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Supplementary Note 1 
In this note we derive the map from roGFP-biosensor fluorescence-ratio (R) measurements into 

glutathione redox potential (EGSH) values. We (1.1) review the general chemistry of roGFP bio-

sensors; (1.2) derive the map between 𝑅𝑅𝑅𝑅 and 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜; and (1.3) derive the map between 𝑅𝑅𝑅𝑅 and 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. 

 

(1.1) General chemistry of roGFP biosensors 
roGFP biosensors include two cysteines whose thiol groups can form a reversible intramolecular 

disulfide bond [1]. Both reduced (roGFPred) and oxidized (roGFPox) species exhibit green fluores-

cence but differ in the extent to which they fluoresce upon excitation at different wavelengths. 

Because these biosensors are derived from Aequorea Victoria green fluorescent protein (GFP), 

they exhibit two peaks in their excitation spectra, centered near 410 nm (A-band) and 470 nm (B-

band), corresponding to the protonated and deprotonated forms of the biosensor’s chromophore 

[2, 3]. The degree of chromophore protonation is influenced by the oxidation state of the two 

roGFP cysteines [4, 5]. As a result, the relative magnitude of these two excitation peaks differs 

between reduced and oxidized biosensor species. This means that when an ensemble of biosen-

sors is excited at a given wavelength, the magnitude of their green-fluorescent emission depends 

not only on the number of biosensors but also on the fraction of biosensors in each oxidation 

state.  

 

The fraction of oxidized biosensors (Fox) provides a chemically interpretable description of the 

biosensor’s oxidation. This fraction cannot be derived from their green-fluorescence at a single 

wavelength, when the biosensor concentration is not known. However, it is possible to calculate 

Fox if one records the ratio of the biosensor’s green fluorescent emission at two different wave-

lengths (R) [1, 6], as we describe in section (1.2). 

 

The tendency of roGFPox to acquire electrons and thereby become reduced into roGFPred is quan-

tified by the half-cell reduction potential of the roGFPred/roGFPox couple, EroGFP. This redox poten-

tial is given by the Nernst equation: 

 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′  −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (

[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] ) (1) 

 

 where Rgas is the gas constant, F is the Faraday constant, T is the absolute temperature, and 

E°’
roGFP is the standard midpoint potential of the biosensor, which is -265 mV for roGFP1-R12 [7]. 



In section (1.3), we describe how one can calculate the biosensor’s redox potential EroGFP given 

Fox. 

 

The oxidation and reduction of the roGFP-family of biosensors is controlled specifically by the 

glutathione/glutathione disulfide redox couple, in a manner catalyzed by the enzyme glutaredoxin 

[1, 8, 9]. The glutathione redox couple can be thought of as a broker that mediates the indirect 

effects of oxidants and reductants on the thiol-disulfide balance of many proteins, including roG-

FPs [6]. In C. elegans feeding muscles, roGFP1-R12 oxidation and reduction reactions in the 

cytosol exhibit fast kinetics in vivo [6]. As a result, the glutathione and roGFP redox couples are 

in equilibrium; that is, the redox potential of the biosensor’s couple EroGFP is equal to the redox 

potential of the glutathione couple EGSH [6]. Measuring EGSH instead of R enables us to make 

predictions about the oxidation state of the network of cysteines trading electrons with glutathione 

[6]. 

 

(1.2) Derivation of the map between 𝑹𝑹𝑹𝑹 and 𝑭𝑭𝑭𝑭𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 
(1.2.1) Dual-excitation single-emission biosensors 

Assume that a fluorescent biosensor has two states, 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵, and that an individual biosensor’s 

emission is state-dependent. Each biosensor in state 𝐴𝐴𝐴𝐴 emits an intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 and each biosensor 

in state 𝐵𝐵𝐵𝐵 emits an intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵, where 𝜆𝜆𝜆𝜆 represents that biosensor’s excitation wavelength.  

 

If an ensemble of 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 biosensors were all in state A, the total observed intensity 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 would be: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇  𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 (2) 

 

Similarly, if an ensemble of 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 biosensors were all in state B, the total observed intensity 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 

would be: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 = 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 (3) 

 

In ensembles with 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 biosensors in state 𝐴𝐴𝐴𝐴 and 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵 biosensors in state 𝐵𝐵𝐵𝐵, the total observed 

intensity 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 will be the sum of the intensities contributed by biosensors in each state: 

 



𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 =   
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 +
𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 (4) 

 

Since the biosensor can only be in one of two states, 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 +𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵 = 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇, where 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 is the total number 

of biosensors. Therefore: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 =   
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 + �1 −
𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇
� 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 (5) 

 

We can express the probability of a biosensor being in state 𝐴𝐴𝐴𝐴 as 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) =  𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇⁄  and the proba-

bility of a biosensor being in state 𝐵𝐵𝐵𝐵 as 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵) = 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇⁄ = 1 − 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴). In a mixed population of bio-

sensors, the total observed fluorescence intensity will be the weighted average of the intensities 

expected for populations of biosensors in each state: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 =  𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 + [1 − 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴)] 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵  (6) 

 

By taking a ratiometric measurement 𝑅𝑅𝑅𝑅: 

 

𝑅𝑅𝑅𝑅 =
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2

=

𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐴𝐴𝐴𝐴 + �1 − 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇
� 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐵𝐵𝐵𝐵

𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐴𝐴𝐴𝐴 + �1 − 𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇
� 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐵𝐵𝐵𝐵

 (7) 

 

which simplifies to, in terms of 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴): 

 

𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) =
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐵𝐵𝐵𝐵 − 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐵𝐵𝐵𝐵

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐴𝐴𝐴𝐴 − 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐵𝐵𝐵𝐵 − 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐴𝐴𝐴𝐴 + 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐵𝐵𝐵𝐵
 (8) 

 

Now, assume that the maximum possible 𝑅𝑅𝑅𝑅 measurement occurs when all biosensors are in state 

𝐴𝐴𝐴𝐴 (that is, when 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) = 1) and that the minimum possible 𝑅𝑅𝑅𝑅 occurs when all biosensors are in 

state 𝐵𝐵𝐵𝐵 (that is, when 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) = 0). We can thereby define three constants: 

 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐴𝐴𝐴𝐴

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐴𝐴𝐴𝐴
 (9) 

 



𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =  
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝐵𝐵𝐵𝐵

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐵𝐵𝐵𝐵
  (10) 

 

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 =  
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐴𝐴𝐴𝐴

