potential to influence lean mass accrual in girls than in boys during this period, as fat-

Page 26 of 45

1 2	
3 4	
5	
6 7	
8 9	
10	
11	
13 14	
15	
17	
18 19	
20 21	
22	
23 24	
25 26	
27	
28 29	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 32 34 35 36 37 36 37 36 37 36 37 36 37 36 37 36 37 38 39 31 32 33 36 37	
32 33	
34	
35 36	
37 38	
39	
40 41	
42 43	
44 45	
46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59 60	

1	free mass is relatively stable in girls in late adolescence whereas it increases up to
2	18 years of age in boys.[26]
3	In the present study sedentary- and light activity had opposing effects on lean mass
4	in girls. In a study using iso-temporal substitution models, positive prospective effects
5	on fat mass was found when substituting 30 minutes of sedentary activity with MVPA,
6	but not when substituted with light activity.[27] We did not use such modelling
7	techniques, but it is reasonable that sedentary- and light physical activity have
8	opposing effects on lean mass.[28] Sedentary- and light activity was correlated (r = -
9	0.39), but minutes spent in different intensity levels are not directly a function of each
10	other as wear time in the participants varies between individuals. Based on wear time
11	inclusion criteria, the theoretical time span for wear time lies between 10 and 24
12	hours. Thus, minutes spent in sedentary activity may not be deduced from the sum of
13	minutes spent in other intensities and vice versa, but it is plausible that higher wear
14	time results in more sedentary time. This was evident in an exploratory analyses on
15	the same cohort (not included in the present study), where higher wear time was
16	significantly associated with more sedentary activity and less light activity ($p < 0.01$).
17	Adjusting for wear time (Models 2) did not change the associations substantially for

BMJ Open

3 4 5	1	sedentary activity (Table 2), but had some effect on the associations with light
6 7 8 9	2	physical activity (Table 3). Because of the inverse relationship between minutes
10 11 12 13	3	spent sedentary and in light activity, it is not possible to determine whether it is
14 15 16	4	sedentary time or light activity-time that is associated with change in LMI. The
17 18 19	5	practical consequences are nevertheless that being active increases lean mass in
20 21 22 23 24	6	girls.
25 26 27	7	When interpreting results, we must acknowledge the limitations of DXA in the
28 29 30 31	8	estimation of lean mass, which can be affected by both biological factors and
32 33 34	9	measurement error.[29] Because the relative increase in lean mass was small, only
35 36 37 38	10	slight differences in for instance individual hydration status at the two time-points may
39 40 41 42	11	influence estimates and thus the association.
43 44 45	12	There was no associations between objectively measured physical activity and
46 47 48 49	13	change in BMI, waist circumference and FMI for either sex. It may be that the
50 51 52	14	negative effects of less physical activity have not yet had time to manifest themselves
53 54 55 56	15	in a population still undergoing physiological changes as a result of natural growth,
57 58 59 60	16	especially considering the relatively short 2-year follow-up. Our results are in line with

1 2	
3 4 5 6 7 8 9	
5	
6 7	
8	
9 10	
11	
12 12	
14	
15 16	
17	
18 19	
20	
21 22	
23	
24 25	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 	
27 28	
28 29 30	
31	
32 33 34 35 36 37	
33 34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
60	

1

1	a systematic review suggesting that objectively measured PA is not an important
2	predictor of change in adiposity in children, adolescents and adults.[12] In contrast,
3	another systematic review found a protective effect of physical activity on adiposity in
4	adolescents.[10] There were however several methodological weaknesses in the
5	included studies of this review, particularly regarding the validity of the measurement
6	of both physical activity and body composition. In contrast, our study employed
7	robust measures of both these exposures- and outcomes, a combination which is
8	lacking in much past research on the association between the two.[10-12]
9	In adolescents, physical activity is influenced by friends, family and other social
10	support,[30] and is less stable than in adults.[31-33] Follow-up data on objectively
11	measured physical activity was not available in the present study, but some evidence
12	suggests that the decline in physical activity is steeper prior to the onset of
13	adolescence.[34] Reductions in level of physical activity during the transition from
14	adolescence to young adulthood nevertheless often occur.[35] Prior observations
15	from the same cohort showed that change in self-reported physical activity between
16	baseline and follow-up was a stronger predictor of change in body composition than
17	self-reported baseline physical activity.[36] Other studies have suggested that

Page 29 of 45

1 2 BMJ Open

2 3 4 5	
3 4 5 6 7 8 9 10 11	
9 10 11	
12 13 14 15	
16 17 18	
19 20 21 22	
22 23 24 25	
26 27 28	
29 30 31 32	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1
36 37 38 39	1
40 41 42	1
43 44 45	1
46 47 48 49	1
50 51 52	1
53 54 55 56	1
57 58 59	1
60	-

1	change in activity during follow-up might obscure an association with body
2	composition.[37, 38] In a sub-analyses, one of four in both the highest and lowest
3	categories of MVPA at baseline reported decreased (high MVPA at baseline) and
4	increased (low MVPA at baseline) self-reported physical activity at follow up, thus
5	indicating that physical activity in adolescents is fluctuant. These two observations,
6	assuming that measurement of both MVPA and self-reported hours per week of
7	physical activity are representative of actual physical activity behaviour at the time,
8	work in opposing directions with regard to the effect of physical activity on changes in
9	adiposity. This phenomenon is known as regression dilution bias and may flatten the
10	regression slope and cause an underestimate of the actual association.[39] With an
11	annual decline in total physical activity of 7% in adolescents, researchers must
12	consider the possibility that measured physical activity has a "best before-date". It
13	remains questionable whether baseline measurements of a fluctuant behaviour such
14	as physical activity is representative of actual habits during the period of follow-up. It
15	may be that the measurement represents current, but not future (or even prior)
16	habits.[12, 40] This has implications for longitudinal studies of the relationship
17	between physical activity and body composition.[38]

1 2 3 4	1	
5 6		
7 8 9	2	Strengths and limitations
10 11 12 13 14	3	The primary strength of this study are objective measures of both physical activity
15 16	4	and body composition parameters, and the inclusion of tissue-specific measures of
17 18 19 20 21	5	body composition. Some limitations have to be considered. As the Fit Futures study
22 23 24	6	did not include a validated food frequency questionnaire or similar instrument for
25 26 27	7	nutritional assessment, we were not able to fully adjust for the potential confounding
28 29 30 31	8	effects of nutrition and changes in food habits of adolescents on changes in body
32 33 34	9	composition. Accelerometer-measured physical activity has limitations. A hip worn
35 36 37 38	10	accelerometer such as the ActiGraph GT3X is not able to correctly measure cycling
39 40 41	11	and swimming.[41] Furthermore, accelerometers are dependent on user-compliance,
42 43 44	12	and non-wear time therefore affects the amount of activity which is actually
45 46 47 48	13	measured. Subjective judgement determines data management and analyses, e.g.
49 50 51 52	14	the decision to exclude participants with wear time < 10 hours and < 4 consecutive
53 54 55	15	days, is a trade-off between quality of data and the number of participants with valid
56 57 58 59 60	16	data. We lacked complete data on physical activity and adjustment variables in 212

Page 31 of 45

1 2 BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
20 21	
∠ I วา	
21 22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	participants, but changes in BMI, waist circumference, FMI, LMI (except in girls, p =
2	0.04) and aLMI were not significantly different between those with- and without
3	complete exposure data. Furthermore, of those with valid data concerning both
4	physical activity and body composition parameters at baseline, close to 25% did not
5	attend the follow up. Although longitudinal observational studies are superior to
6	cross-sectional studies to examine causation, they are also susceptible to directional
7	bias, since participants may avoid physical activity because they are overweight, and
8	not be overweight because they are inactive.[42-44] Finally, as the participants were
9	16 years old, much may already have happened both to the level of physical activity
10	and the different measures of body composition prior to participation. In light of this, 2
11	years of follow-up may be a short time frame to determine the potential effects of
12	physical activity on changes in the different body composition parameters.
13	
14	Conclusion
15	Objectively measured physical activity was not significantly associated with change in
16	objectively measured BMI, waist circumference or FMI after two years in this cohort

3 4 5	1	of Norwegian adolescents. There was evidence to suggest that sedentary- and light
6 7 8 9	2	activity affected indices of lean mass in girls, but not boys.
10 11 12 13	3	
14 15 16 17 18	4	
19 20 21 22 23 24		
25 26 27 28		
29 30 31 32 33		
34 35 36 37		
38 39 40 41		
42 43 44 45		
46 47 48 49 50		
50 51 52 53 54		
55 56 57 58		
59 60		

Acknowledgements

The authors thank the participants in the study, as well as the staff at the Clinical Research Unit at the University Hospital of North Norway for data collection and clinical measurements. We also thank the Fit Futures Steering Committee in both studies. Footnotes **Contributors** NAA wrote the draft of the manuscript, which was revised and edited by all authors several times during the process. SB produced the accelerometer variables in close collaboration with AH, who wrote the software which converted raw accelerometer data to variables. BKJ contributed to the statistical analyses, and BM specifically contributed to the discussion of physical activity. NE and ASF were among the principal investigators in FF1 and FF2 and contributed significantly to the acquisition of data. SG formulated the research question and conceived the study. All authors have substantially contributed to the study, and have read and approved the final manuscript.

2
1
4
5
6
7
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
21
22
23
3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 56 37 38 37 38
24
25
26
27
28
29
30
31
32
33
34
25
22
30
34 35 36 37 38 39
38
39
40
41
42
43
44
45
45 46
46 47
48
49
50
51
52
53
54
55
55 56
50 57
58
59

1 Funding

1

2 This particular manuscript has not received any specific funding.

3 Competing interests

4 The authors declare that they have no competing interests.

- 5 <u>Consent for publication</u>
- 6 Not applicable
- 7 Ethics approval
- 8 This study was approved by The Regional Committee of Medical and Health
- 9 Research Ethics (2014/1666/REK nord).
- 10 Data availability statement
- 11 The data that support the findings of this study are available from UiT The Arctic
- 12 University of Norway. Restrictions apply to the availability of these data, which were

used under license for the current study, and are thus not publicly available.

BMJ Open

2 3		
4	1	References
5 6		
7 8	2	1. World Health Organization. Global action plan on physical activity 2018–2030:
9 10		
10 11 12	3	more active people for a healthier world. Geneva 2018.
13		
14 15	4	2. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-
16		
17 18 10	5	communicable diseases worldwide: an analysis of burden of disease and life
19 20		
21 22	6	expectancy. <i>Lancet</i> 2012;380:219-29.
23		
24 25 26	7	3. World Health Organization. Global Recommendations on Physical Activity for
20 27		
28 29	8	Health. WHO Guidelines. Geneva 2010.
30		
31 32 22	9	4. Kolle E SJ, Hansen BH, Anderssen SA. [Fysisk aktivitet blant 6-, 9- og 15-åringer i
33 34		
35 36	10	Norge. Resultater fra en kartlegging i 2011]. The Norwegian Directorate of Health,
37		
38	11	Oslo, Norway. 2012.
39 40		
40 41		
42	12	5. Dumith SC, Gigante DP, Domingues MR, et al. Physical activity change during
43		
44		
45 46	13	adolescence: a systematic review and a pooled analysis. Int J Epidemiol.
47		
48		
49	14	2011;40:685-98.
50		
51 52		
52 53	15	6. Collings PJ, Wijndaele K, Corder K, et al. Magnitude and determinants of change
54		
55		
56	16	in objectively-measured physical activity, sedentary time and sleep duration from
57 58		
50 59		
60		

2 3 4 5	1	ages 15 to 17.5y in UK adolescents: the ROOTS study. Int J Behav Nutr Phys Act.
6 7 8	2	2015;12:61.
9 10 11 12	3	7. Crane J, Temple V. A systematic review of dropout from organized sport among
13 14 15	4	children and youth. Eur Phys Educ Rev. 2015;21:114-31.
16 17 18 19	5	8. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
20 21 22 23	6	overweight and obesity in children and adults during 1980-2013: a systematic
23 24 25 26	7	analysis for the Global Burden of Disease Study 2013. <i>Lancet</i> . 2014;384:766-81.
27 28 29	8	9. NCD Risck Factor Collaboration (NCD-RisC). Worldwide trends in body-mass
30 31 32 33	9	index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of
34 35 36	10	2416 population-based measurement studies in 128.9 million children, adolescents,
37 38 39 40	11	and adults. <i>Lancet</i> . 2017. doi:10.1016/S0140-6736(17)32129-3.
41 42 43	12	10. Reichert FF, Baptista Menezes AM, Wells JC, et al. Physical activity as a
44 45 46 47	13	predictor of adolescent body fatness: a systematic review. Sports Med. 2009;39:279-
48 49 50	14	94.
51 52 53 54	15	11. Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured
55 56 57	16	habitual physical activity and adiposity in children and adolescents: Systematic
58 59 60	17	review. Int J Pediatr Obes. 2010;5:3-18.

