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Supplementary Material  
 
Methods  
 
Study Population and Sample Size 
 
All patients in the study were admitted to the intensive care unit and were mechanically ventilated. Characteristics of 
the trial design and baseline population description for the individual trials are summarized in Table S1. 
 
Sample size calculations are not feasible for model development; however, for validation, a minimum of 10 events 
per independent variable in multivariate regression modelling is recommended.1 Another study recommended a 
minimum of 100 events and 100 non-events in the validation cohort in multivariate regression models containing six 
variables,2 which was the maximum number of variables considered for parsimonious modeling in this study. Sample 
sizes in both validation cohorts, SAILS and HARP-2, met these recommendations. 
 
Latent Class Analysis 
 
Latent class analysis (LCA) is a form of mixture modeling that uses available data in a heterogeneous population to 
identify otherwise concealed subgroups. In the derivation dataset, the following biomarkers were used for LCA- 
interleukins 6 and 8 (IL-6, IL-8), plasminogen activator inhibitor-1 (PAI-1), protein C, soluble intercellular adhesion 
molecule-1 (sICAM-1), soluble tumor necrosis factor receptor-1 (sTNFr-1), surfactant protein D (SPD) and von 
Willebrand factor (vWF). A list of all the variables used during LCA modelling are presented in Table S2. All 
continuous variables underwent z-scale transformation. Additionally, non-normally distributed variables were log-
transformed prior to z-scale transformation. 
 
Four separate models consisting of one, two, three, and four classes were built. Once the model with the optimal 
number of classes was determined for the population, average probabilities for class assignment were generated for 
each observation. A priori, in line with our previous work, patients were assigned to a phenotype if the LCA-generated 
probability for that phenotype was 0.5 or greater. These class assignments served as the ‘reference-standard’ against 
which parsimonious model accuracy was tested. 
 
Variable (Feature) Selection 
 
LCA, like all finite mixture models, uses a combination of probability densities and regression analysis. Stepwise 
regression models to classify phenotype would lead to either over-fitting or, more likely, perfect fitting models, 
particularly given that the phenotypes in LCA were derived using the same variables that would be predictors in the 
regression analysis. To circumnavigate this issue of data circularity, two recursive partitioning machine learning 
algorithms, classification tree with Bootstrapped AGGregatING (bagging) and random forest, were used to identify 
the most important classifier variables in the derivation dataset. Least absolute shrinkage and selection operator 
(LASSO), was also used to identify influential classifier variables. The derivation dataset was randomly partitioned 
into ‘training’ (75%) and ‘testing’ (25%) datasets for the development and hyperparameter tuning of all machine 
learning models. Ten-fold cross-validation was used for tuning recursive partitioning models.  
 
Classification Tree with Bagging 
 
Classification tree analysis uses recursive partitioning algorithms to split a dataset using discrete cut-points of 
variables such as to best separate the data according to the dependent variable (phenotype). At each node all variables 
are interrogated to partition the data, and the best variable, and its optimal cut-off, are selected to split the node3. A 
complexity parameter (cp) is used to control the size of the tree by specifying and penalizing complexity at each split. 
A 10-fold cross-validation was used to determine the optimal cp.  
 
Individual classification trees are subject to high variability. Minor perturbations in the training subset can lead to 
drastic changes in composition of the models. Bootstrap Aggregating (Bagging) is a simple ensemble procedure that 
reduces variance in model prediction by combining several classification trees4. Repeated bootstrap permutations of 
the training dataset were performed in order to generate 25 classifier trees. The aggregate classifier tree was used to 
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determine the most important variables. Classification tree analysis and bagging were analysed using R Studio with 
the ‘rpart’ (https://cran.r-project.org/web/packages/rpart)  and ‘ipred’ (https://cran.r-project.org/package=ipred) 
packages respectively. 
 
Random Forest 
 
Random forest is similar to bagging in that it is an ensemble recursive partition technique where numerous trees are 
generated (>1000). The key difference between the two methods, aside from the number of trees, is that in random 
forest, for each tree a ‘random’ selection of predictors are used to grow the tree. The number of predictors used at each 
node are also selected randomly. Full trees are grown to the terminal node without pruning.5 Individual trees may have 
poor predictive abilities, but the aggregate of these numerous trees greatly enhances accuracy, making random forest 
one of the most accurate machine learning algorithms. Numerous trees are generated using this method to form a 
forest. Classification is determined by a majority vote of all the trees in the forest. ‘RandomForest’ package in R 
Studio (https://CRAN.Rproject.org/package=randomForest) was used for Random Forest. 
 