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝐵𝐵𝐵𝐵
  (11) 

 

And express 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) in terms of 𝑅𝑅𝑅𝑅 and those three constants: 

 

 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 + 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2(𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅)
 (12) 

 

Then, if biosensors in state 𝐴𝐴𝐴𝐴 are oxidized, biosensors in state B are reduced, 𝜆𝜆𝜆𝜆1 = 410 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, and 

𝜆𝜆𝜆𝜆2 = 470 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, Equation (12) becomes the map between 𝑅𝑅𝑅𝑅 and 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  (Equation 16): 

 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐼𝐼𝐼𝐼410,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐼𝐼𝐼𝐼470,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 (13) 

 

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐼𝐼𝐼𝐼410,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐼𝐼𝐼𝐼470,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (14) 

 

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 = 𝛿𝛿𝛿𝛿470 =  
𝐼𝐼𝐼𝐼470,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐼𝐼𝐼𝐼470,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
  (15) 

 

 
𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) = 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝛿𝛿470(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅)

 (16) 

 

where 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the ratiometric emission of an ensemble of reduced biosensors, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the rati-

ometric emission of an ensemble of oxidized biosensors, and 𝛿𝛿𝛿𝛿470 is the biosensor’s dynamic 

range in the second wavelength, where the dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 = 𝛿𝛿𝛿𝛿410 𝛿𝛿𝛿𝛿470⁄ = 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ . 

 
(1.2.2) Dual-emission single-excitation biosensors 

Here, as with dual-excitation single-emission biosensors (see section 1.2.1) we assume that the 

fluorescent biosensor has two states, 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵, and that an individual biosensor’s emission is 

state-dependent. In this case, however, each biosensor in state 𝐴𝐴𝐴𝐴 emits an intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 and each 



biosensor in state 𝐵𝐵𝐵𝐵 emits an intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵, where 𝜆𝜆𝜆𝜆 represents that biosensor’s emission wave-

length.  

 
(1.2.3) Dual-excitation and dual-emission biosensors 

Here, as before (see sections 1.2.1 and 1.2.2) we assume that the fluorescent biosensor has two 

states, 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵, and that an individual biosensor’s emission is state-dependent. In this case, 

however, each biosensor in state 𝐴𝐴𝐴𝐴 emits an intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 and each biosensor in state 𝐵𝐵𝐵𝐵 emits an 

intensity 𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵, where 𝜆𝜆𝜆𝜆 represents that biosensor’s excitation- and emission-wavelength pair. This 

class of biosensors could, in principle, be built by linking two fluorescent proteins, each with well-

separated maxima of fluorescence excitation and emission, with the fluorescence of the former 

being input-sensitive and the fluorescence of the latter being input-insensitive. 

 
(1.3) Derivation of the map between 𝑹𝑹𝑹𝑹 and 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 
The reduction potential of a two-state redox biosensor is given by the Nernst equation: 

 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
∘′ −

𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇
2𝐹𝐹𝐹𝐹

ln (
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] ) (17) 

 

In in vivo experiments, the concentration of the biosensor is generally not known a priori. The 

concentrations of reduced and oxidized biosensor species, however, are constrained by mass 

balance: 

 

[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟] =  [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] +  [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] (18) 

 

Given this constraint, we can express 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 in terms of Fox: 

 

[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟] =  
𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇

𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑉𝑉𝑉𝑉
=  

𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑉𝑉𝑉𝑉

+  
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝑉𝑉𝑉𝑉
 (19) 

 

so 
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] =  

𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇 −  𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
1 −𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇⁄
𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑇𝑇𝑇𝑇⁄ =

1 − 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 (20) 

 



and 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
∘′ −

𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇
2𝐹𝐹𝐹𝐹

ln (
1 − 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

)  (21) 

 

For roGFP biosensors, then: 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (

1 − 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

) (22) 

 

For two-state ratiometric biosensors, we can use Equation (16) to write 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in terms of the fluo-

rescence ratio 𝑅𝑅𝑅𝑅, and this expression simplifies to Equation (23): 

 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (23) 

 

For roGFP biosensors in equilibrium with the glutathione redox couple, then: 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (24) 

 

  



Supplementary Note 2 
In Supplementary Note 1 we derived the map from roGFP-biosensor fluorescence-ratio (𝑅𝑅𝑅𝑅) meas-

urements into the fraction of oxidized biosensors (𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜). Knowing 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 enables calculation of the 

biosensor’s redox potential (EroGFP), which equals the glutathione redox potential (𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) under 

equilibrium conditions. In this note we determine (2.1) the sensitivity of the fraction of oxidized 

biosensors to errors in 𝑅𝑅𝑅𝑅; and (2.2) the sensitivity of EGSH values to errors in 𝑅𝑅𝑅𝑅.  

 

(2.1) Sensitivity of the fraction of oxidized biosensors to biosensor fluorescence-ratio 
For small errors in 𝑅𝑅𝑅𝑅, the sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to changes in 𝑅𝑅𝑅𝑅 is quantified by its partial derivative 

with respect to 𝑅𝑅𝑅𝑅: 

 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅)
 (1) 

 
  

 𝜕𝜕𝜕𝜕𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅

=
𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

�𝑅𝑅𝑅𝑅�𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 − 1� − 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 + 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2 (2) 

 

where 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the ratiometric emission of an ensemble of reduced biosensors, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the rati-

ometric emission of an ensemble of oxidized biosensors, and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 is the biosensor dynamic range 

in the second excitation band (e.g. in our experiments in C. elegans, where we excite roGFP1-

R12 with bands of light 𝜆𝜆𝜆𝜆1and 𝜆𝜆𝜆𝜆2 centered at 410 nm and 470 nm, respectively, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 corresponds 

to the dynamic range of the 470 nm excitation band [6]). 

 

The sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 with respect to 𝑅𝑅𝑅𝑅 depends on 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2: 

• When 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 is 1, the map from 𝑅𝑅𝑅𝑅 to 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is linear (Figure S2-1a, black line) and, therefore, 𝜕𝜕𝜕𝜕𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅 

is equal to 1/(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) throughout the range of ratio values (Figure S2-1b, black line). We 

note this corresponds to the special case where reduced and oxidized biosensor forms have 

the same fluorescence upon excitation in the second wavelength (i.e. 𝜆𝜆𝜆𝜆2 is an isosbestic 

point); as a result, the biosensor’s fluorescence upon excitation with this wavelength does not 

contribute to the overall dynamic range of the biosensor fluorescence ratio (DR), equal to 

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1/𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2. 