1

Page 37 of 45

1 2 BMJ Open

3	
4	
5	
6 7	
8	
9	
9 10	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
21 22 23 24	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	12. Wilks DC, Besson H, Lindroos AK, et al. Objectively measured physical activity
2	and obesity prevention in children, adolescents and adults: a systematic review of
3	prospective studies. <i>Obes Rev</i> . 2011;12:e119-29.
4	13. Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus
5	accelerometer-measured physical activity. <i>Med Sci Sports Exerc</i> . 2014;46:99-106.
6	14. Aars NA, Jacobsen BK, Furberg AS, et al. Self-reported physical activity during
7	leisure time was favourably associated with body composition in Norwegian
8	adolescents. Acta Paediatr. 2018. doi:10.1111/apa.14660.
9	15. Goulding A, Taylor RW, Grant AM, et al. Relationships of appendicular LMI and
10	total body LMI to bone mass and physical activity levels in a birth cohort of New
11	Zealand five-year olds. <i>Bone</i> . 2009;45:455-9.
12	16. Bridge P, Pocock NA, Nguyen T, et al. Validation of longitudinal DXA changes in
13	body composition from pre- to mid-adolescence using MRI as reference. <i>J Clin</i>
14	<i>Densitom</i> . 2011;14:340-7.
15	17. Trost SG, Pate RR, Freedson PS, et al. Using objective physical activity
16	measures with youth: how many days of monitoring are needed? Med Sci Sports

⁹ 17 *Exerc.* 2000;32:426-31.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10 11 12 13 14 15 16 17	
17	
18 19	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
5∠ 53	
53 54	
54 55	
55 56	
50 57	
57	
58 59	
55	

1 2

1	18. Hecht A, Ma S, Porszasz J, et al. Methodology for using long-term accelerometry
2	monitoring to describe daily activity patterns in COPD. COPD. 2009;6:121-9.
3	19. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and
4	Applications, Inc. accelerometer. <i>Med Sci Sports Exerc</i> . 1998;30:777-81.
5	20. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity
6	monitors. <i>J Sci Med Sport</i> . 2011;14:411-6.
7	21. Cuzick J. A Wilcoxon-type test for trend. <i>Stat Med</i> . 1985;4:87-90.
8	22. Kolle E, Steene-Johannessen J, Andersen LB, et al. Objectively assessed
9	physical activity and aerobic fitness in a population-based sample of Norwegian 9-
10	and 15-year-olds. Scand J Med Sci Sports. 2010;20:e41-7.
11	23. Van Hecke L, Loyen A, Verloigne M, et al. Variation in population levels of
12	physical activity in European children and adolescents according to cross-European
13	studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act.
14	2016;13:70.
15	24. Baxter-Jones AD, Eisenmann JC, Mirwald RL, et al. The influence of physical
16	activity on lean mass accrual during adolescence: a longitudinal analysis. J Appl

⁵⁹₆₀ 17 *Physiol (1985)*. 2008;105:734-41.

BMJ Open

2 3 4	1	25. Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in
5 6 7 8	2	2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with
9 10 11 12	3	dual X-ray absorptiometry. <i>Eur J Clin Nutr</i> . 2014;68:664-70.
13 14 15	4	26. Siervogel RM, Demerath EW, Schubert C, et al. Puberty and body composition.
16 17 18 19	5	<i>Horm Res</i> . 2003;60:36-45.
20 21 22	6	27. Sardinha LB, Marques A, Minderico C, et al. Cross-sectional and prospective
23 24 25 26	7	impact of reallocating sedentary time to physical activity on children's body
27 28 29	8	composition. <i>Pediatr Obes</i> . 2017;12:373-9.
30 31 32 33	9	28. Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise. Seventh
34 35 36	10	edition. Champaign, IL: Human Kinetics; 2020.
37 38 39 40	11	29. Lohman TG, Milliken LA. ACSM's body composition assessment. Champaign, IL:
41 42 43	12	Human Kinetics; 2020.
44 45 46 47	13	30. Mendonca G, Cheng LA, Melo EN, et al. Physical activity and social support in
48 49 50	14	adolescents: a systematic review. <i>Health Educ Res</i> . 2014;29:822-39.
51 52 53 54	15	31. Telama R, Yang X. Decline of physical activity from youth to young adulthood in
55 56 57 58 59 60	16	Finland. <i>Med Sci Sports Exerc.</i> 2000;32:1617-22.

1	
2	
3	
4	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
35 36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	

60

1	32. Varma VR, Dey D, Leroux A, et al. Re-evaluating the effect of age on physical
2	activity over the lifespan. <i>Prev Med</i> . 2017;101:102-8.
3	33. Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in
4	the United States, by sex and cross-sectional age. Med Sci Sports Exerc.
5	2000;32:1601-9.
6	34. Farooq MA, Parkinson KN, Adamson AJ, et al. Timing of the decline in physical
7	activity in childhood and adolescence: Gateshead Millennium Cohort Study. BrJ
8	Sports Med. 2018;52:1002-6
9	35. Corder K, Winpenny E, Love R, et al. Change in physical activity from
10	adolescence to early adulthood: a systematic review and meta-analysis of
11	longitudinal cohort studies. Br J Sports Med. 2019;53:496-503.
12	36. Aars NA, Jacobsen BK, Morseth B, et al. Longitudinal changes in body
13	composition and waist circumference by self-reported levels of physical activity in
14	leisure among adolescents: the Tromsø study, Fit Futures. BMC Sports Sci Med
15	<i>Rehabil.</i> 2019;11:37.

BMJ Open

2	
3	
4	
5	
6	
7	
~	
8	
9	
9 10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	excess weight gain among elementary schoolchildren in multiethnic, low-income,
3	inner-city neighborhoods. Am J Epidemiol. 2000;152:739-46.
4	38. Collings PJ, Wijndaele K, Corder K, et al. Objectively measured physical activity
5	and longitudinal changes in adolescent body fatness: an observational cohort study.
6	<i>Pediatr Obes</i> . 2016;11:107-14.
7	39. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression
8	dilution bias. <i>BMJ</i> . 2010;340:c2289.
9	40. Kettaneh A, Oppert JM, Heude B, et al. Changes in physical activity explain
10	paradoxical relationship between baseline physical activity and adiposity changes in
11	adolescent girls: the FLVS II study. Int J Obes (Lond). 2005;29:586-93.
12	41. Herman Hansen B, Bortnes I, Hildebrand M, et al. Validity of the ActiGraph GT1M
13	during walking and cycling. <i>J Sports Sci</i> . 2014;32:510-6.
14	42. van Sluijs EM, Sharp SJ, Ambrosini GL, et al. The independent prospective
15	associations of activity intensity and dietary energy density with adiposity in young
16	adolescents. <i>Br J Nutr</i> . 2016;115:921-9.

2	
3	
4	
5	
6	
7	
6 7 8	
9	
10	
11	
12	
13	
14	
13 14 15	
16	
17	
18	
19	
20	
20	
21	
22	
25	
21 22 23 24 25 26	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
55 54	
54 55	
56	
57	
58	
59	

60

7

1

43. Hjorth MF, Chaput JP, Ritz C, et al. Fatness predicts decreased physical activity 1

and increased sedentary time, but not vice versa: support from a longitudinal study in 2

8- to 11-year-old children. Int J Obes (Lond). 2014;38:959-65. 3

44. Jago R, Salway RE, Ness AR, et al. Associations between physical activity and 4

.hit. asthma, eczema and obesity in children aged 12-16: an observational cohort study. 5

BMJ Open. 2019;9:e024858. doi:10.1136/bmjopen-2018-024858. 6

Supplementary file

Appendix Table							
(CPM $0 - 99$) at baseline and changes in body composition, adjusted for puberty [#] .							
		Boys $(n = 143)$	3)		Girls $(n = 256)$		
	Beta	95% CI	p value	Beta	95% CI	p value	
Δ BMI							
Model 1	-0.02	-0.14, 0.09	0.70	-0.05	-0.15, 0.05	0.32	
Model 2	-0.02	-0.17, 0.13	0.82	-0.10	-0.24, 0.03	0.14	
Model 3	0.02	-0.18, 0.22	0.85	-0.10	-0.26, 0.06	0.20	
Δ waist							
circumference							
Model 1	0.12	-0.27, 0.51	0.55	-0.01	-0.42, 0.40	0.96	
Model 2	0.24	-0.28, 0.76	0.37	-0.38	-0.92, 0.16	0.16	
Model 3	0.38	-0.30, 1.05	0.27	-0.52	-1.15, 0.11	0.10	
Δ FMI							
Model 1	-0.01	-0.12, 0.09	0.84	-0.01	-0.11, 0.08	0.80	
Model 2	-0.02	-0.16, 0.13	0.83	-0.06	-0.18, 0.07	0.36	
Model 3	0.01	-0.18, 0.19	0.96	-0.05	-0.20, 0.10	0.49	
Δ LMI							
Model 1	0.00	-0.05, 0.06	0.90	-0.06	-0.09, -0.02	< 0.01	
Model 2	0.00	-0.07, 0.08	0.90	-0.07	-0.11, -0.02	< 0.01	
Model 3 0.02		-0.07, 0.10	0.73	-0.07	-0.13, -0.02	< 0.01	
Δ aLMI							
Model 1	-0.00	-0.03, 0.03	0.91	-0.02	-0.04, -0.00	0.02	
Model 2	0.00	-0.04, 0.04	0.97	-0.03	-0.05, -0.00	0.03	
Model 3	0.01	-0.04, 0.06	0.65	-0.03	-0.05, 0.00	0.08	

#: The table displays the association between minutes spent in sedentary activity and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in sedentary activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \geq 1952).

100 - 1951) at baseline and changes in body composition, adjusted for puberty ^{<i>r</i>} .							
	I	Boys ($n = 143$)			Girls $(n = 256)$		
	Beta	95% CI	p value	Beta	95% CI	p value	
Δ BMI							
Model 1	0.05	-0.10, 0.20	0.53	0.04	-0.10, 0.18	0.56	
Model 2	0.00	-0.18, 0.19	0.98	0.11	-0.05, 0.27	0.17	
Model 3	-0.02	-0.22, 0.18	0.85	0.10	-0.06, 0.26	0.20	
Δ waist circumference							
Model 1	-0.01	-0.53, 0.51	0.97	0.53	-0.01, 1.06	0.05	
Model 2	-0.34	-0.97, 0.29	0.29	0.51	-0.11, 1.13	0.11	
Model 3	-0.38	-1.05, 0.30	0.27	0.52	-0.11, 1.15	0.11	
Δ FMI							
Model 1	0.05	-0.09, 0.18	0.51	0.02	-0.11, 0.14	0.80	
Model 2	0.01	-0.16, 0.18	0.93	0.06	-0.09, 0.20	0.43	
Model 3	-0.01	-0.19, 0.18	0.96	0.05	-0.10, 0.20	0.49	
Δ LMI							
Model 1	-0.01	-0.08, 0.06	0.84	0.04	-0.01, 0.09	0.09	
Model 2	-0.01	-0.10, 0.07	0.80	0.08	0.02, 0.13	< 0.01	
Model 3	-0.02	-0.10, 0.07	0.73	0.07	0.02, 0.13	< 0.01	
Δ aLMI							
Model 1	0.00	-0.04, 0.04	0.93	0.02	-0.01, 0.04	0.19	
Model 2	-0.01	-0.05, 0.04	0.78	0.03	-0.00, 0.06	0.06	
Model 3	-0.01	-0.06, 0.04	0.65	0.03	-0.00, 0.05	0.08	

Appendix Table 2. Association between minutes per day spent in light activity (CPM 100 - 1951) at baseline and changes in body composition, adjusted for puberty[#].