Least absolute shrinkage and selection operator (LASSO) 
 
LASSO is a regression based technique that penalizes the absolute weight of coefficients such that all variable 
coefficients are shrunk towards zero.6 Depending on the value of the coefficients and the tuning parameter (l), the 
coefficients of minimally contributing predictor variables are set to zero, thereby eliminating them from the model. In 
this instance, minimized l was sought using 10-fold cross validation. Sequential models were generated with increased 
values of l starting at the minimal value. In order to satisfy our objective of generating a parsimonious model, we 
chose optimal l as the smallest value that gave us a model with fewer than 8 variables.  These retained variables were 
taken forward for consideration as contributors in the final nested LR model. All non-normal continuous variables 
were log-transformed prior to analysis. LASSO analysis was performed in R studio using ‘glmnet’ package 
(https://cran.r-project.org/package=glmnet). 
 
Selecting the Most Important Variables 
 
For the classification trees, at a given node, the primary or surrogate tree-splitting variable is attributed a goodness to 
split score, depending on how well the variable splits the population. The sum of goodness to split scores at each node 
of the tree was used to generate a variable importance score for all variables in the model. A score of 100 was assigned 
to the variable with highest score. All other variables were scaled against this score. These scores were used to 
determine the most important variables in the classification tree model. For the random forest models, we used the 
mean decrease Gini to determine the most important variables. The Gini impurity index is a measure of impurity at 
each node.5 The index score for a homogeneous population would be zero and it reaches maximum value for a 
heterogeneous population. The total decrease in node impurity as a consequence of splitting with a variable and 
averaged over the entire tree gives the mean decrease Gini. 
 
Missing Data 
 
Despite the data being derived from randomized controlled trials, there were several variables with missing data. For 
model generation using classification tree, random forest, and LASSO regression, cases with missing values for 
biomarkers were excluded from the study. For missing categorical variables, data were complete for sex, race, and 
ARDS risk factor. In the derivation dataset, there were 141 missing values for vasopressor use at time of 
randomization.  Data on vasopressor-use on the day of enrollment (Day 0) was used to complete these missing values. 
Phenotype derived using LCA from data with missing vasopressor values in the derivation dataset were highly 
concordant with phenotypes derived using the Day 0 data to complete missing values for vasopressor. The classes 
were the same using the two different datasets in 99.5% of the patients. 
 
Missing values for continuous predictor variables (Table S7) were assumed to be missing-at-random and handled 
using multiple imputation by chained equation (MICE).7 8 Plateau pressure was excluded from this part of the analysis 
due to high missingness (26%). Mean airway pressure was used as a surrogate for plateau pressure to determine the 
most important variables. In total we imputed 5 different data sets (n = 5). Analysis protocol for model generation and 
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variable selection using random forest and LASSO were repeated in each imputed model yielding the same six 
variables as the most important (data not presented).  
 
Evidenced by our previous work, it was highly likely that biomarkers would constitute many of the most influential 
variables in predicting class. Given that the main objective of the study was  feature selection rather than model 
parameter estimation, omitting observations with missing biomarker data seemed the most likely strategy to yield 
informative output. However, in order to ascertain that bias was not introduced secondary to missingness as a 
consequence of using complete cases, we repeated all the analyses using data where all missing values, including 
biomarkers, were imputed using identical techniques described above. In these analyses, the same six variables 
emerged as the most important (data are not presented). In addition, the characteristics of the study and missing cohorts 
were similar (Table S8). We used ‘mice’ package in R studio to impute the data (https://cran.r-
project.org/web/packages/mice).  
 