• When 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 is less than 1, the map from 𝑅𝑅𝑅𝑅 to 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is non-linear (Figure S2-1a, red curves). Here, 

the sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 with respect to 𝑅𝑅𝑅𝑅 is highest when 𝑅𝑅𝑅𝑅 equals its lowest value, 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 



decreases monotonically as 𝑅𝑅𝑅𝑅 approaches its maximum value, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (Figure S2-1b, red curves). 

We note that in this case the biosensor’s fluorescence upon excitation with each of 𝜆𝜆𝜆𝜆1and 𝜆𝜆𝜆𝜆2 

contributes to the overall dynamic range of the biosensor’s fluorescence ratio. 

• When 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 is greater than 1, the map from 𝑅𝑅𝑅𝑅 to 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is also non-linear (Figure S2-1a, blue 

curves). Here, the sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 with respect to 𝑅𝑅𝑅𝑅 is lowest when 𝑅𝑅𝑅𝑅 equals its lowest value, 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and increases monotonically as 𝑅𝑅𝑅𝑅 approaches its maximum value, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (Figure S2-1a, 

blue curves). We note that in this case 𝜆𝜆𝜆𝜆1 increases the overall dynamic range of the biosen-

sor’s fluorescence ratio, but 𝜆𝜆𝜆𝜆2 decreases it. 

 

(2.2) Sensitivity of the biosensor’s redox potential to biosensor fluorescence-ratio 
For small errors in 𝑅𝑅𝑅𝑅, the sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 to changes in 𝑅𝑅𝑅𝑅 is quantified by its partial derivative 

with respect to 𝑅𝑅𝑅𝑅: 

 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (3) 

  

𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅

=  
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
∗

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  − 𝑅𝑅𝑅𝑅)(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

 (4) 

 

The map from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 depends on both 𝑅𝑅𝑅𝑅 and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (Figure S2-1c). The sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 to 𝑅𝑅𝑅𝑅 

varies strongly with 𝑅𝑅𝑅𝑅 (Figure S2-1d). We note that 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅 is at its lowest value when 𝑅𝑅𝑅𝑅 is 

halfway between its upper and lower bounds, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, but increases rapidly as 𝑅𝑅𝑅𝑅 approaches 

either one of those bounds (Figure S2-2b).  

 

The sensitivity of 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to 𝑅𝑅𝑅𝑅 is independent of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (Figure S2-1d). This is in contrast with the 

sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to 𝑅𝑅𝑅𝑅, which has a complex dependence on 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (Figure S2-1b). 
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Figure S2-1: Sensitivity of the fraction of oxidized biosensors and glutathione redox po-
tential 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 values to errors in fluorescence-ratio 𝑹𝑹𝑹𝑹 

a. The conversion map from the biosensor fluorescence-ratio 𝑅𝑅𝑅𝑅 to the fraction of oxidized biosen-

sors 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 depends on the ratiometric emission of the ensemble of reduced biosensors 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, the 

ratiometric emission of the ensemble of oxidized biosensors 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and the biosensor dynamic 

range in the second excitation band 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2.  

b. The sensitivity of 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to changes in 𝑅𝑅𝑅𝑅 has a complex dependence on both 𝑅𝑅𝑅𝑅 and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2. 

c. The conversion map from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 depends on both 𝑅𝑅𝑅𝑅 and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2. 

d. The sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 to changes in 𝑅𝑅𝑅𝑅 depends on 𝑅𝑅𝑅𝑅 but is independent of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2. 

In panels a, b, and c, the dotted curve was calculated using 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2values determined 

empirically for our experimental setup using live C. elegans expressing roGFP1-R12 [6]. 

 

  



Supplementary Note 3 
In this note, we quantify empirical errors in 𝑅𝑅𝑅𝑅 in live C. elegans expressing the roGFP1-R12 bio-

sensor in the cytosol of the muscles of the pharynx, the feeding organ. This retrospective analysis 

of thousands of fluorescence-ratio images showed that (3.1) our errors in 𝑅𝑅𝑅𝑅 were relative—that 

is, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟  × (1 + 𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)—and were invariant over the range of all possible 𝑅𝑅𝑅𝑅 values; and 

that (3.2) these relative errors vary between experiments. 

 

(3.1) The relative error in R is independent of R 
 

To determine whether the error in our 𝑅𝑅𝑅𝑅 measurements varies with 𝑅𝑅𝑅𝑅, we quantified 𝑅𝑅𝑅𝑅 errors in 

experiments in which the fraction of oxidized biosensors was manipulated by exposing C. elegans 

worms to different chemicals [6]. Each experiment consisted of a collection of time series where 

𝑅𝑅𝑅𝑅410/470 was measured longitudinally in individual worms first under normal conditions (“baseline”) 

and then in response to treatment with 50 mM diamide (a thiol-specific oxidant). These animals 

where then either treated with 100 mM dithiothreitol (DTT, a reducing agent) or returned to normal 

conditions (“recovery”). Animals were placed on petri plates with modified Nematode Growth Me-

dia (to minimize background fluorescence) containing 6 mM levamisole to immobilize them. 

 

The biosensor’s green fluorescence ratio (𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is the ratio (𝑅𝑅𝑅𝑅410/470) of the background-corrected 

observed fluorescence intensities on excitation with 410 nm and 470 nm light (I410 and I470, re-

spectively) captured via sequential imaging. These images of pm3 pharyngeal muscles were ac-

quired with 4x4 binning with signal/background > 19.3 for both 410 nm and 470 nm exposures. In 

our images the vast majority (> 90%) of the pixels were part of the background. We therefore 

performed background subtraction by removing the mode intensity value of the entire image from 

each pixel. This procedure removed the background due to the agar and the camera noise. 

 

Under baseline conditions 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 was in a steady state or changed slowly over the measurement 

interval of ten minutes [6] (Figure S3-1a). Treatment with 50 mM diamide caused a new steady 

state in 𝑅𝑅𝑅𝑅 consistent with maximal oxidation of the biosensor [6] (Figure S3-1a). Transferring an-

imals from 50 mM diamide back to normal conditions resulted in spontaneous recovery from max-

imal oxidation and a new steady state in 𝑅𝑅𝑅𝑅 near baseline values [6] (Figure S3-1a). To estimate 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟, we fitted linearly each 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 time series within a 10-minute interval corresponding to the 

baseline or the end of each treatment. We defined the error in 𝑅𝑅𝑅𝑅 as the difference between 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

and 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 and defined the relative error in 𝑅𝑅𝑅𝑅 as the error in 𝑅𝑅𝑅𝑅 divided by 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟. The error in R 



increased in response to diamide treatment and decreased upon recovery from diamide (Figure 

S3-1b). In contrast, the relative error in 𝑅𝑅𝑅𝑅 was unaffected by diamide treatment or recovery (Figure 

S3-1c). These findings suggested the relative error in 𝑅𝑅𝑅𝑅 is independent of 𝑅𝑅𝑅𝑅. 