#: The table displays the association between minutes spent in light activity and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in light activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \geq 1952).

ว
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16 17
17
18
19
20
21
22
23
24
25
26 27
28
29
30
31
32
33
34
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50 57
58
50

59 60

Appendix Table 3. Association between minutes per day spent in MVPA (CPM \geq 1952) at
baseline and changes in body composition, adjusted for puberty [#] .

baseline and enanges i	,	1 / 5		puberty .			
	Bo	Boys $(n = 143)$			Girls $(n = 256)$		
	Beta	95% CI	р	Beta	95% CI	p value	
			value				
Δ BMI							
Model 1	0.11	-0.08, 0.31	0.24	-0.01	-0.17, 0.16	0.95	
Model 2	0.06	-0.15, 0.28	0.55	0.07	-0.12, 0.25	0.48	
Δ waist							
circumference							
Model 1	0.28	-0.38, 0.95	0.40	-0.03	-0.69, 0.63	0.94	
Model 2	-0.03	-0.77, 0.72	0.95	-0.00	-0.72, 0.72	0.99	
ΔFMI							
Model 1	0.02	-0.16, 0.20	0.80	-0.01	-0.17, 0.14	0.86	
Model 2	0.04	-0.16, 0.24	0.68	0.05	-0.12, 0.22	0.55	
Δ LMI							
Model 1	0.08	-0.02, 0.17	0.11	0.03	-0.03, 0.09	0.35	
Model 2	0.01	-0.09, 0.11	0.81	0.02	-0.04, 0.09	0.49	
Δ aLMI							
Model 1	0.05	-0.01, 0.10	0.09	0.02	-0.01, 0.05	0.14	
Model 2	0.02	-0.04, 0.07	0.60	0.02	-0.01, 0.05	0.20	

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity (MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time.

STROBE statement for submitted manuscript entitled "*The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.*"

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) P. 1,lines. 1-2.
		(<i>b</i>) P. 3, lines 1-23.
Introduction		
Background/rationale	2	P. 5, lines 1-25 and P. 6, lines 1-3.
Objectives	3	P. 6, lines 3-8.
Methods		
Study design	4	P. 6, lines 11-16.
Setting	5	P. 6, lines 11-23.
Participants	6	(<i>a</i>) P. 6, lines 18-23.
1		
Variables	7	P. 8, lines 8-25. P. 9, lines 1-22.
Data sources/ measurement	8*	P. 6, lines 17-23. P. 7, lines 1-25. P. 8, lines 1-14.
Bias	9	P. 9, lines 12-23.
Study size	10	P. 6, lines 11-23.
Quantitative variables	11	P. 9, lines 8-12.
Statistical methods	12	(a) P. 8, lines 22-25 and P. 9, lines 1-24.
		(<i>b</i>) P. 9, lines 20-24.
		(<i>c</i>) P. 6, lines 19-22.
		(<u>e</u>) P. 18, lines 21-25 and P. 19, line 1.
Results		
Participants	13*	(a) P. 6, lines 11-23.
1		(b) See (a).
Descriptive data	14*	(a) See Table 1.
		(b) See 13a
		(c) See Table 1.
Outcome data	15*	See Table 1.
Main results	16	(a) See Tables and P. 9, lines 6-20.
		(b) See Table 1.
Other analyses	17	P. 9, lines 20-23, and P. 17, lines 18-24. P. 18, lines 21-25 and P. 19, line 1
Discussion		
Key results	18	P. 15, lines 2-8.
Limitations	19	P. 16, lines 17-21. P. 17, lines 18-25. P. 18, lines 1-7.
Interpretation	20	P. 15, lines 9 – 25. P. 16, 1-25. P. 17, lines 1-25. P. 18, lines 1-7.
Generalisability	21	P. 19, lines 4-6.
Other information		
Funding	22	P. 20, lines 16.
Tunung	22	1.20, 11105 10.

BMJ Open

The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-036991.R2
Article Type:	Original research
Date Submitted by the Author:	13-Aug-2020
Complete List of Authors:	Aars, Nils; UiT The Arctic University of Norway, Department of Community Medicine; Nordlandssykehuset HF Beldo, Sigurd; UiT Arctic University of Norway, School of Sport Sciences Jacobsen, Bjarne; UiT The Arctic University of Norway, Department of Community Medicine; UiT The Arctic University of Norway, Centre for Sami Health Research Horsch, Alexander; UiT The Arctic University of Norway, Department of Computer Science Morseth, Bente; UiT Arctic University of Norway, School of Sport Sciences; UiT The Arctic University of Norway, Department of Community Medicine Emaus, Nina; UiT The Arctic University of Norway, Department of Health and Care Siences Furberg, Anne-Sofie; UiT The Arctic University of Norway, Department of Comunity Medicine; Universitetssykehuset Nord-Norge, Department of Microbiology and Infection Control Grimsgaard, Sameline; UiT The Arctic University of Norway, Department of Community Medicine
Primary Subject Heading :	Public health
Secondary Subject Heading:	Sports and exercise medicine, Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SPORTS MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	The association between objectively measured physical activity and longitudinal
5 6 7 8	2	changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.
9 10 11 12 13	3	Nils Abel Aars ^{1, 2*}
14 15 16 17	4	Sigurd Beldo ³
18 19 20 21	5	Bjarne K Jacobsen ^{1, 4}
22 23 24 25	6	Alexander Horsch ⁵
26 27 28 29	7	Bente Morseth ^{3, 1}
30 31 32 33	8	Nina Emaus ⁶
34 35 36 37	9	Anne-Sofie Furberg ^{1, 7}
38 39 40 41	10	Sameline Grimsgaard ¹
42 43 44 45	11	Sameline Grinisgaard
46 47 48 49	12	Affiliations
50 51 52 53	13	1. Department of Community Medicine, UiT The Arctic University of Norway, Tromsø,
54 55 56 57 58 59	14	Norway
60		

1 2		
3 4 5	1	2. Nordland Hospital, Bodø, Norway.
6 7 8 9	2	3. School of Sport Sciences, UiT The Arctic University of Norway, Alta, Norway
10 11 12 13	3	4. Centre for Sami Health Research, Department of Community Medicine, UiT The
14 15 16 17	4	Arctic University of Norway, Tromsø, Norway
18 19 20 21	5	5. Department of Computer Science, UiT The Arctic University of Norway, Tromsø,
22 23 24 25	6	Norway
26 27 28 29	7	6. Department of Health and Care Sciences, UiT The Arctic University of Norway,
30 31 32 33	8	Tromsø, Norway
34 35 36	9	7. Department of Microbiology and Infection Control, University Hospital of North
37 38 39 40	10	Norway, Tromsø, Norway
41 42 43 44	11	* Corresponding author. Correspondence to nils.a.aars@uit.no
45 46 47 48	12	Nils Abel Aars
49 50 51 52	13	Department of Community Medicine
53 54 55 56	14	UiT The Arctic University of Norway
57 58 59 60	15	9037 Tromsø, Norway.

to peet teries only

Word count: 3992

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

1

BMJ Open

2	
2	
2	
4	
3 4 5 6 7 8 9 10	
6	
7	
8	
9	
10	
11	
11	
12 13 14 15 16 17	
13	
14	
15	
16	
17	
18	
18 19	
קו הר	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
57	
58	
59	
60	
00	

2	Objectives: Physical activity may be important in deterring the obesity epidemic. This
3	study aimed to determine if objectively measured physical activity in first year of
4	upper secondary high school predicted changes in body composition over two years
5	of follow-up in a cohort of Norwegian adolescents (n =431).
6	Design: A longitudinal study of adolescents (mean age 16 (SD 0.4) at baseline,
7	60.3% girls) participating in the Fit Futures studies 1 (2010-11) and 2 (2012-13).
8	Setting: All eight upper secondary high schools in two municipalities in Northern
9	Norway.
10	Participants: Students participating in both studies and under the age of 18 at
11	baseline, and with valid measurement of physical activity at baseline and body
12	composition in both surveys.
13	Primary- and secondary outcomes: Change in objectively measured body mass index
14	and waist circumference, and change in dual-energy x-ray absorptiometry measured
15	fat mass index (FMI), lean mass index (LMI) and appendicular lean mass index

16 (aLMI) between baseline and follow-up.

Page 6 of 47

1 2 3 4	
4 5 6 7 8	
9 10	
11 12 13 14 15 16 17	
17 18 19 20	
18 19 20 21 22 23 24 25 26 27 28 29 30	
25 26 27 28 29	
30 31 32 33	
34 35 36 37 38	
39 40 41	
42 43 44 45	
46 47 48 49	
50 51 52 53 54	
55 56 57 58	
59 60	

1	Results : At baseline, boys had significantly higher physical activity volume (p=0.01)
2	and spent on average 6.4 (95% CI: 2.1, 10.6) more minutes in moderate-to-vigorous
3	physical activity (MVPA) than girls (p <0.01). In girls, multivariate regression analyses
4	showed that more sedentary time was negatively associated with changes in LMI (p
5	< 0.01) and aLMI (p < 0.05), whereas more light activity had opposite effects on
6	these measures (p < 0.01 and p < 0.05, respectively). No significant associations
7	between measures of baseline physical activity and changes in body composition
8	parameters was observed in boys.
9	Conclusions: In this cohort of Norwegian adolescents, sedentary and light physical
10	activity was associated with changes in LMI and aLMI in girls, but not boys. Minutes
11	spent in MVPA in first year of upper secondary high school was not associated with
12	changes in measures of body composition in neither sex after two years.
13	Strengths and limitations of this study
14	This study used objective measures of physical activity.