Development of Ancillary Classifier Models 
 
The ancillary variables all consisted of a minimum of three and maximum of four variables. For each model, either 
interleukin-8 or interleukin-6 served as the base variable in the logistic regression model as both these variables were 
the most important variables by some margin compared to the other four most important variables (Table S3 and 
Figure S1). Youden indices for the models were calculated in the derivation dataset, and along with a probability cut-
off of 0.5, were used to assign phenotypes in the derivation dataset and in HARP-2. LCA-derived phenotypes were 
the reference standard against which model accuracy was tested. 
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Tables 
Table S1. Selected cohort characteristics of the individual randomized control trials and baseline clinical 
characteristics of the patients included for model development and validation in the presented study  

 
APACHE = Acute Physiology, Age, Chronic Health Evaluation; NA = Not Available. a: Compared to the original 
trial cohort, fewer patients from these cohorts were analysed in this study due to lack of pertinent biomarker data; 
b : In the HARP-2 data, the APACHE II score is presented; c: In the START trial the mortality is at day 60.  
Vasopressor at enrollment was a yes / no dichotomous variable, Ventilator-free days was calculated to day 28. 
AECC = American-European Consensus Conference Criteria; PEEP = Positive end-expiratory pressure. 
 

 ARMA ALVEOLI FACTT SAILS HARP-2 START 

Patients in original 
trial (n) 861 549 1000 745 537 60 

Patients in current 
study (n) 473 549 1000 715a 510a 58a 

Study Years 1996-1999 1999-2003 2000-2005 2010-2013 2010-2014 2014-2017 

Criteria used to 
define ARDS AECC AECC AECC Berlin Berlin Berlin 

Time to enrollment 
from 
ARDS diagnosis 

< 36 hours < 36 hours < 48 hours < 48 hours < 48 hours < 96 hours 

Intervention 
Studied 

Low tidal 
volume High PEEP Conservative 

fluid strategy Rosuvastatin Simvastatin Mesenchymal 
stromal cells 

Treatment arms 
included in the 
study  

Intervention 
only Both Both Both Both Both 

Tidal Volume/PBW 
(mL/KG) 10.1 (± 2.0) 8.1 (± 2.0) 7.4 (± 1.7) 6.7 (± 1.2) 8.1 (± 2.7) 6.2 (± 0.9) 

PEEP (cm H2O) 8 (5 – 10) 10 (5 – 12) 10 (5 – 12) 10 (5 – 11) NA 10 (8 – 14) 

PaO2/FiO2 (mmHg) 132 (± 60) 128 (± 58) 132 (± 63) 139 (± 64) 128 (± 55) 106 (± 40) 

Plateau Pressure 
(cmH2O) 29 (24 – 34) 26 (22 –31) 26 (22 – 30) 24 (19 – 28) 24 (20 – 28) 26 (22 – 30) 

APACHE III scoreb 82 (± 29) 94 (± 32) 94 (± 31) 91 (± 28) 19 (± 7)b 100 (± 32) 

Vasopressor at 
enrollment, n (%) 176 (37%) 144 (26%) 327 (33%) 407 (55%) 332 (65%) 41 (71%) 

Ventilator free days, 
median (IQR) 14 (0 – 23) 18 (0 – 24) 17 (0 – 23) 20 (0 – 25) 13 (0 – 22) 6 (0 – 23) 

Mortality at 90 
daysc, n (%) 143 (30%) 148 (27%) 284 (28%) 204 (27%) 147 (29%) 19 (33%)c 
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Table S2 Comparison of class defining variables between phenotypes in the derivation dataset 

 P values represent the 2-sample t-test unless annotated (a = Mann-Whitney U test, b = chi-square test). *These 
variables were unavailable for latent class analysis in the validation dataset. 
 
 
  

Class defining variables for initial LCA model Hypo-inflammatory 
(n = 1431) 

Hyper-inflammatory 
(n = 591) P-value 

Age (years) 50.6 (± 17) 50.1 (± 17) 0.53 
Gender: Female  642 (45%) 259 (44%) 0.71b 

Race: White  1033 (72%) 376 (64%) 0.0002b 

Body mass index (BMI) 28.2 (± 7.2) 27.3 (± 7.4) 0.009 
ARDS risk factor: Pneumonia 632 (44%) 205 (35%) 

<0.0001b ARDS risk factor: Sepsis 233 (16%) 245 (41%) 

ARDS risk factor: Other   566 (40%) 141 (24%) 