 

To estimate the error in 𝑅𝑅𝑅𝑅 over a broader range of values, we performed the same analysis for 

the collection of time series in which animals were transferred first to diamide and then to DTT. 

We found the same pattern: diamide treatment increased the error in 𝑅𝑅𝑅𝑅 and subsequent DTT 

treatment reduced it (Figure S3-2a); however, these treatments had only very small effects on the 

relative error in 𝑅𝑅𝑅𝑅 (Figure S3-2b). We then re-analyzed both collections of 𝑅𝑅𝑅𝑅 time series, but this 

time computed the errors in the observed 𝑅𝑅𝑅𝑅470/410 values using the same approach as for the 

errors in 𝑅𝑅𝑅𝑅410/470. Because 𝑅𝑅𝑅𝑅470/410 is the inverse of 𝑅𝑅𝑅𝑅410/470, this approach enabled us to elimi-

nate many gaps in 𝑅𝑅𝑅𝑅 coverage. The observed fluorescence ratios and their inverses varied over 

a wide range of values and exhibited large difference in their absolute errors (Figure S3-2a,c); 

however, their relative errors exhibited only very small differences (Figure S3-2b,d). These results 

confirm that in our experiments, the relative error in 𝑅𝑅𝑅𝑅 was independent of 𝑅𝑅𝑅𝑅. 

 

(3.2) The relative error in R can vary between experiments 
 

To determine whether the relative error in 𝑅𝑅𝑅𝑅 varies between experiments, we followed the same 

approach as in (3.1) and analyzed three additional collections of time series of animals under 

baseline conditions. We found that the relative error in 𝑅𝑅𝑅𝑅 varied between the baselines of the five 

experiments by up to three-fold (Figure S3-3). Differences in the proportion of animals moving 

during imaging account for most of the variation in the relative error in R across experiments 

(S.B.J, J.A.S, and J.A., manuscript in preparation). 
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Figure S3-1: The error in 𝑹𝑹𝑹𝑹 is relative 
a. 𝑅𝑅𝑅𝑅410/470 measurements in C. elegans worms expressing roGFP1-R12 in feeding muscles under 

normal conditions (“baseline”), in response to treatment with 50 mM diamide, and upon return to 

normal conditions (“recovery”). 
b. The absolute value of the error in 𝑅𝑅𝑅𝑅 varies between baseline, diamide treatment, and recovery 

(P < 0.0001, ANOVA). 

c. The absolute value of the relative error in 𝑅𝑅𝑅𝑅 does not vary between baseline, diamide treatment, 

and recovery conditions (P > 0.05, ANOVA). 
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Figure S3-2: The relative error in 𝑹𝑹𝑹𝑹 is independent of 𝑹𝑹𝑹𝑹 over a broad range of 𝑹𝑹𝑹𝑹 values 
a. The absolute value of the error in 𝑅𝑅𝑅𝑅410/470 varies with 𝑅𝑅𝑅𝑅410/470 (P < 0.0001, linear regression). 

b. The absolute value of the relative error in 𝑅𝑅𝑅𝑅410/470 does not vary with 𝑅𝑅𝑅𝑅410/470 (P > 0.05, linear 

regression). 

c. The absolute value of the error in 𝑅𝑅𝑅𝑅470/410 varies with 𝑅𝑅𝑅𝑅470/410 (P < 0.0001, linear regression). 

d. The absolute value of the relative error in 𝑅𝑅𝑅𝑅470/410 does not vary with 𝑅𝑅𝑅𝑅470/410 (P > 0.05, linear 

regression). 
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Figure S3-3: The relative error in 𝑹𝑹𝑹𝑹 can vary between experiments 
Cumulative distributions of the absolute value of the relative error in 𝑅𝑅𝑅𝑅410/470 in five experiments 

consisting of baseline measurements of 𝑅𝑅𝑅𝑅410/470. The absolute value of the relative error in 

𝑅𝑅𝑅𝑅410/470 varied between pairs of experiments (P < 0.0001, Turkey HSD test), except for experi-

ments 1 and 2 and experiments 4 and 5, which did not exhibit differences (P > 0.05, Turkey HSD 

test). 

  



Supplementary Note 4 
In this note, we build on the framework described in Supplementary Note 1 to model how the 

biochemical and biophysical properties of roGFP biosensors affect the relationship between the 

empirical precision of our fluorescence-ratio measurements and the accuracy of individual 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

observations: we (4.1) present the overall approach; (4.2) show how 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccu-

racy is sensitive to the biochemical and biophysical variables that map 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺; and (4.3) extend 

this analysis to other types of ratiometric two-state biosensors. 

 

(4.1) Overall approach 

In Supplementary Note 1.3 we derived the function mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of dual-

excitation single emission roGFP biosensors and the reduction potential of the glutathione-gluta-

thione disulfide couple 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (1) 

 

The function mapping 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 depends on physical, biochemical, and biophysical parameters. 

These include (a) physical constants and variables: the gas constant 𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, the Faraday constant 

𝐹𝐹𝐹𝐹, and the absolute temperature 𝑇𝑇𝑇𝑇; (b) biochemical variables: the standard midpoint potential of 

the biosensor 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ ; and (c) biophysical variables: the ratiometric emission of an ensemble of 

reduced biosensors 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, the ratiometric emission of an ensemble of oxidized biosensors 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 

and the biosensor’s dynamic range in the second excitation wavelength 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2.  

 

In the main text, we modeled how the empirical error in 𝑅𝑅𝑅𝑅 measurement influences the accuracy 

of individual 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurements (Figure 1g). In this note, we model how that relationship is influ-

enced by each of the biochemical and biophysical variables mapping 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 . 