1		
2 3 4 5	1	The study included objectively measured weight, height and waist
6 7 8 9	2	circumference, and dual-energy x-ray absorptiometry (DXA) measures of fat-
9 10 11 12	3	and lean mass.
13 14 15 16	4	• We were not able to fully adjust for nutrition and not for pubertal development.
10 17 18 19	5	The 431 participants with complete data from both baseline and follow-up
20 21 22	6	represents 41% of those attending Fit Futures 1, indicating a degree of
23 24 25 26	7	selection.
27 28 29	8	
30 31 32 33 34 35	9	selection.
36 37 38		
39 40 41 42		
43 44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57 58		
59 60		

1 Background

6		
7 8	2	The potential of physical activity to prevent or treat a number of diseases has been
9 10		
11	3	highlighted by the World Health Organization,[1] with inactivity accounting for 9% of
12 13		
14 15	4	worldwide premature mortality.[2] Public health guidelines state that adolescents
16		
17 18	5	should engage in Moderate-to-Vigorous Physical Activity (MVPA) ≥ 60 minutes per
19 20	0	
21	6	day,[3] but in 2011, only 50% of Norwegian 15 year olds met these
22 23	0	day,[5] but in 2011, only 50% of Norwegian 15 year olds met these
24 25	_	recommendations [4] During a delegance there is a dealing in both total abusical
26	7	recommendations.[4] During adolescence there is a decline in both total physical
27 28		
29 30	8	activity and MVPA,[5, 6] and many quit or reduce participation in organized sports.[7]
31		
32 33	9	As of 2013, the prevalence of overweight and obesity (Body Mass Index (BMI) \ge 25
34 35		
36	10	kg/m ²) in Norwegians aged <20 years appear to be stabilizing at around 20% in boys
37 38		
39 40	11	and 16% in girls - comparable to the Nordic countries.[8] This is lower than in the
41		
42 43	12	United States (around 29% in boys and girls), [8] but the health effects for those
44 45		
46	13	concerned may still be substantial over the long term.[9]
47 48		
49 50	14	While physical activity has many positive health effects, its relationship with adiposity
51	14	
52 53	4 5	is loss clear and it has proven difficult to determine sourcelity, direction and magnitude
54 55	15	is less clear and it has proven difficult to determine causality, direction and magnitude
56		of this valation also [40] One as a stick of water and the size of the state of the
57 58	16	of this relationship.[10] Cross-sectional research typically shows a strong inverse
59 60		

Page 9 of 47

BMJ Open

1 2 3	
4 5 6 7	
8 9 10	
11 12 13 14	
15 16 17	
18 19 20 21 22	
22 23 24 25	
25 26 27 28	
29 30 31	
32 33 34	
35 36 37 38	1
39 40 41	1
42 43 44 45	1
45 46 47 48	1
49 50 51	1
52 53 54 55	1
56 57 58	1
59 60	1

1	association between physical activity and weight status,[11] but temporality cannot be
2	ascertained using such study designs.[12] Longitudinal studies may ascertain if lower
3	physical activity precedes excess weight gain, but a review found no evidence for a
4	relationship between objectively measured physical activity and body fat gain in
5	adolescents.[12] The lack of congruent results may in part be explained by the
6	diverse and inadequate measures of both exposure and outcome used in research of
7	the association between physical activity and body composition.[10, 11]
8	Although many methods to measure physical activity are available, the most common
9	and most feasible is self-report which commonly overestimates the total amount of
10	physical activity.[13] Body composition is most commonly assessed using BMI, but
11	BMI does not distinguish between fat- and muscle mass.[14] This has the potential to
12	cause misclassification of overweight status and may attenuate a true association
13	between physical activity and fat or muscle mass. Thus, in the current study, we
14	sought to overcome these limitations by applying objective measures of both physical
15	activity and specific measures of body composition. Our aim was to investigate the
16	association between objectively measured physical activity and changes in five
17	different measures of body composition (body mass index, waist circumference, fat

2 3 4 5	1	mass index, lean mass index and appendicular lean mass index) over two years of
6 7 8 9	2	follow-up in a cohort of Norwegian adolescents.
10 11 12 13	3	
14 15 16 17	4	Methods and materials
18		
19 20 21	5	We used data from the first and second Fit Futures cohort studies, performed in
22 23 24 25	6	2010-2011 and 2012-2013, respectively. In the first study we invited all students
26 27 28	7	(n=1,117) in their first year of upper secondary high school in the neighbouring
29 30 31	8	municipalities of Tromsø and Balsfjord in Northern Norway, and 93% participated.
32 33 34 35	9	The study was repeated two years later, when the students were in their last year of
36 37 38	10	upper secondary high school or had started as apprentices if they studied vocational
39 40 41 42	11	subjects. The second study included 868 participants, giving an attendance of 77%.
43 44 45	12	All eight upper secondary high schools in the two municipalities participated in both
46 47 48 49	13	studies. Altogether 735 adolescents attended both surveys. For the present study we
50 51 52	14	excluded those aged \geq 18 years of age at baseline (n = 38). Some participants (n =
53 54 55 56	15	240) did not have valid measurements of physical activity at baseline, and were
57 58 59 60	16	therefore not included in the study. We also excluded those with missing data on

BMJ Open

3 4 5	1	change in body composition parameters or variables included in the model (n = 26).
6 7 8 9	2	Thus, 431 participants were included in the present study (60.3% girls). Appendix
10 11 12	3	Table 1 includes descriptive characteristics of the boys and girls with a valid baseline
13 14 15 16	4	measurement of physical activity and variables included in the analyses, but who
17 18 19 20	5	were missing follow-up data on body composition parameters (n = 133).
21 22 23 24	6	Students were granted leave of absence from school to attend an examination at the
25 26 27	7	Clinical Research Unit at the University Hospital of Northern Norway in both surveys.
28 29 30 31	8	The participants attended a clinical examination where they also completed a
32 33 34	9	questionnaire, which included questions on lifestyle, screen time, dietary habits etc.
35 36 37 38	10	The participants signed a letter of informed consent, and those under the age of 16
39 40 41 42	11	brought a letter of consent signed by their parent or guardian.
43 44 45	12	All measurements were performed by trained personnel. Height was measured to the
46 47 48 49	13	nearest centimeter and weight to the nearest 100 gram, wearing light clothing and
50 51 52 53	14	using an automatic electronic scale/stadiometer (Jenix DS 102 stadiometer, Dong
54 55 56	15	Sahn Jenix, Seoul, Korea). Body mass index was calculated as body weight in
57 58 59 60	16	kilograms/height in meters ² . Waist circumference was measured to the nearest 0.1

Page 12 of 47

1 2	
2	
2 2	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10 17	
17	
10	
20	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 32 33 34 35 36 37	
32 22	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

1	centimeter at the height of the umbilicus. Fat and soft tissue lean mass in grams was
2	estimated by whole-body dual energy X-ray absorptiometry (DXA) (GE Lunar
3	Prodigy, Lunar Corporation, Madison, WI, USA). Fat mass comprises all fat, while
4	soft tissue lean mass comprises all bodily tissue except fat and skeletal mass. These
5	variables were used to calculate fat mass index (FMI, fat mass in kilograms/height in
6	meters ²) and lean mass index (LMI, lean mass in kilograms/height in meters ²). In
7	addition we calculated appendicular lean mass index (aLMI), which is the sum of soft
8	tissue lean mass in kilograms in all four extremities divided by height in meters ² .
9	Although most commonly used in studies of sarcopenia in elderly,[15] this body
10	composition parameter is arguably more specific to skeletal muscle mass than total
11	lean mass index. The ability of DXA to detect changes in appendicular lean mass in
12	young adolescents is good, and has been validated against Magnetic Resonance
13	Imaging (MRI).[16]
14	Physical activity was objectively measured using the ActiGraph GT3X accelerometer
15	(ActiGraph, LLC, Pensacola, USA). Participants were instructed to wear the device
16	on their right hip for seven consecutive days, and to remove it only when showering,
17	swimming or sleeping. The ActiLife software was used to initialize the accelerometer

Page 13 of 47

BMJ Open

1 2	
3 4 5	:
6 7 8	
9 10 11 12	
13 14 15	4
16 17 18 19	ļ
20 21 22	(
23 24 25 26	-
27 28 29	;
30 31 32 33	ļ
34 35 36	10
37 38 39 40	1
41 42 43	12
44 45 46 47	13
48 49 50	14
51 52 53 54	1
55 56 57	10
58 59 60	1

1	and download data, which was imported into the Quality Control & Analysis Tool
2	(QCAT) for data processing. This software was developed by the research group of
3	professor Horsch in Matlab (The MathWorks, Inc., Massachusetts, USA) for
4	processing of accelerometer data. The accelerometer was set in raw data mode, with
5	a sampling frequency of 30 Hertz and with normal filtering epochs of 10 seconds.
6	Data collection was initiated at 14:00 hours the first day, and concluded at 23:58 on
7	the 8 th day of measurement. We excluded data from the first day of measurement to
8	reduce reactivity bias. The criteria for a valid measurement of physical activity was
9	wear time of \geq four consecutive days, with \geq ten hours wear time per day. This has
10	been demonstrated as representative of activity over a full week.[17] The triaxial
11	algorithm developed by Hecht et al. was used to calculate wear time.[18] Minutes per
12	day in sedentary (0 – 99 CPM), light (100 – 1951 CPM), moderate (1952 – 5723
13	CPM) and vigorous (≥ 5724 CPM) physical activity was determined using the cut-offs
14	developed by Freedson.[19] The choice of these cut-offs enables direct comparisons
15	as the cohort ages, and although these cut-offs are not commonly used for
16	adolescents, we consider the bodily proportions of an adolescent to resemble that of
17	an adult in terms of measured acceleration. The device collected data in both

2
5
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30
25
25
20
27
28
29
30
31 32 33 34 35 36 37
32
33
31
24
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
59
60

1

1	uniaxial- and triaxial mode, but in the present study only the uniaxial data had been
2	processed and therefore available. Studies have shown that uniaxial data recorded
3	from the GT3X correlate well with uniaxial data recorded from previous ActiGraph
4	models.[20] Data on objectively measured physical activity was only available from
5	Fit Futures 1.
6	Baseline characteristics were presented as means with standard deviation (SD) or
7	prevalence in percentages with number of subjects (n) (Table 1). Sex-specific
8	difference in body composition between baseline and follow-up was tested using a
9	paired samples t-test. The difference in physical activity between sexes was tested
10	using a two-sample t-test, while sex differences in categories of minutes spent in
11	MVPA was tested using a chi-square test. Difference in linear trend across categories
12	of minutes spent in MVPA was tested using STATA's non-parametric test for trend,
13	developed by Cuzick.[21] Linear regression was used to determine the effect of
14	baseline physical activity on change in body composition, i.e., the change in BMI,
15	waist circumference, FMI, LMI and aLMI from the first to the second Fit Futures
16	Study.

Page 15 of 47

BMJ Open

1		
2 3 4 5	1	W
6 7 8	2	S
9 10 11 12	3	S
13 14 15	4	s
16 17 18 19	5	a
20 21 22	6	rr
23 24 25 26	7	pa
27 28 29	8	W
30 31 32 33	9	r
33 34 35 36	10	w
37 38 39	11	b
40 41 42 43	12	S
44 45 46	13	0
47 48 49 50	14	w
51 52 53	15	(a
54 55 56 57	16	lię
57 58 59 60	17	a

1	We used three different predictors of change in body composition, performing three
2	sets of analyses, with first; minutes per day spent in sedentary activity (Table 2)
3	second; minutes per day spent in light activity (Table 3) and third; minutes per day
4	spent in MVPA (Table 4). We divided the continuous variables sedentary- and light
5	activity by 30 and the continuous variable MVPA by 15 before inclusion in the
6	models, thus presenting the beta coefficient for change in body composition
7	parameter per 30 minutes of sedentary- or light activity, or per 15 minutes of MVPA,
8	with 95% confidence intervals and a p-value. In model 1 we adjusted for the baseline
9	measurement of the body composition parameter. In the adjusted models (models 2)
10	we also included time between measurements (mean (SD): 730 (74) days) and
11	baseline values of device wear time, age in half years and questionnaire data on
12	screen time on weekdays (how many hours per weekday the students spent in front
13	of a computer or television - answers ranged from none to more than ten hours per
14	weekday) and regularity of eating breakfast as an indicator of healthy meal patterns
15	(answers ranging from rarely/never to every day). In the analyses of sedentary- and
16	light activity we also adjusted for minutes spent in MVPA (models 3). In a subset of
17	analyses (Appendix Tables 2 - 4) we repeated the analyses performed in Table 2 - 4,

3 4 5	1	adjusting also for self-reported pubertal status measured by either pubertal
6 7 8 9	2	development scale (boys) or age at menarche (girls). These analyses included the
10 11 12	3	143 boys and 256 girls with valid data on pubertal status. In all the analyses, a p-
13 14 15 16	4	value of < 0.05 was considered statistically significant.
17 18 19 20	5	All analyses were performed sex-specific as decided a-priori, using STATA version
21 22 23	6	14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX:
24 25 26 27	7	StataCorp LP.).
28 29 30 31	8	Patient and public involvement
32 33 34 35	9	Participating schools were consulted and included in the design phase of the study.
36 37 38 39	10	Results
40 41 42 43	11	Table 1 displays the participants' body composition measurements at baseline and
44 45 46	12	follow-up, as well as physical activity measurements at baseline. Boys had a
47 48 49 50	13	statistically significant increase in all measures of body composition. Girls had a
51 52 53 54	14	statistically significant increase in body weight, BMI, fat mass in kg and FMI, but not
55 56 57	15	in LMI and appendicular lean mass. Boys were statistically significantly more
58 59 60	16	physically active than girls in some aspects, with higher mean counts per minute

 BMJ Open

1 (p=0.01) and more minutes in MVPA (p<0.01). Time spent in sedentary- or light

2 intensities did not differ significantly between sexes. Twenty-seven percent of boys

and 17% of girls complied with the recommendations of 60 minutes per day

4 Moderate-to-Vigorous Physical Activity (MVPA).

Table 1. Characteristics of the longitudinal cohort of the Tromsø Study; Fit Futures 2010-11 and 2012-13 °.