Temperature (°C) 38.4 (± 0.93) 38.6 (± 1.1) <0.0001 
Heart rate (beats.min-1) 120 (± 21) 137 (± 21) <0.0001 
Systolic blood pressure (mmHg) 92 (± 17) 79 (± 14) <0.0001 
Respiratory rate (breaths.min-1) 31 (25-39) 35 (29-40) <0.0001a 
Urine output (L over previous 24 hours) 2.3 (± 1.6) 1.9 (± 1.7) <0.0001 
Vasopressor use at baseline  259 (18%) 388 (66%) <0.0001 
PaO2/FiO2 ratio (mmHg) 135 (± 61) 119 (± 58) <0.0001 

PaCO2 (mmHg) 40.3 (± 9.6) 36.1 (± 8.9) <0.0001 
Minute ventilation (L.min-1) 11.6 (± 3.5) 14.7 (± 4.5) <0.0001 
Tidal Volume (mL) 509 (± 138) 539 (± 138) <0.0001 
Plateau Pressure (cmH2O) 26 (22-30) 30 (24-34) <0.0001 a 
Positive end-expiratory pressure (cmH2O) 8 (5-10) 10 (6-13) <0.0001 a 
Hematocrit (%) 29.9 (± 6.0) 29.5 (± 6.6) 0.28 
White cell count (103/µL) 15.1 (± 11.7) 13.7 (± 12.3) 0.02 
Platelets (103/µL) 204 (± 127) 131 (± 102) <0.0001 
Sodium (mmol/L) 137 (± 5) 137 (± 6) 0.02 
Glucose (mg/dL) 133 (± 56) 122 (± 69) 0.0007 
Creatinine (mg/dL) 0.9 (0.7-1.4) 1.7 (1.1-2.7) <0.0001 a 
Bicarbonate (mmol/L) 23.1 (± 4.9) 17.3 (± 5.0) <0.0001 
Albumin (g/dL) 2.3 (± 0.6) 2.0 (± 0.6) <0.0001 
Bilirubin (mg/dL) 1.4 (± 2.4) 2.4 (± 3.5) <0.0001 

Interleukin-6 (pg/mL) 116 (49-279) 933 (308-3026) <0.0001a 

Interleukin-8 (pg/mL) 23 (16-49) 133 (60-414) <0.0001 a 
Soluble tumor-necrosis factor receptor-1 (pg/mL) 3225 (2236-5104) 7452 (4565-10879) <0.0001 a 
Intercellular adhesion molecule 1 (ng/mL) 959 (589-1561) 1239 (742-2072) <0.0001a 

Protein C (% control) 96.0 (± 57) 53.5 (± 38) <0.0001 

Plasminogen activator inhibitor 1 (ng/mL) 56 (36-86) 107 (71-170) <0.0001 a 
Surfactant Protein-D (ng/mL)* 125 (60-275) 86 (42-166) <0.0001 a 
Von Willebrand Factor (% control)* 203 (112-343) 337 (199-538) <0.0001 a 
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Table S3 Goodness to split score from the classification tree with bagging model of the top seven variables of 
importance in the derivation dataset. 

 
 
 
 
 
 
 
 
 
 
 

sTNFR-1 = Soluble tumour necrosis factor receptor-1 

 

Variable Goodness to split 

IL-6 100 

IL-8 89.3 

Vasopressors 82.6 

sTNFR-1  75.8 

Bicarbonate 75.8 

Protein C  52.6 

Creatinine 49.4 
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Table S4 Model composition with variable coefficients of ancillary parsimonious models and their area under the receiver  
operator characteristic curve (AUC), sensitivity and specificity used in the validation dataset. A. Probability cut-off set as  
Youden Index estimated from the derivation dataset to assign phenotypes B. Probability cut off set as 0.5 to assign phenotypes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IL8 = Interleukin-8, IL6 = Interleukin-6, sTNFR1 = soluble tumour necrosis factor receptor-1. * Coefficients were derived using the logarithmic (loge) transformed values  
of the variables. For IL-8, sTNFR1, IL-6, and protein C, a value of 1 was added to the measured value prior to enable log transformation. 