 

(4.2) Sensitivity of 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 measurement inaccuracy to the biochemical and biophysical vari-
ables that map 𝑹𝑹𝑹𝑹 to 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 
In this analysis, we changed the values of individual parameters of the function mapping 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

while holding other parameters constant. We then determined how the inaccuracy of our 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

measurements would be affected by a 2.8%-fold error in 𝑅𝑅𝑅𝑅. This relative error corresponds to the 

0.025 and 0.975 quartiles of our empirical distribution of relative errors in 𝑅𝑅𝑅𝑅 (the median relative 

error in 𝑅𝑅𝑅𝑅 was zero) (Figure 1f). Thus, the 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy we calculated is the maximum absolute 



difference between 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and either the upper or lower bounds of the interval encompassing 95% 

of the 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 values. 

 

As a starting point we considered a hypothetical roGFP biosensor with 𝐸𝐸𝐸𝐸∘′ = -250 mV. Other 

parameters were set as follows: 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 5, and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 = 1. We note the constraints between 

certain parameters given by the biosensor’s dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅: 

 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1
𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

 (2) 

 

Changing the biosensor’s midpoint potential shifts the x-axis of the map between the true value 

of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy (Figure S4-1a). The map between 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐸𝐸𝐸𝐸∘′ and 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy 

is unaffected by the value of 𝐸𝐸𝐸𝐸∘′. 

 

Changing the biosensor’s 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 while holding 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 constant also shifted the x-axis of the map be-

tween the true value of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy (Figure S4-1b). An 𝑥𝑥𝑥𝑥-fold change in 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 while 

holding 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 constant shifts the x-axis of that map by −𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇
2𝑟𝑟𝑟𝑟

ln 𝑥𝑥𝑥𝑥.  

 

Changing the biosensor’s 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1 without the constraint of holding 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 constant had a more complex 

effect (Figure S4-1c). Increasing 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1 (and thereby 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅) always lowered 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy. In addi-

tion, it decreased the 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 value that maps to the lowest 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy. Changing 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 without 

the constraint of holding 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 constant had a similar effect to changing 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1 (Figure S4-1d). At a 

given 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 value, the curves mapping 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy are identical if one changed either 

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1 or 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 except for a shift in the x-axis (due to changing 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2at constant 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅, described above). 

 

In summary, our sensitivity analysis indicates that the optimal strategy for minimizing 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inac-

curacy with a given biosensor and error level in 𝑅𝑅𝑅𝑅 is to select excitation wavelengths that maximize 

the biosensor’s dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅. Choosing a combination of wavelengths that includes a wave-

length at the isosbestic point of a biosensor (i.e. where 𝛿𝛿𝛿𝛿 = 1) provides a linear map between 𝑅𝑅𝑅𝑅 

and the biosensor’s fraction oxidized 𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (Figure S2-1a); however, such wavelength combinations 

would always result in higher 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy than combinations with a higher 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅. 

 

(4.3) Generalization to other types of ratiometric biosensors 



In Supplementary Note 1.2, we showed that the function mapping 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (equation 1 in this 

note) generalizes to dual-emission single-excitation biosensors, and to dual-excitation and dual-

emission biosensors; and in Supplementary Note 7 we show that a function of the same general 

form applies to pH and ligand-binding biosensors. Therefore, the conclusions of the sensitivity 

analysis presented in this Supplementary Note apply to all these types of biosensors. 
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Figure S4-1: Sensitivity of 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 measurement inaccuracy to the biochemical and biophys-
ical variables that map 𝑹𝑹𝑹𝑹 to 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 
a. Sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy (the maximum absolute difference between 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) to the standard midpoint potential of the biosensor 𝐸𝐸𝐸𝐸∘′, when other parameters 

mapping 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are held constant.  

b. Sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy to the biosensor’s dynamic range in the first and 

second excitation wavelengths, 𝛿𝛿𝛿𝛿1 and 𝛿𝛿𝛿𝛿2, respectively, when holding constant the biosensor’s 

dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 and the biosensor’s 𝐸𝐸𝐸𝐸∘′. 

c. Sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy to the biosensor’s dynamic range in the first exci-

tation wavelength 𝛿𝛿𝛿𝛿1, when holding constant the biosensor’s dynamic range in the second excita-

tion wavelength 𝛿𝛿𝛿𝛿2 and the biosensor’s 𝐸𝐸𝐸𝐸∘′. 

d. Sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy to the biosensor’s dynamic range in the second 

excitation wavelength 𝛿𝛿𝛿𝛿2, when holding constant the biosensor’s dynamic range in the first exci-

tation wavelength 𝛿𝛿𝛿𝛿1 and the biosensor’s 𝐸𝐸𝐸𝐸∘′. 

In all panels, the relative error in 𝑅𝑅𝑅𝑅 was set to 2.8%-fold, which corresponds to the 0.025 and 

0.975 quartiles of the empirical distribution of relative errors in 𝑅𝑅𝑅𝑅 in our experiments with roGFP1-

R12 in the feeding muscles of C. elegans (Figure 1f). 

  



Supplementary Note 5 
In Supplementary Note 1 we derived the function mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of dual-

excitation single emission roGFP biosensors and the reduction potential of the glutathione-gluta-

thione disulfide couple 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. That map depends on physical, biochemical, and biophysical pa-

rameters, which either quantify intrinsic properties of the biosensor or vary between microscope 

setups. Knowledge of these parameters enables modeling how the precision of 𝑅𝑅𝑅𝑅 measurements 

with a biosensor determines the range of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 values that is possible to measure with that bio-

sensor at a given inaccuracy level. In this note, we (5.1) determine the minimal set of parameters 

and constraints between parameters needed to predict the influence of relative errors in 𝑅𝑅𝑅𝑅 on 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

measurement error; (5.2) estimate the values of those parameters for eleven roGFP-based bio-

sensors with known midpoint potentials and fluorescence spectra; and (5.3) determine the 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

inaccuracy we would expect to observe had we measured 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in the feeding muscles of live C. 

elegans with each of those biosensors instead of roGFP-R12. 

 

(5.1) Which of the parameters mapping a biosensor’s fluorescence ratio 𝑹𝑹𝑹𝑹 to 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 are 
needed to model how relative errors in 𝑹𝑹𝑹𝑹 influence 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 measurement error? 

(5.1.1) What are the values of the parameters mapping a biosensor’s fluorescence ratio 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺? 