	Boys (r	ו = 171)	Girls (n	= 260)
	FF1	FF2	FF1	FF2
Age (years)	16.0 (0.4)	18.2 (0.4)	16.1 (0.4)	18.1 (0.4)
Height (cm)	177.1 (6.6)	179.0 (6.5)*	165.4 (6.6)	166.1 (6.6)*
Body weight (kg)	69.0 (12.3)	74.3 (13.0)*	60.8 (10.8)	63.4 (11.6) [*]
Body mass index (BMI kg/m2)	22.0 (3.5)	23.2 (3.7)*	22.2 (3.7)	23.0 (4.0)*
Waist circumference (cm)	81.0 (10.3)	83.9 (10.9)*	76.7 (9.8)	78.0 (10.8)*
Total Body Fat Mass (kg)	13.3 (9.4)	15.6 (10.4)*	19.9 (8.3)	21.7 (9.1)*
Fat Mass Index (FMI kg/m2)	4.2 (3.0)	4.9 (3.2)*	7.3 (3.0)	7.9 (3.3)*
Total Body Lean Mass (kg)	54.0 (6.5)	56.4 (6.9)*	38.9 (4.5)	39.3 (4.7)*
Lean Mass Index (LMI kg/m2)	17.2 (1.6)	17.6 (1.8)*	14.2 (1.3)	14.2 (1.4)
Appendicular Lean Mass (kg)	25.3 (3.4)	26.2 (3.6)*	17.4 (2.3)	17.4 (2.3)

	Appendicular Lean Mass Index	8.1 (0.9)	8.2 (0.9)*	6.4 (0.7)	6.3 (0.7) [*]	
	(aLMI kg/m2)					
	Accelerometer variables					
	Wear time per valid day	14.2 (1.2)		14.1 (1.1)		
	Counts per minute	362.9 (137.5)		334.0 (111.9)∞		
	Minutes per day in different intensities					
	Sedentary (cpm 0 – 99)	573.3 (77.3)		565.3 (63.2)		
	Light (cpm 100 – 1951)	230.5 (58.8)		236.2 (48.4)		
	Moderate (cpm 1952 – 5723)	45.8 (20.6)		40.2 (17.7) ∞		
	Vigorous (cpm ≥ 5724)	3.7 (5.8)		2.9 (4.1) [∞]		
	MVPA [#] (cpm ≥ 1952)	49.5 (23.4)		43.1 (19.6) ∞		
	Meeting MVPA guidelines per day					
	0 – 29 minutes	35 (20.5)		69 (26.5)		
	30 – 59 minutes	90 (52.6)		146 (56.2)		
	≥ 60 minutes	46 (26.9)		45 (17.3) [§]		
1 2 3 4	 Values are means with standard deviation (SD) or n (prevalence in percentages). BMI: body weight in kg/height in meters², FMI: fat mass in kg/height in meters², LMI: lean mass in kg/height in meters², aLMI: appendicular lean mass in kg/height in meters². Data on physical activity in FF2 was not available. 					
5	*: Significantly different from baseline measure	urement (p < 0.05				
6	∞: Significantly different from boys (mean).					
7	#: MVPA: moderate to vigorous physical activity, using cut-offs suggested by Freedson.[19]					
8	§: significantly different linear trend from boys (p<0.05)					
9						
10	Table 2 displays the association betw	veen minutes s	pent in seder	tary activity at		
11	baseline and changes in body composition between baseline and follow-up. There					
12	was no association between sedenta	ry activity and	changes in B	MI, waist		

BMJ Open

 1
 circumference and FMI in neither boys nor girls. In girls, but not in boys, more

 2
 minutes spent in sedentary activity at baseline was associated with lower LMI (p <</td>

 3
 0.01) and aLMI (p = 0.02). Adjustment for covariates and MVPA slightly attenuated

 4
 the association with aLMI (p = 0.05).

 Table 2. Association between minutes per day spent in sedentary activity (CPM 0 – 99) at baseline and changes in body composition#.

 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan= 260)

 Image: Colspan="2">Beta

 95% CI
 p value

 Image: Colspan="2">Beta

 95% CI
 p value

 Image: Colspan="2">Image: Colspan="2"

 Image: Colspan= 200
 <td colspa

	Boys (n = 171)			Girls (n = 260)		
	Beta	95% CI	p value	Beta	95% CI	p value
Δ BMI						
Model 1	-0.02	-0.13, 0.09	0.76	-0.05	-0.15, 0.05	0.33
Model 2	-0.02	-0.17, 0.12	0.75	-0.11	-0.24, 0.03	0.12
Model 3	0.01	-0.17, 0.20	0.88	-0.11	-0.27, 0.05	0.16
∆ waist circumferenc e				ez		
Model 1	0.17	-0.21, 0.56	0.37	-0.01	-0.41, 0.40	0.96
Model 2	0.27	-0.24, 0.78	0.30	-0.33	-0.87, 0.20	0.22
Model 3	0.42	-0.23, 1.07	0.20	-0.44	-1.06, 0.18	0.17
Δ FMI						
Model 1	0.00	-0.10, 0.10	0.99	-0.01	-0.11, 0.08	0.83
Model 2	-0.02	-0.16, 0.11	0.74	-0.06	-0.18, 0.07	0.36
Model 3	0.00	-0.17, 0.17	0.98	-0.05	-0.20, 0.09	0.48
∆ LMI						
Model 1	0.00	-0.05, 0.05	0.88	-0.06	-0.09, - 0.02	<0.0
Model 2	0.01	-0.06, 0.07	0.77	-0.07	-0.12, - 0.02	<0.0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
, 8
-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
59
72

1 2

Model 3	0.02	-0.06, 0.10	0.63	-0.08	-0.13, -	<0.01
					0.03	
Δ aLMI						
Model 1	0.00	-0.03, 0.03	0.84	-0.02	-0.04, -	0.02
					0.00	
Model 2	0.00	-0.03, 0.04	0.81	-0.03	-0.05, -	0.02
					0.01	
Model 3	0.01	-0.04, 0.05	0.71	-0.03	-0.06, 0.00	0.05

1 #: The table displays the association between minutes spent in sedentary activity and difference in 2 BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI 3 (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). 4 The models give the beta coefficient for 30 minutes increase in sedentary activity. All models were 5 adjusted for baseline values of the body composition parameter. In model 2 also adjusted for time 6 between measurements and baseline values of screen time on weekdays, study specialisation, age in 7 half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes 8 spent in Moderate-to-vigorous physical activity (CPM ≥ 1952).

10	Table 3 displays the association between minutes spent in light activity at baseline

- and changes in body composition between baseline and follow-up. There was no
- 12 association between the exposure and either body composition parameter in boys. In
- 13 girls there was some evidence to suggest an association with change in waist
- 14 circumference (p =0.05), but the association was attenuated after adjustments (p =
- 15 0.17). More minutes spent in light physical activity was associated with higher LMI (p
- 16 < 0.01 (Models 2 and 3)) and aLMI (p = 0.04 (Model 2) and 0.05 (Model 3)).

	В	oys (n = 171)		Girls (n = 260)		
	Beta	95% CI	p value	Beta	95% CI	p valu	
Δ BMI							
Model 1	0.04	-0.11, 0.18	0.60	0.05	-0.09, 0.19	0.47	
Model 2	0.01	-0.17, 0.18	0.93	0.12	-0.04, 0.27	0.13	
Model 3	-0.01	-0.20, 0.17	0.88	0.11	-0.05, 0.27	0.16	
Δ waist circumference		0					
Model 1	-0.11	-0.62, 0.40	0.68	0.54	0.01, 1.07	0.05	
Model 2	-0.38	-1.00, 0.23	0.22	0.43	-0.19, 1.05	0.17	
Model 3	-0.42	-1.07, 0.23	0.20	0.44	-0.19, 1.06	0.17	
Δ FMI							
Model 1	0.03	-0.10, 0.16	0.67	0.02	-0.10, 0.15	0.71	
Model 2	0.01	-0.15, 0.18	0.87	0.06	-0.09, 0.20	0.43	
Model 3	-0.00	-0.17, 0.17	0.98	0.05	-0.09, 0.20	0.49	
Δ LMI							
Model 1	-0.01	-0.07, 0.06	0.84	0.04	-0.01, 0.09	0.08	
Model 2	-0.02	-0.09, 0.06	0.67	0.08	0.03, 0.13	<0.0	

Model 3	-0.02	-0.10,	0.63	0.08	0.03, 0.13	<0.01	
		0.06					
Δ aLMI							
Model 1	0.00	-0.03,	0.87	0.02	-0.01, 0.04	0.16	
		0.04					
Model 2	-0.01	-0.05,	0.73	0.03	0.00, 0.06	0.04	
		0.04					
Model 3	-0.01	-0.05,	0.70	0.03	-0.00, 0.06	0.05	
		0.04					
#: The table displays the association between minutes spent in light activity and difference in BMI							
(kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI							
(appendicular lean mass in kg/m ²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013).							

4 The models give the beta coefficient for 30 minutes increase in light activity. All models were adjusted

5 for baseline values of the body composition parameter. In model 2 also adjusted for time between

6 measurements and baseline values of screen time on weekdays, study specialisation, age in half-

years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent
 in Moderate-to-vigorous physical activity (CPM ≥ 1952).

12.

10 Table 4 displays the association between minutes in MVPA at baseline and changes

in body composition between baseline and follow-up. There was no association

12 between time spent in MVPA and changes in either measure of body composition for

13 either sex.

Table 4. Association between minutes per day spent in MVPA (CPM \ge 1952) at baseline and changes in body composition[#].

Boys (n = 171)			Girls (n = 260)		
Beta	95% CI	p value	Beta	95% CI	p value

Page 23 of 47

Δ BMI							
	Model 1	0.11	-0.07,	0.22	-0.00	-0.17, 0.16	0.97
			0.30				
	Model 2	0.08	-0.13,	0.47	0.07	-0.11, 0.25	0.47
			0.29				
Δ waist							
circumfer	ence						
	Model 1	0.25	-0.39,	0.44	-0.03	-0.68, 0.63	0.94
			0.89				
	Model 2	-0.02	-0.75,	0.95	0.02	-0.70, 0.74	0.96
			0.71				
Δ FMI							
	Model 1	0.02	-0.15,	0.83	-0.01	-0.17, 0.14	0.86
			0.19				
	Model 2	0.06	-0.14,	0.57	0.05	-0.12, 0.22	0.54
			0.25				
Δ LMI							
	Model 1	0.07	-0.02,	0.11	0.03	-0.03, 0.09	0.33
			0.15				
	Model 2	0.01	-0.08,	0.86	0.02	-0.04, 0.09	0.44
			0.10				
Δ aLMI					4		
	Model 1	0.03	-0.02,	0.19	0.02	-0.01, 0.05	0.13
			0.08				
	Model 2	0.00	-0.05,	0.92	0.02	-0.01, 0.05	0.18
			0.05				

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity
(MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass
in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit
Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both
models were adjusted for baseline values of the body composition parameter. In model 2 also
adjusted for time between measurements and baseline values of screen time on weekdays, study
specialisation, age in half-years, regularity of eating breakfast and device wear time.