 
 
 
 
 
 
 

 
 

Model Coefficients 

AUC (95% CI) 

A. Youden Index B. Probability ≥ 0.5 

Intercept IL-8* HCO3- sTNFR1* vasopressor Protein C* IL-6* Sensitivity Specificity Sensitivity Specificity 

-10.6110 1.2902 -0.2326 1.0732 -- -- -- 0.95 (0.93 – 0.96) 0.93 0.83 0.79 0.94 

-13.1351 1.3947 -0.2145 1.1818 2.1398 -- -- 0.96 (0.95 – 0.97) 0.95 0.81 0.90 0.89 

-18.4764 1.3013 -- 1.3367 2.3439 -- -- 0.94 (0.92 – 0.95) 0.97 0.66 0.89 0.83 

4.7119 -- -0.2707 -- -- -1.3522 0.9402 0.90 (0.88 – 0.92) 0.82 0.83 0.73 0.90 

4.0323 -- -0.2581 -- 1.7412 -1.3805 0.9191 0.92 (0.90 – 0.94) 0.93 0.70 0.81 0.87 

-11.9593 -- -0.2436 1.1903 -- -- 1.0138 0.94 (0.92 – 0.95) 0.93 0.74 0.82 0.89 

-13.7440 -- -0.2257 1.2785 1.8375 -- 1.0089 0.95 (0.93 – 0.96) 0.96 0.72 0.90 0.84 

-19.4464   1.4711 2.0793  0.9107 0.92 (0.91 – 0.94) 0.97 0.58 0.89 0.74 
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Table S5. 2 X 2 Table of phenotype assignment by latent class analysis and by parsimonious model 
(Interleukin-6, soluble tumour-necrosis factor receptor 1, vasopressor-use) in HARP-2. Table S5A 
Parsimonious model probability cut-off to assign hyper-inflammatory phenotype was the Youden Index (³ 
0.276). Table S5B Parsimonious model probability cut-off to assign hyper-inflammatory phenotype was ³ 0.5. 
 

A. Youden Index 
Parsimonious model derived 

Hypo-inflammatory class 
Parsimonious model derived 
Hyper-inflammatory Class 

 
Total 

LCA Assigned 
Hypo-inflammatory class 

234 
(specificity 0.62) 99 333 

LCA Assigned  
Hyper-inflammatory Class 17 160 

(sensitivity 0.93) 177 

Total 251 259  

B. ³ 0.5 Parsimonious model derived 
Hypo-inflammatory class 

Parsimonious model derived 
Hyper-inflammatory Class 

 
Total 

LCA Assigned  
Hypo-inflammatory class  

292  
(specificity 0.77) 41 333 

LCA Assigned  
Hyper-inflammatory Class 38 139 

(sensitivity 0.88) 177 

Total 330 180  
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Table S6. Phenotype assignment in the START trial. Phenotype assignment using the three best parsimonious 
models using the probability cut-offs as either the Youden Index for the models extracted from the derivation 
dataset or a value greater than 0.5. Day 60 mortality for each subphenotype are also presented. Using chi-
squared test, mortality was significantly higher in the hyper-inflammatory phenotype compared to the hypo-
inflammatory phenotype (p < 0.002 for all models except where annotated; a: p = 0.011, b: p = 0.023).  
 

 
 

 
3-variable Model 

> 0.5 cut-off 
3-variable Model 

Youden Index cut-off 
4-variable Model 

> 0.5 cut-off 
4-variable Model 

Youden Index cut-off 

Phenotypes Count 60-Day 
Mortality Count 60-Day 

Mortality Count 60-Day 
Mortality Count 60-Day 

Mortality 

Hypo-
Inflammatory 43 (74%) 8 (19%) 41 (71%) 8 (20%) 39 (67%) 8 (21%)a 35 (60%) 7 (20%)b 

Hyper-
Inflammatory 15 (26%) 11 (73%) 17 (29%) 11 (65%) 19 (33%) 11 (58%)a 23 (40%) 12 (52%)b 
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Table S7. Summary of the missing data in the merged LCA dataset (n=2022) that was used for latent class 
analysis and the complete cases dataset used as the ‘derivation dataset’ for model development. Multiple 
imputation using chained equations was used for missing data in the complete biomarker cases column. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(PEEP = Positive end expiratory pressure, PAI-1 = Plasminogen activation factor 1, TNFR-1 = Tumour necrosis 
factor receptor 1, ICAM-1 = Intercellular adhesion molecule 1) 
 