The function mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of dual-excitation single emission roGFP bio-

sensors and the reduction potential of the glutathione-glutathione disulfide couple 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, was de-

rived in Supplementary Note 1.3: 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (1) 

 

That map depends on physical, biochemical, and biophysical parameters. The physical parame-

ters are generally known; they include the gas constant 𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, the Faraday constant 𝐹𝐹𝐹𝐹, and the 

absolute temperature 𝑇𝑇𝑇𝑇. The biochemical parameter, the standard midpoint potential of the bio-

sensor 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ , is often known from published reports. The biophysical parameters include the 

biosensor’s dynamic range in the second excitation wavelength 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, the ratiometric emission of 

an ensemble of reduced biosensors 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and the ratiometric emission of an ensemble of oxidized 

biosensors 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. These three parameters can be determined empirically, as we have done previ-

ously in live C. elegans expressing roGFP1-R12 [6], but in most cases they are not known. The 

value of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 can be determined from the fluorescence spectra of reduced and oxidized biosensors 

(section 5.1.2). These spectra also produce 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 values (section 5.1.2). However, these 



values vary from one imaging set up to another. Because 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 values are instrument 

specific, the biosensor’s ratiometric emission 𝑅𝑅𝑅𝑅 collected in a microscope cannot be mapped to 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 using the 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 values obtained from a different instrument, such as spectrofluorom-

eter used to collect the excitation spectra of reduced and oxidized biosensor species. The varia-

tion of 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 across instruments, however, is constrained by the biophysical properties of 

the biosensor at the excitation wavelengths 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2, such that the ratio of 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 to 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (the 

biosensor’s overall dynamic range, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅) is constant. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 can be determined from the fluorescence 

spectra of reduced and oxidized biosensors (section 5.1.2). Therefore, in order to map 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

for a given biosensor, either 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 or 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 must be determined empirically in the same instrument 

where that biosensor’s 𝑅𝑅𝑅𝑅 is measured. 

 

Sometimes, all parameters mapping a biosensor’s ratiometric emission in a given instrument to 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 values are known, except for 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. Even though in those cases it is not possible to 

map a biosensor’s 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, it is still desirable to determine how relative errors in that biosensor’s 

𝑅𝑅𝑅𝑅 would influence 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement error. For example, such analysis may enable comparison 

of the expected 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy of different biosensors under otherwise identical microscopy con-

ditions. In section (5.1.3), we demonstrate that knowledge of the biosensor’s overall dynamic 

range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 is sufficient to model how relative errors in a biosensor’s 𝑅𝑅𝑅𝑅 influence 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement 

error with that biosensor when the values of 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are not known. 

 

(5.1.2) Obtaining 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2and 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 from the excitation spectra of reduced and oxidized biosensor 

species 

Equation (1) can be reparametrized in terms of the biosensor’s overall dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅: 

 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1
𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

 (2) 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1

) (3) 

 

where 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 is the ratio of the biosensor’s emission when excited at 𝜆𝜆𝜆𝜆 in the oxidized and reduced 

states: 

𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 =  
𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖𝑖𝑖𝜆𝜆𝜆𝜆,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (4) 



𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 is, therefore, independent of the illumination power at 𝜆𝜆𝜆𝜆 and should be invariant across instru-

ments. 

 

The overall dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 of a dual-excitation biosensor is the ratio of the 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆values at each 

excitation wavelength. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 is also independent of the illumination power at 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2, and should 

be invariant across instruments. 

 

(5.1.3) Modeling how relative errors in 𝑅𝑅𝑅𝑅 influence 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement error when the values of 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are not known but their ratio is known 

Unlike 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are instrument-dependent and must be determined empirically 

for each imaging instrument. We note that since 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ , then 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 can be determined from 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and vice-versa. In this section, we show that knowledge of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 is sufficient to model how 

relative errors in 𝑅𝑅𝑅𝑅 influence 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement error when all parameters mapping the biosen-

sor’s ratiometric emission to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are known except for 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 

 

To understand the origin of the instrument-dependence of 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 let us consider two imag-

ing microscopes, M1 and M2, with identical excitation light intensity at 𝜆𝜆𝜆𝜆1, but with M2 having only 

a fraction 𝑓𝑓𝑓𝑓 as much excitation light intensity at 𝜆𝜆𝜆𝜆2 as M1. Under these conditions, a sample will 

exhibit the same biosensor fluorescence intensity at 𝜆𝜆𝜆𝜆1 in M1 and M2: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝑀𝑀𝑀𝑀2 =  𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝑀𝑀𝑀𝑀1 (5) 

 

However, that sample will exhibit a fraction 𝑓𝑓𝑓𝑓 of the fluorescence intensity at 𝜆𝜆𝜆𝜆2 in M1 relative to 

M2. 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝑀𝑀𝑀𝑀2 =  𝑓𝑓𝑓𝑓 × 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝑀𝑀𝑀𝑀1 (6) 

 

Thus, the sample’s fluorescence ratio will differ across imaging microscopes by the illumination 

factor 𝑓𝑓𝑓𝑓: 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1 =
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝑀𝑀𝑀𝑀1

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝑀𝑀𝑀𝑀1
 (7) 

 



𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀2 =  
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆1,𝑀𝑀𝑀𝑀2

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆2,𝑀𝑀𝑀𝑀2
 (8) 

 

Thus, 

𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀1 =  𝑓𝑓𝑓𝑓 × 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀2 (9) 

 

As a result of differences in illumination across instruments, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 will be affected similarly 

by the illumination factor 𝑓𝑓𝑓𝑓. That is, under different imaging conditions: 

 

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝑓𝑓𝑓𝑓 × 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (10) 

 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′ = 𝑓𝑓𝑓𝑓 × 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (11) 

and 

𝑅𝑅𝑅𝑅′ = 𝑓𝑓𝑓𝑓 × 𝑅𝑅𝑅𝑅 (12) 

 

In Supplementary Note 3 we showed that, in our experiments, the relative error in 𝑅𝑅𝑅𝑅 was inde-

pendent of 𝑅𝑅𝑅𝑅. That is: 

 

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟  × (1 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) (13) 

 

Thus 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is unaffected by the illumination factor 𝑓𝑓𝑓𝑓: 
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𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟
𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

− 1
�� (20) 

 

Δ𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 (21) 

 

We conclude that knowledge of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 is sufficient to model how relative errors in 𝑅𝑅𝑅𝑅 influence 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement error, when all parameters mapping the biosensor’s ratiometric emission to 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are known except for 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. We can therefore model how the relative errors in 𝑅𝑅𝑅𝑅 



would influence the expected 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy of different biosensors under otherwise identical 

microscopy conditions. 