	1	
	2	Appendix Table 1 shows the descriptive characteristics of the participants with valid
) 2	3	baseline measurements of physical activity and adjustment variables, but who were
5 5 5	4	lost to follow-up. Both boys and girls lost to follow-up had significantly higher mean
7 3 9	5	BMI, waist circumference, fat mass and FMI at baseline, as well as significantly less
2 3	6	minutes per day spent in light- and moderate-to-vigorous (girls only) physical activity.
1 5 5 7	7	In Appendix Tables 2-4, we present sub-analyses restricted to those with complete
3 9	8	data on pubertal development, confirming the results displayed in Tables 2-4 also
 2 3	9	after adjustments for pubertal development. Overall, adjustment for pubertal
5 5 1 7	0	development had no substantial impact on an association between sedentary, light
3 9 1)	1	and moderate-to-vigorous physical activity and changes in body composition for
$\frac{2}{3}$ 1	2	either sex in complete case analyses. However, the association between minutes
5 5 1 7	3	spent in sedentary activity- and light activity and changes in appendicular lean mass
)) 1	4	index was no longer significant for girls in Model 3. The point estimates did not differ
2 3 1. 1 -	5	from those from analyses without adjustments for pubertal development, however.
5 7 1 3 9	6	Discussion

BMJ Open

3 4 5	1	In this longitudinal population-based study of Norwegian adolescents there were in
6 7 8 9	2	both boys and girls no associations between objectively measured physical activity at
9 10 11 12	3	baseline and two-year changes in BMI, waist circumference and FMI. Both boys and
13 14 15 16	4	girls had statistically significant increases in the measures of body composition
17 18 19	5	(except lean mass index and appendicular lean mass in girls). Objectively measured
20 21 22	6	physical activity did not predict changes in boys. In girls there was a significant
23 24 25 26	7	association between minutes spent in sedentary- and light physical activity and
27 28 29	8	changes in indices of lean mass.
30 31 32 33 34	9	Although the magnitude of change differed, both sexes experienced increases in
35 36 37	10	measures of body composition. In boys, FMI increased by 0.7 units (+ 16.7%),
38 39 40 41	11	whereas LMI increased by 0.4 units (+ 2.3 %) from baseline. Similar relative changes
42 43 44	12	were observed in girls, (FMI +8.2 %) and (LMI + 0.7%), indicating that FMI increases
45 46 47	13	relatively more than LMI during late adolescence. We observed statistically significant
48 49 50 51	14	differences in minutes spent in moderate ($p < 0.01$) and vigorous ($p = 0.04$) intensity
52 53 54	15	between boys and girls, but time spent in other intensity levels did not differ.
55 56 57 58	16	Differences in physical activity by sex is consistent with previous research.[22, 23]
59 60	17	Differences in changes in body composition by sex are biologically determined during

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
41
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
50 57
58
59
60

1

1	adolescence, with sex hormones resulting in fat mass accrual in girls and lean mass
2	accrual in boys.[24, 25] The observation that sedentary- and light activity predicted
3	changes in indices of lean mass in girls, but not boys, may be explained by these
4	expected biological differences. Physical activity may have somewhat greater
5	potential to influence lean mass accrual in girls than in boys during this period, as fat-
6	free mass is relatively stable in girls in late adolescence whereas it increases up to
7	18 years of age in boys.[26]
8	In the present study sedentary- and light activity had opposing effects on lean mass
9	in girls. In a study using iso-temporal substitution models, positive prospective effects
10	on fat mass was found when substituting 30 minutes of sedentary activity with MVPA,
11	but not when substituted with light activity.[27] It is reasonable that sedentary- and
12	light physical activity have opposing effects on lean mass.[28] In the present study
13	sedentary- and light activity was inversely correlated (r = - 0.39), but minutes spent in
14	different intensity levels are not directly a function of each other as wear time in the
15	participants varies between individuals. Based on wear time inclusion criteria, the
16	theoretical time span for wear time lies between 10 and 24 hours. Thus, minutes
17	spent in sedentary activity may not be deduced from the sum of minutes spent in

Page 27 of 47

1

BMJ Open

1 2	
3	
4 5	
6	
7	
8 9	
10	
11	
12 13	
14	
15 16	
16 17	
18	
19 20	
21	
22 23	
24	
25	
26 27	
28	
29 30	
31	
32 33	
33 34	
35	
36 37	
38	
39 40	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
50 51	
52	
53 54	
55	
56 57	
57 58	
59	
60	

1	other intensities and vice versa, but it is plausible that higher wear time results in
2	more sedentary time. This was evident in an exploratory analyses on the same
3	cohort (not included in the present study), where higher wear time was significantly
4	associated with more sedentary activity and less light activity ($p < 0.01$). Adjusting for
5	wear time (Models 2) did not change the associations substantially for sedentary
6	activity (Table 2), but had some effect on the associations with light physical activity
7	(Table 3). Because of the inverse relationship between minutes spent sedentary and
8	in light activity, it is not possible to determine whether it is sedentary time or light
9	activity-time that is associated with change in LMI. The practical consequences are
10	nevertheless that being active increases lean mass in girls.
11	When interpreting results, we must acknowledge the limitations of DXA in the
12	estimation of lean mass, which can be affected by both biological factors and
13	measurement error.[29] Because the relative increase in lean mass was small, only
14	slight differences in for instance individual hydration status at the two time-points may
15	influence estimates and thus the association.

1		
2 3 4 5	1	There wa
6 7 8	2	change i
9 10 11 12	3	negative
13 14 15	4	in a popu
16 17 18 19	5	especiall
20 21 22	6	a system
23 24 25 26	7	predictor
27 28 29	8	another
30 31 32 33	9	adolesce
34 35 36	10	studies ir
37 38 39 40	11	of both p
41 42 43	12	robust m
44 45 46 47	13	lacking ir
48 49 50 51	14	In adoles
52 53 54	15	support,[
55 56 57 58	16	measure
59 60	17	suggests

1

1	There was no associations between objectively measured physical activity and
2	change in BMI, waist circumference and FMI for either sex. It may be that the
3	negative effects of less physical activity have not yet had time to manifest themselves
4	in a population still undergoing physiological changes as a result of natural growth,
5	especially considering the relatively short 2-year follow-up. Our results are in line with
6	a systematic review suggesting that objectively measured PA is not an important
7	predictor of change in adiposity in children, adolescents and adults.[12] In contrast,
8	another systematic review found a protective effect of physical activity on adiposity in
9	adolescents.[10] There were however several methodological weaknesses in the
10	studies included in this review, particularly regarding the validity of the measurement
11	of both physical activity and body composition. In contrast, our study employed
12	robust measures of both these exposures- and outcomes, a combination which is
13	lacking in much past research on the association between the two.[10-12]
14	In adolescents, physical activity is influenced by friends, family and other social
15	support,[30] and is less stable than in adults.[31-33] Follow-up data on objectively
16	measured physical activity was not available in the present study, but some evidence
17	suggests that the decline in physical activity is steeper prior to the onset of

Page 29 of 47

1

BMJ Open

1		
2 3 4 5	1	adolescence.[34] Reductions in level of physical activity during the transition from
6 7 8	2	adolescence to young adulthood nevertheless often occur.[35] Prior observations
9 10 11 12	3	from the same cohort showed that change in self-reported physical activity between
13 14 15	4	baseline and follow-up was a stronger predictor of change in body composition than
16 17 18 19	5	self-reported baseline physical activity.[36] Other studies have suggested that
20 21 22	6	change in activity during follow-up might obscure an association with body
23 24 25 26	7	composition.[37, 38] In a sub-analyses, one of four in both the highest and lowest
27 28 29	8	categories of MVPA at baseline reported decreased (high MVPA at baseline) and
30 31 32 33	9	increased (low MVPA at baseline) self-reported physical activity at follow up, thus
34 35 36	10	indicating that physical activity in adolescents is fluctuant. These two observations,
37 38 39 40	11	assuming that measurement of both MVPA and self-reported hours per week of
41 42 43	12	physical activity are representative of actual physical activity behaviour at the time,
44 45 46 47	13	work in opposing directions with regard to the effect of physical activity on changes in
48 49 50	14	adiposity. This phenomenon is known as regression dilution bias and may flatten the
51 52 53 54	15	regression slope and cause an underestimate of the actual association.[39] With an
55 56 57	16	annual decline in total physical activity of 7% in adolescents, researchers must
58 59 60	17	consider the possibility that measured physical activity has a "best before-date". It

3 4 5	1	remains questionable whether baseline measurements of a fluctuant behaviour such
6 7 8 9	2	as physical activity is representative of actual habits during the period of follow-up. It
10 11 12	3	may be that the measurement represents current, but not future (or even prior)
13 14 15 16	4	habits.[12, 40] This has implications for longitudinal studies of the relationship
17 18 19	5	between physical activity and body composition.[38]
20 21 22 23	6	
24 25 26 27 28	7	Strengths and limitations
29 30 31	8	The primary strength of this study are objective measures of both physical activity
32 33 34 35	9	and body composition parameters, and the inclusion of tissue-specific measures of
36 37 38	10	body composition. Some limitations have to be considered. As the Fit Futures study
39 40 41 42	11	did not include a validated food frequency questionnaire or similar instrument for
43 44 45	12	nutritional assessment, we were not able to fully adjust for the potential confounding
46 47 48 49	13	effects of nutrition and changes in food habits of adolescents on changes in body
50 51 52	14	composition. Accelerometer-measured physical activity has limitations. A hip worn
53 54 55 56	15	accelerometer such as the ActiGraph GT3X is not able to correctly measure cycling
57 58 59 60	16	and swimming.[41] Furthermore, accelerometers are dependent on user-compliance,

Page 31 of 47

1

BMJ Open

2 3 4 5	1	and non-wear time therefore affects the amount of activity which is actually
6 7 8 9	2	measured. Subjective judgement determines data management and analyses, e.g.
10 11 12	3	the decision to exclude participants with wear time < 10 hours and < 4 consecutive
13 14 15 16	4	days, is a trade-off between quality of data and the number of participants with valid
17 18 19	5	data. We lacked complete data on physical activity and adjustment variables in 212
20 21 22 23	6	participants, but changes in BMI, waist circumference, FMI, LMI (except in girls, p =
24 25 26	7	0.04) and aLMI were not significantly different between those with- and without
27 28 29 30	8	complete exposure data. Furthermore, of those with valid data concerning both
31 32 33	9	physical activity and body composition parameters at baseline, close to 25% did not
34 35 36 37	10	attend the follow up (Appendix Table 1). This group differed significantly from those
38 39 40	11	included in the main analyses with respect to both physical activity and body
41 42 43 44	12	composition parameters. The prospective associations between physical activity and
45 46 47	13	changes in body composition parameters in this group ($n = 133$) may be different
48 49 50 51	14	from those observed in the group of participants included in the main analyses (n =
52 53 54	15	431), and the associations in all the 564 participants with valid baseline data may
55 56 57 58	16	therefore be different from what we find in the main analyses. This is however not
59 60	17	possible to determine given the lack of follow-up data.