  

 
Merged all cases (n =2022) 

(used for LCA) 
Complete biomarker cases (n=1558) 

(Derivation dataset) 

Body mass index  160 118  

Age  0 0 

Temperature  3 2 

Systolic Blood Pressure 4 3 

Heart rate  3 2 

PaO2/FiO2 ratio  1 0 

Tidal Volume  309 232 

Minute Ventilation  36 28 

PEEP  7 6 

Mean airway pressure 279 186 

PaCO2  98 76 

Respiratory rate  3 2 

Urine Output  77 63 

Haematocrit  9 7 

WBC  43 26 

Platelets  18 16 

Sodium  13 4 

Creatinine  34 23 

Glucose  34 22 

Albumin  317 219  

Bilirubin  346 273 

Bicarbonate  20 17 

Protein C  262 - 

PAI-1  189 - 

Interleukin-6  224 - 

Interleukin-8  217 - 

SolubleTNFR-1  298 - 

ICAM-1  262 - 

Surfactant Protein D  351 - 

Von Willebrand Factor  288 - 
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Table S8. Comparison of key characteristics between the studied population for variable selection and the 
cohort excluded due to missing data in the derivation dataset.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P-values are representative of: * Chi-square test, � 2-sample t-test, � Wilcoxon test.   

 Study Cohort Missing Cohort P-Value 

Number (%) 1558 (77%) 464 (23%) NA 

Hyper-inflammatory Phenotype 452 (29%) 139 (30%) 0.74* 
Source Study:    

ARMA 268 (17%) 205 (44%) 
< 0.0001* ALVEOLI 500 (32%) 49 (11%) 

FACTT 790 (51%) 210 (45%) 

Mean PaO2/FiO2 (mmHg) 131 (± 61) 128 (± 60) 0.34� 

Median Ventilator Free Days (IQR) 17 (0-23) 15 (0-23) 0.16� 

Mortality at day 90 437 (28%) 138 (30%) 0.52* 
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1 Mean decrease of Gini score and accuracy in the random forest classifier model to select the most 
important variables in the model. sTNFR1 = soluble tumor necrosis factor receptor 1, Vasopressor = vasopressor 
use, VE = minute ventilation, PAI-1 = plasminogen activation factor-1, HR = heart rate, SBP = systolic blood 
pressure, PaCO2 = Arterial pressure of carbon dioxide, MAP = mean airway pressure, UO = urine output over last 
24 hours, WBC = white blood cell count, ICAM-1 = Intra-cellular adhesion molecule-1, RF = risk factor, VT = tidal 
volume, RR = respiratory rate, HCT = hematocrit, PEEP = Positive end-expiratory pressure, BMI = body mass 
index, PF ratio = PaO2/FiO2 ratio.  
 
 
 
 
 
 
 
 
 
 
 

Minute Ventilation 

Heart rate 

Interleukin-6 
Interleukin-8 

Bicarbonate 

Protein C 
sTNFR-1 

Creatinine 
Vasopressor 

Mean Decrease Gini 

PAI-1 

Systolic BP 
Platelets 

Mean airway pressure 

Urine Output 
ICAM-1 

Bilirubin 
PaCO2 

Tidal volume 

PaO2/FiO2 

ARDS risk factor 

Age 

Respiratory rate 
Temperature 

Albumin 

Glucose 
White blood cells 

Body Mass Index 

Haematocrit 

Sodium 
PEEP 



 13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2 Kernel density function plot for the distribution of ARDS phenotypes as defined by latent class analysis 
(LCA) plotted against the probability of belonging to the hyper-inflammatory subphenotype as generated by the 
parsimonious regression models in the Validation cohort. A. 3-variable model (interleukin-8, bicarbonate, and 
protein C); B. 4-Variable Model (interleukin-8, bicarbonate, Protein C, and Vasopressor use). 
  

A. Phenotype Separation in 3 Variable Model 

B. Phenotype Separation in 4 Variable Model 
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