 

(5.2) Obtaining 𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟏𝟏𝟏𝟏, 𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟐𝟐𝟐𝟐, 𝑹𝑹𝑹𝑹𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐, 𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓, and 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 parameter values for eleven roGFP-based bio-

sensors with known midpoint potentials and fluorescence spectra 
For twenty-four roGFP biosensors, we attempted to obtain the fluorescence excitation spectra of 

reduced and oxidized biosensor species and the biosensor 𝐸𝐸𝐸𝐸∘′ value from published data, and 

from personal correspondence with authors when the spectra had not been published (Table S5-

1). While 𝐸𝐸𝐸𝐸∘′ values for all of these biosensors have been reported; the spectra of reduced and 

oxidized biosensor species of only eleven of these biosensors have been collected, precluding 

further analysis of the remaining biosensors. Spectra were digitized with WebPlotDigitizer soft-

ware [10]. roGFP biosensors exhibit two peaks in their excitation spectra, centered near 410 nm 

(A-band) and 470 nm (B-band) (Figure S5-1, first column). Two sets of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 

parameter values were collected from the intensity spectra of reduced and oxidized species of 

each roGFP biosensor. The first set matches the bandwidths of the excitation filters in our micros-

copy setup, and the latter matches the wavelengths of widely used lasers. For the former, the 

signal at 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2 were the average signals when excited over the intervals 410±15 nm and 

470±10 nm, respectively. For the latter, the biosensors signal at 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2 were the average 

signals when excited over the intervals 405±1 nm and 488±1 nm, respectively. The parameters 

of each biosensor were determined as described in (5.1.2). These parameters varied significantly 

between biosensors (Table S5-2 and Figure S5-1, second column).  

 

(5.3) Predicted 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 inaccuracy of eleven roGFP-based biosensors 
Using the 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  parameters obtained in (5.2), we mapped 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 for eleven roGFP-

based biosensors with known midpoint potentials and fluorescence spectra. We applied the Sen-

sorOverlord framework to determine the 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy that we would expect to observe at each 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 value with each of those biosensors, given our empirical distribution of relative errors in 𝑅𝑅𝑅𝑅 

when measuring 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in the feeding muscles of live C. elegans expressing roGFP-R12 (Figure 

S5-1, third column). 

  



Table S5-1: roGFP biosensors 
 

Biosensor  E0’ (mV)  Spectra? 

roGFP1 [5] -287 [5, 11] Yes [5, 12] 

roGFP2 [5] -272 [5] Yes [1, 5, 13-16] 

roGFP3 [5] -299 [5] Yes [13] 

roGFP4 [5] -286 [5] Yes [13] 

roGFP5 [5] -296 [5] Yes [13] 

roGFP6 [5] -280 [5] Yes [13] 

roGFP1-R1 [7] -269 [7] No  

roGFP1-R3 [7] -282 [7] No  

roGFP1-R7 [7] -268 [7] No  

roGFP1-R8 [7] -284 [7] No  

roGFP1-R9 [7] -278 [7] Yes [17] 

roGFP1-R10 [7] -284 [7] No  

roGFP1-R11 [7] -275 [7] No  

roGFP1-R12 [7] -265 [7] Yes 
James Remington 

(personal communication) 

roGFP1-R14 [7] -263 [7] No  

roGFP1-iL [11] -229 +/- 5 [11] Yes [11] 

roGFP1-iE [11] -236 +/- 7 [11] Yes [11] 

roGFP1-iQ [11] -239 +/- 6 [11] No  

roGFP1-iH [11] -238 +/- 4 [11] No  

roGFP1-iR [11] -237 +/- 5 [11] No  

roGFP1-iS [11] -240 +/- 3 [11] No  

roGFP1-iD [11] -246 +/- 1 [11] No  

roGFP2-iL [14] -238 [14] Yes [14] 

grx1-roGFP2 [18] -280 [18] No  

 

  



Table S5-2: Biosensor parameter values used for mapping 𝑹𝑹𝑹𝑹 to 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 
 

  Parameter set 1 
𝜆𝜆𝜆𝜆1 = 410 ± 15 nm and 𝜆𝜆𝜆𝜆2 = 470 ± 10 nm 

Parameter set 2 
𝜆𝜆𝜆𝜆1 = 405 ± 1 nm and 𝜆𝜆𝜆𝜆2 = 488 ±1 nm  

Biosensor 𝑬𝑬𝑬𝑬∘′ 
(mV) 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 𝜹𝜹𝜹𝜹𝟒𝟒𝟒𝟒𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 𝜹𝜹𝜹𝜹𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑹𝑹𝑹𝑹𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 𝜹𝜹𝜹𝜹𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝜹𝜹𝜹𝜹𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝑹𝑹𝑹𝑹𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 Spectra source 

roGFP1 -287 6.08 1.64 0.27 3.67 22.33 3.96 1.66 0.42 5.25 20.77 [4] 

roGFP1 -287 6.67 1.67 0.25 3.67 24.49 4.72 1.65 0.35 4.98 23.49 [5] 

roGFP1 -287 4.97 1.24 0.25 1.42 7.06 3.99 1.36 0.34 2.18 8.69 [12] 

roGFP1-iE -236 3.12 1.47 0.47 1.02 3.18 1.68 1.65 0.98 3.24 5.45 [11] 

roGFP1-iL -229 4.13 1.36 0.33 2.15 8.87 2.89 1.39 0.48 4.09 11.81 [11] 

roGFP1-R12 * -265 7.81 1.33 0.171 0.667 5.207      None 

roGFP1-R12 -265 5.01 1.30 0.26 1.42 7.12 4.04 1.37 0.34 2.21 8.93 James Remington 
(personal communication) 

roGFP1-R9 -278 4.92 1.28 0.26 1.44 7.09 4.08 1.34 0.33 2.26 9.21 [17] 

roGFP2 -272 6.33 2.22 0.35 0.15 0.95 7.89 3.08 0.39 0.09 0.71 [5] 

roGFP2-iL -238 2.50 1.63 0.65 0.18 0.45 2.69 2.02 0.75 0.13 0.35 [14] 

roGFP3 -299 4.25 0.98 0.23 0.97 4.12 2.95 1.00 0.34 1.37 4.04 
[13] 

roGFP4 -286 2.11 0.74 0.35 0.09 0.19 2.40 0.91 0.38 0.05 0.12 
[13] 

roGFP5 -296 6.92 1.11 0.16 1.04 7.20 4.27 1.15 0.27 1.87 7.98 
[13] 

roGFP6 -280 3.33 1.20 0.36 0.12 0.40 3.67 1.43 0.39 0.09 0.33 
[13] 