2	
2	
5	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 31 32 33 34 35 36 37 38 37 38 39 30	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Although longitudinal observational studies are superior to cross-sectional studies to
2	examine causation, they are also susceptible to directional bias, since participants
3	may avoid physical activity because they are overweight, and not be overweight
4	because they are inactive.[42-44] Finally, as the participants were 16 years old, much
5	may already have happened both to the level of physical activity and the different
6	measures of body composition prior to participation. In light of this, 2 years of follow-
7	up may be a short time frame to determine the potential effects of physical activity on
8	changes in the different body composition parameters.
9	
9 10	Conclusion
	Conclusion Objectively measured physical activity was not significantly associated with change in
10	
10 11	Objectively measured physical activity was not significantly associated with change in
10 11 12	Objectively measured physical activity was not significantly associated with change in objectively measured BMI, waist circumference or FMI after two years in this cohort

Acknowledgements

The authors thank the participants in the study, as well as the staff at the Clinical Research Unit at the University Hospital of North Norway for data collection and clinical measurements. We also thank the Fit Futures Steering Committee in both studies. Footnotes **Contributors** NAA wrote the draft of the manuscript, which was revised and edited by all authors several times during the process. SB produced the accelerometer variables in close collaboration with AH, who wrote the software which converted raw accelerometer data to variables. BKJ contributed to the statistical analyses, and BM specifically contributed to the discussion of physical activity. NE and ASF were among the principal investigators in FF1 and FF2 and contributed significantly to the acquisition of data. SG formulated the research question and conceived the study. All authors have substantially contributed to the study, and have read and approved the final manuscript.

2
J ∧
4
5
6
7
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
21
22
23
3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 56 37 38 37 38
24
25
26
27
28
29
30
31
32
33
34
25
22
30
34 35 36 37 38 39
38
39
40
41
42
43
44
45
45 46
46 47
48
49
50
51
52
53
54
55
55 56
50 57
58
59

1 Funding

1

2 This particular manuscript has not received any specific funding.

3 Competing interests

4 The authors declare that they have no competing interests.

- 5 <u>Consent for publication</u>
- 6 Not applicable
- 7 Ethics approval
- 8 This study was approved by The Regional Committee of Medical and Health
- 9 Research Ethics (2014/1666/REK nord).
- 10 Data availability statement
- 11 The data that support the findings of this study are available from UiT The Arctic
- 12 University of Norway. Restrictions apply to the availability of these data, which were

used under license for the current study, and are thus not publicly available.

BMJ Open

2		
3 4 5	1	References
6 7 8	2	1. World Health Organization. Global action plan on physical activity 2018–2030:
9 10 11 12	3	more active people for a healthier world. Geneva 2018.
13 14 15	4	2. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-
16 17 18 19	5	communicable diseases worldwide: an analysis of burden of disease and life
20 21 22	6	expectancy. <i>Lancet</i> 2012;380:219-29.
23 24 25 26	7	3. World Health Organization. Global Recommendations on Physical Activity for
27 28 29	8	Health. WHO Guidelines. Geneva 2010.
30 31 32 33	9	4. Kolle E SJ, Hansen BH, Anderssen SA. [Fysisk aktivitet blant 6-, 9- og 15-åringer i
34 35 36	10	Norge. Resultater fra en kartlegging i 2011]. The Norwegian Directorate of Health,
37 38 39 40	11	Oslo, Norway. 2012.
41 42 43	12	5. Dumith SC, Gigante DP, Domingues MR, et al. Physical activity change during
44 45 46 47	13	adolescence: a systematic review and a pooled analysis. Int J Epidemiol.
48 49 50	14	2011;40:685-98.
51 52 53	15	6. Collings PJ, Wijndaele K, Corder K, et al. Magnitude and determinants of change
54 55 56 57 58 59 60	16	in objectively-measured physical activity, sedentary time and sleep duration from

3 4 5	1	ages 15 to 17.5y in UK adolescents: the ROOTS study. Int J Behav Nutr Phys Act.
6 7 8	2	2015;12:61.
9 10 11 12	3	7. Crane J, Temple V. A systematic review of dropout from organized sport among
13 14 15	4	children and youth. Eur Phys Educ Rev. 2015;21:114-31.
16 17 18 19	5	8. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of
20 21 22	6	overweight and obesity in children and adults during 1980-2013: a systematic
23 24 25 26	7	analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766-81.
20 27 28 29	8	9. NCD Risck Factor Collaboration (NCD-RisC). Worldwide trends in body-mass
30 31 32	9	index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of
33 34 35 36	10	2416 population-based measurement studies in 128.9 million children, adolescents,
37 38 39	11	and adults. <i>Lancet</i> . 2017. doi:10.1016/S0140-6736(17)32129-3.
40 41 42 43	12	10. Reichert FF, Baptista Menezes AM, Wells JC, et al. Physical activity as a
44 45 46	13	predictor of adolescent body fatness: a systematic review. Sports Med. 2009;39:279-
47 48 49 50	14	94.
50 51 52 53	15	11. Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured
54 55 56	16	habitual physical activity and adiposity in children and adolescents: Systematic
57 58 59 60	17	review. Int J Pediatr Obes. 2010;5:3-18.

1 2

Page 37 of 47

1 2 BMJ Open

3 4 5	1
6 7 8	2
9 10 11 12	3
13 14 15	4
16 17 18 19	5
20 21 22	6
23 24 25 26	7
27 28 29	8
30 31 32 33	9
34 35 36	10
37 38 39	11
40 41 42 43	12
44 45 46	13
47 48 49 50	14
51 52 53	15
54 55 56 57	16
58 59 60	17

1	12. Wilks DC, Besson H, Lindroos AK, et al. Objectively measured physical activity
2	and obesity prevention in children, adolescents and adults: a systematic review of
3	prospective studies. <i>Obes Rev</i> . 2011;12:e119-29.
4	13. Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus
5	accelerometer-measured physical activity. <i>Med Sci Sports Exerc</i> . 2014;46:99-106.
6	14. Aars NA, Jacobsen BK, Furberg AS, et al. Self-reported physical activity during
7	leisure time was favourably associated with body composition in Norwegian
8	adolescents. Acta Paediatr. 2018. doi:10.1111/apa.14660.
9	15. Goulding A, Taylor RW, Grant AM, et al. Relationships of appendicular LMI and
10	total body LMI to bone mass and physical activity levels in a birth cohort of New
11	Zealand five-year olds. <i>Bone</i> . 2009;45:455-9.
12	16. Bridge P, Pocock NA, Nguyen T, et al. Validation of longitudinal DXA changes in
13	body composition from pre- to mid-adolescence using MRI as reference. <i>J Clin</i>
14	<i>Densitom.</i> 2011;14:340-7.
15	17. Trost SG, Pate RR, Freedson PS, et al. Using objective physical activity
16	measures with youth: how many days of monitoring are needed? Med Sci Sports
17	<i>Exerc</i> . 2000;32:426-31.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
18	
19 20	
20	
21	
20 21 22 23	
22	
23	
24	
25	
26	
27	
28	
29 30	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

1 2

1	18. Hecht A, Ma S, Porszasz J, et al. Methodology for using long-term accelerometry
2	monitoring to describe daily activity patterns in COPD. COPD. 2009;6:121-9.
3	19. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and
4	Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777-81.
5	20. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity
6	monitors. <i>J Sci Med Sport</i> . 2011;14:411-6.
7	21. Cuzick J. A Wilcoxon-type test for trend. <i>Stat Med</i> . 1985;4:87-90.
8	22. Kolle E, Steene-Johannessen J, Andersen LB, et al. Objectively assessed
9	physical activity and aerobic fitness in a population-based sample of Norwegian 9-
10	and 15-year-olds. Scand J Med Sci Sports. 2010;20:e41-7.
11	23. Van Hecke L, Loyen A, Verloigne M, et al. Variation in population levels of
12	physical activity in European children and adolescents according to cross-European
13	studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act.
14	2016;13:70.
15	24. Baxter-Jones AD, Eisenmann JC, Mirwald RL, et al. The influence of physical
16	activity on lean mass accrual during adolescence: a longitudinal analysis. J Appl

⁹ 17 *Physiol (1985)*. 2008;105:734-41.

BMJ Open

2 3 4 5 6 7 8 9	1
6 7 8	2
9 10 11 12	3
13 14 15 16	4
16 17 18 19	5
20 21 22	6
23 24 25 26	7
20 27 28 29	8
30 31 32	9
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	10
39	11
40 41 42 43	12
44 45 46	13
47 48 49 50	14
51 52 53	15
54 55 56 57	16
58 59 60	

1	25. Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in
2	2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with
3	dual X-ray absorptiometry. <i>Eur J Clin Nutr</i> . 2014;68:664-70.
4	26. Siervogel RM, Demerath EW, Schubert C, et al. Puberty and body composition.
5	<i>Horm Res</i> . 2003;60:36-45.
6	27. Sardinha LB, Marques A, Minderico C, et al. Cross-sectional and prospective
7	impact of reallocating sedentary time to physical activity on children's body
8	composition. <i>Pediatr Obes</i> . 2017;12:373-9.
9	28. Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise. Seventh
10	edition. Champaign, IL: Human Kinetics; 2020.
11	29. Lohman TG, Milliken LA. ACSM's body composition assessment. Champaign, IL:
12	Human Kinetics; 2020.
13	30. Mendonca G, Cheng LA, Melo EN, et al. Physical activity and social support in
14	adolescents: a systematic review. <i>Health Educ Res</i> . 2014;29:822-39.
15	31. Telama R, Yang X. Decline of physical activity from youth to young adulthood in
16	Finland. Med Sci Sports Exerc. 2000;32:1617-22.

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
20 21 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1	32. Varma VR, Dey D, Leroux A, et al. Re-evaluating the effect of age on physical
2	activity over the lifespan. <i>Prev Med</i> . 2017;101:102-8.
3	33. Caspersen CJ, Pereira MA, Curran KM. Changes in physical activity patterns in
4	the United States, by sex and cross-sectional age. Med Sci Sports Exerc.
5	2000;32:1601-9.
6	34. Farooq MA, Parkinson KN, Adamson AJ, et al. Timing of the decline in physical
7	activity in childhood and adolescence: Gateshead Millennium Cohort Study. $Br J$
8	Sports Med. 2018;52:1002-6
9	35. Corder K, Winpenny E, Love R, et al. Change in physical activity from
10	adolescence to early adulthood: a systematic review and meta-analysis of
11	longitudinal cohort studies. Br J Sports Med. 2019;53:496-503.
12	36. Aars NA, Jacobsen BK, Morseth B, et al. Longitudinal changes in body
13	composition and waist circumference by self-reported levels of physical activity in
14	leisure among adolescents: the Tromsø study, Fit Futures. BMC Sports Sci Med
15	<i>Rehabil.</i> 2019;11:37.

BMJ Open

r	
2	
3	
4	
5	
ر د	
5 6 7 8	
7	
8	
0	
9	
9 10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	37. O'Loughlin J, Gray-Donald K, Paradis G, et al. One- and two-year predictors of
2	excess weight gain among elementary schoolchildren in multiethnic, low-income,
3	inner-city neighborhoods. Am J Epidemiol. 2000;152:739-46.
4	38. Collings PJ, Wijndaele K, Corder K, et al. Objectively measured physical activity
5	and longitudinal changes in adolescent body fatness: an observational cohort study.
6	<i>Pediatr Obes</i> . 2016;11:107-14.
7	39. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression
8	dilution bias. <i>BMJ</i> . 2010;340:c2289.
9	40. Kettaneh A, Oppert JM, Heude B, et al. Changes in physical activity explain
10	paradoxical relationship between baseline physical activity and adiposity changes in
11	adolescent girls: the FLVS II study. Int J Obes (Lond). 2005;29:586-93.
12	41. Herman Hansen B, Bortnes I, Hildebrand M, et al. Validity of the ActiGraph GT1M
13	during walking and cycling. <i>J Sports Sci</i> . 2014;32:510-6.
14	42. van Sluijs EM, Sharp SJ, Ambrosini GL, et al. The independent prospective
15	associations of activity intensity and dietary energy density with adiposity in young
16	adolescents. <i>Br J Nutr</i> . 2016;115:921-9.

2	
3	
4	
5	
6	
7	
6 7 8	
9	
10	
11	
12	
13	
14	
13 14 15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
21 22 23 24 25 26	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
55 54	
54 55	
56	
57	
58	
59	

60

7

1

43. Hjorth MF, Chaput JP, Ritz C, et al. Fatness predicts decreased physical activity 1

and increased sedentary time, but not vice versa: support from a longitudinal study in 2

8- to 11-year-old children. Int J Obes (Lond). 2014;38:959-65. 3

44. Jago R, Salway RE, Ness AR, et al. Associations between physical activity and 4

.shit. asthma, eczema and obesity in children aged 12-16: an observational cohort study. 5

BMJ Open. 2019;9:e024858. doi:10.1136/bmjopen-2018-024858. 6

Supplementary file

	Boys (n = 79)	P for difference	Girls $(n = 54)$	P for difference
Age (years)	16.1 (0.4)	0.26	16.1 (0.4)	0.42
Height (cm)	176.7 (13.8)	0.31	164.5 (5.9)	0.18
Body weight (kg)	73.3 (18.0)	0.01	63.5 (1.9)	0.06
Body mass index (BMI kg/m2)	23.4 (5.2)	0.01	23.4 (4.4)	0.02
Waist circumference (cm)	85.1 (13.9)	< 0.01	80.0 (12.4)	0.02
Total Body Fat Mass (kg)	17.6 (12.8)	< 0.01	22.8 (10.3)	0.01
Fat Mass Index (FMI kg/m2)	5.6 (4.0)	< 0.01	8.4 (3.5)	0.01
Total Body Lean Mass (kg)	53.9 (7.8)	0.46	38.6 (4.6)	0.33
Lean Mass Index (LMI kg/m2)	17.2 (1.9)	0.43	14.2 (1.4)	0.42
Appendicular Lean Mass (kg)	25.3 (4.1)	0.49	17.4 (2.5)	0.48
Appendicular Lean Mass Index (aLMI kg/m2)	8.1 (1.0)	0.41	6.4 (0.76)	0.29
Accelerometer variables				
Wear time per valid day	14.3 (1.2)	0.26	13.7 (1.0)	< 0.01
Counts per minute	338.4 (112.1)	0.08	300.5 (121.5)	0.03
Minutes per day in different intensities	1			
Sedentary (cpm 0 – 99)	570.1 (82.6)	0.38	562.6 (68.9)	0.39
Light (cpm 100 – 1951)	244.3 (64.7)	0.05	223.4 (46.3)	0.04
Moderate (cpm 1952 – 5723)	42.9 (19.6)	0.15	33.0 (17.6)	< 0.01
Vigorous (cpm \ge 5724)	2.3 (2.9)	0.03	2.7 (5.1)	0.40
$MVPA^{\#} (cpm \ge 1952)$	45.2 (21.0)	0.08	35.6 (20.0)	0.01
Meeting MVPA guidelines per day				
0-29 minutes	21 (26.6)		24 (44.4)	
30 – 59 minutes	41 (51.9)		23 (42.6)	
\geq 60 minutes	17 (21.5)		7 (13.0)*	

*: Statistically significantly different linear trend from sample included in manuscript (Table 1).

Appendix Table 2. Association between minutes per day spent in sedentary activity (CPM 0 - 99) at baseline and changes in body composition, adjusted for puberty[#].

	Boys (n = 143)			Girls (n = 258)			
	Beta	95% CI	p value	Beta	95% CI	p value	
Δ BMI							
Model 1	-0.02	-0.14, 0.09	0.70	-0.05	-0.15, 0.05	0.32	
Model 2	-0.01	-0.17, 0.14	0.85	-0.11	-0.24, 0.03	0.12	
Model 3	0.03	-0.17, 0.23	0.76	-0.11	-0.27, 0.05	0.19	
Δ waist circumference							
Model 1	0.12	-0.27, 0.51	0.55	-0.01	-0.42, 0.39	0.95	
Model 2	0.24	-0.28, 0.77	0.36	-0.38	-0.91, 0.15	0.16	
Model 3	0.37	-0.32, 1.06	0.29	-0.52	-1.14, 0.10	0.10	
Δ FMI							
Model 1	-0.01	-0.12, 0.09	0.84	-0.01	-0.11, 0.08	0.81	
Model 2	-0.01	-0.15, 0.13	0.85	-0.06	-0.18, 0.07	0.35	
Model 3	0.01	-0.17, 0.20	0.90	-0.05	-0.20, 0.10	0.49	
Δ LMI							
Model 1	0.00	-0.05, 0.06	0.90	-0.06	-0.09, -0.02	< 0.01	
Model 2	0.01	-0.07, 0.08	0.89	-0.07	-0.12, -0.02	< 0.01	
Model 3	0.02	-0.08, 0.11	0.74	-0.08	-0.13, -0.02	< 0.01	
$\Delta aLMI$							
Model 1	-0.00	-0.03, 0.03	0.91	-0.02	-0.04, -0.00	0.02	
Model 2	0.00	-0.04, 0.04	0.92	-0.03	-0.05, -0.00	0.02	
Model 3	0.01	-0.04, 0.07	0.59	-0.03	-0.06, 0.00	0.06	

#: The table displays the association between minutes spent in sedentary activity and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in sedentary activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \geq 1952).

	E	Boys (n = 143)			Girls $(n = 258)$		
	Beta	95% CI	p value	Beta	95% CI	p value	
Δ BMI							
Model 1	0.05	-0.10, 0.20	0.53	0.04	-0.09, 0.18	0.54	
Model 2	-0.00	-0.19, 0.18	0.97	0.11	-0.04, 0.27	0.15	
Model 3	-0.03	-0.23, 0.17	0.76	0.11	-0.05, 0.27	0.19	
Δ waist circumference							
Model 1	-0.01	-0.53, 0.51	0.97	0.53	-0.00, 1.07	0.05	
Model 2	-0.34	-0.98, 0.30	0.30	0.50	-0.11, 1.11	0.11	
Model 3	-0.37	-1.06, 0.32	0.29	0.51	-0.11, 1.13	0.10	
Δ FMI							
Model 1	0.05	-0.09, 0.18	0.51	0.02	-0.11, 0.14	0.78	
Model 2	0.00	-0.17, 0.18	0.97	0.06	-0.09, 0.20	0.43	
Model 3	-0.01	-0.20, 0.17	0.90	0.05	-0.10, 0.20	0.49	
Δ LMI							
Model 1	-0.01	-0.08, 0.06	0.84	0.04	-0.01, 0.09	0.08	
Model 2	-0.01	-0.10, 0.07	0.80	0.08	0.02, 0.13	< 0.0	
Model 3	-0.02	-0.11, 0.07	0.74	0.08	0.02, 0.13	< 0.0	
Δ aLMI							
Model 1	0.00	-0.04, 0.04	0.93	0.02	-0.01, 0.04	0.17	
Model 2	-0.01	-0.06, 0.04	0.73	0.03	0.00, 0.06	0.04	
Model 3	-0.01	-0.07, 0.04	0.59	0.03	-0.00, 0.06	0.06	

Appendix Table 3. Association between minutes per day spent in light activity (CPM

#: The table displays the association between minutes spent in light activity and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m^2) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 30 minutes increase in light activity. All models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time. In Model 3 adjusted also for minutes spent in Moderate-to-vigorous physical activity (CPM \ge 1952).

2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
44
. –
45
45 46
46
46 47
46 47 48
46 47 48 49
46 47 48
46 47 48 49 50
46 47 48 49 50 51
46 47 48 49 50 51 52
46 47 48 49 50 51 52 53
46 47 48 49 50 51 52
46 47 48 49 50 51 52 53 54
46 47 48 49 50 51 52 53 54 55
46 47 48 49 50 51 52 53 54 55 56
46 47 48 49 50 51 52 53 54 55
46 47 48 49 50 51 52 53 54 55 56

1

Appendix Table 4. Association between minutes per day spent in MVPA (CPM \ge 1952) at baseline and changes in body composition, adjusted for puberty[#].

	Bo	oys (n = 143)			Girls (n = 258)	
	Beta	95% CI	p value	Beta	95% CI	p value
Δ BMI						
Model 1	0.11	-0.08, 0.31	0.24	-0.00	-0.17, 0.16	0.97
Model 2	0.07	-0.15, 0.29	0.51	0.07	-0.11, 0.25	0.43
Δ waist circumference						
Model 1	0.28	-0.38, 0.95	0.40	-0.02	-0.68, 0.64	0.95
Model 2	-0.06	-0.82, 0.70	0.88	0.02	-0.69, 0.72	0.97
Δ FMI						
Model 1	0.02	-0.16, 0.20	0.80	-0.01	-0.17, 0.14	0.88
Model 2	0.05	-0.16, 0.25	0.66	0.06	-0.11, 0.22	0.52
Δ LMI						
Model 1	0.08	-0.02, 0.17	0.11	0.03	-0.03, 0.09	0.34
Model 2	0.01	-0.09, 0.11	0.84	0.03	-0.04, 0.09	0.42
Δ aLMI						
Model 1	0.05	-0.01, 0.10	0.09	0.02	-0.01, 0.05	0.13
Model 2	0.02	-0.04, 0.07	0.60	0.02	-0.01, 0.06	0.15

#: The table displays the association between minutes spent in moderate-to-vigorous physical activity (MVPA) and difference in BMI (kg/m²), waist circumference, FMI (fat mass in kg/m²), LMI (lean mass in kg/m²) and aLMI (appendicular lean mass in kg/m²) between Fit Futures 1 (2010-2011) and Fit Futures 2 (2012-2013). The models give the beta coefficient for 15 minutes increase in MVPA. Both models were adjusted for baseline values of the outcome. In model 2 also adjusted for time between measurements and baseline values of pubertal development (pds (boys) and age at menarche (girls)), screen time on weekdays, study specialisation, age in half-years, regularity of eating breakfast and device wear time.

STROBE statement for submitted manuscript entitled "*The association between objectively measured physical activity and longitudinal changes in body composition in adolescents; The Tromsø Study Fit Futures Cohort.*"

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) P. 1,lines. 1-2.
		(<i>b</i>) P. 3, lines 1-23.
Introduction		
Background/rationale	2	P. 5, lines 1-25 and P. 6, lines 1-3.
Objectives	3	P. 6, lines 3-8.
Methods		
Study design	4	P. 6, lines 11-16.
Setting	5	P. 6, lines 11-23.
Participants	6	(<i>a</i>) P. 6, lines 18-23.
Variables	7	P. 8, lines 11-24. P. 9, lines 1-25.
Data sources/	8*	P. 6, lines 17-23. P. 7, lines 3-24. P. 8, lines 1-17.
measurement		
Bias	9	P. 9, lines 17-25 and P. 10, lines 1-3.
Study size	10	P. 6, lines 11-23.
Quantitative variables	11	P. 9, lines 12-17.
Statistical methods	12	(a) P. 9, lines 1-24 and P. 10, lines 1-6.
		(<i>b</i>) P. 9, line 1 and P. 10, lines 1-3.
		(c) P. 6, lines 19-24 and P. 7, lines 1-2.
		d) P. 6, lines 23-24 and P. 7, lines 1-2.
		(<u>e</u>) P. 19, lines 1-12.
Results		
Participants	13*	(a) P. 6, lines 11-23.
-		(b) See (a).
		0.
Descriptive data	14*	(a) See Table 1.
		(b) See 13a
		(c) See Table 1.
Outcome data	15*	See Table 1.
Main results	16	(a) See Tables and P. 9, lines 11-25.
		(b) See Table 1.
Other analyses	17	P. 10, lines 1-3, and P. 14, lines 9-17. P. 15, lines 1-4. P. 17, lines 22-25. P.
Caller unurg 500	17	lines 1-12.
Discussion		
Key results	18	P. 15, lines 6-12.
Limitations	19	P. 16, lines 21-25. P. 17, lines 22-25. P. 18 lines 1-11 and lines 16-25. P. 19.
		lines 1- 19.
T	20	P. 15, lines 13-24. P. 16, 1-25. P. 17, lines 1-25. P. 18, lines 1-11.
Interpretation		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Funding	22 P. 21, lines 16.