 

* 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 values were determined empirically in C. elegans expressing 
roGFP1-R12 in the feeding muscles [6]. 
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Figure S5-1: Predicted 𝑬𝑬𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 measurement inaccuracy of eleven roGFP-based biosensors 
In this analysis for eleven roGFP biosensors, we show in each row a plot of a roGFP biosensor’s 

emission when excited at a wavelength 𝜆𝜆𝜆𝜆 in the oxidized and reduced states (column 1); a plot of 

the ratio of those emissions, the biosensor’s dynamic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, at each wavelength 𝜆𝜆𝜆𝜆 (column 2); 

and a plot of the predicted 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy with that biosensor at each wavelength 

𝜆𝜆𝜆𝜆 for different relative error in 𝑅𝑅𝑅𝑅 values (column 3). 
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Supplementary Note 6 
In this note, we compared biochemical and biophysical properties of roGFP biosensors that are 

important predictors of biosensor 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 accuracy. 

 

(6.1) Comparing the overall dynamic range and effective midpoint potential of roGFP bio-
sensors 

In Supplementary Note 1.3 we derived the function mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of roGFP 

biosensors to the reduction potential of the glutathione-glutathione disulfide couple 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln (𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) (1) 

 

In Supplementary Note 4.2 we modeled the sensitivity of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 measurement inaccuracy to 

changes in the values of the parameters in this map that quantify the biochemical and biophysical 

properties of the biosensor and instrumentation. Changes in two of these parameters shift 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

by constant amounts: the biosensor’s standard midpoint potential 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′  and the biosensor’s dy-

namic range in the second excitation wavelength 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2. We can aggregate these two effects into a 

single effective midpoint potential 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′ : 

 

𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∘′ = 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (2) 

 

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′ −
𝑅𝑅𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇

2𝐹𝐹𝐹𝐹
ln
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (3) 

 

In Supplementary Note 4.2, we also found that the optimal strategy for minimizing 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 inaccuracy 

with a given biosensor and error level in 𝑅𝑅𝑅𝑅 is to select excitation wavelengths that maximize the 

biosensor’s dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅. 

 

Both 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′  and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 depend on the choice of excitation wavelengths 𝜆𝜆𝜆𝜆1and 𝜆𝜆𝜆𝜆2. As a result, the 

values of these parameters can vary across experimental settings. In Supplementary Note 5.2 we 

derived the values of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 and 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 for each of the eleven roGFP biosensors with known fluores-

cence spectra. These values were determined for two illumination settings: one matched the 

bandwidths of the excitation filters in our microscopy set up and the other matched the 



wavelengths of widely used lasers. Using each of those two sets of parameters, we inspected 

how 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′  and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 covary across roGFP biosensors (Figure S6-1). This analysis suggested 

that no roGFP biosensor had 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 values above 5 and 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′  values above -275 mV under 

either imaging modality (Figure S6-1a,b). Most biosensors were predicted to have higher 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 val-

ues using parameters for 410±15 nm and 470±10 nm illumination (Figure S6-1a) than using pa-

rameters for 405 nm and 488 nm illumination (Figure S6-1b). 
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Figure S6-1: 𝑬𝑬𝑬𝑬𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓∘′  and 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 covary across roGFP biosensors 

The values of 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′  and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 depend on the choice of excitation wavelengths 𝜆𝜆𝜆𝜆1and 𝜆𝜆𝜆𝜆2 and 

therefore can vary across experimental settings. The scatterplots in panels a and b, show the 

covariation of 𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∘′  and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 of the eleven roGFP biosensors with known fluorescence spectra 

for two experimental settings. In panel a, these values were determined for the illumination setting 

matching the bandwidths of the excitation filters in our microscopy set up; while, in panel b, these 

values were determined for the illumination setting matching the wavelengths of widely used 405 

nm and 488 nm lasers. 
  



Supplementary Note 7 
In this note, we build on the framework described in Supplementary Note 1 to derive (7.1) the 

map from fluorescence-ratio (R) measurements to pH in two-state ratiometric pH biosensors; and 

(7.2) the more general map from R to ligand concentration in ligand-binding two-state ratiometric 

biosensors. 

 

(7.1) Mapping R to pH in two-state ratiometric pH biosensors 
(7.1.1) General chemistry of pH-sensitive two-state ratiometric biosensors 

The chromophore of GFP and the chromophores of nearly all fluorescent proteins are formed via 

a spontaneous series of reactions within an internal X-Tyr-Gly sequence [19, 20]. The phenolic 

hydroxyl group in the chromophore in each of these proteins, derived from the Tyr side chains, is 

a weak acid. Protonated and deprotonated chromophore forms exhibit different fluorescence-ex-

citation peaks. For example, in the case of GFP, the protonated chromophore exhibits an excita-

tion peak at 395 nm while the deprotonated form exhibits a peak at 475 nm [2]. The protonation 

state of the chromophore of many fluorescent proteins, including GFP and mRFP, is relatively 

insensitive to the pH of the surrounding environment [21]. In contrast, many mutant variants de-

rived from GFP and other fluorescent proteins have chromophores whose protonation state is 

sensitive to the pH of the surrounding environment and can, therefore, be used as pH biosensors 

[2]. 

 

For many pH biosensors, the protonated chromophore state exhibits very poor fluorescence emis-

sion. Therefore, the fluorescence emission of an ensemble of such pH biosensors depends on 

the number of deprotonated biosensors and the fraction of those biosensors in the deprotonated 

state. Because both of these quantities are generally unknown in vivo, these intensity-based bio-

sensors can be useful reporters of changes in pH but are not useful for absolute pH measurement 

[20]. 

 

Ratiometric pH-sensitive biosensors overcome this limitation, enabling calculation of the fraction 

of deprotonated biosensors from the ratio of the biosensor’s fluorescence excitation and/or emis-

sion at two different wavelengths (R), as we describe in Supplementary Note 1.2. 

 

Knowledge of the fraction of deprotonated biosensors is a first step towards measuring pH with 

pH-sensitive biosensors, which also requires knowledge of the biosensor’s tendency to become 



protonated and deprotonated. The balance between protonated and deprotonated chromophore 

forms of a fluorescent biosensor is described by the weak acid equation: 

 

[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−] + [𝐻𝐻𝐻𝐻+] ⇄ [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] (1) 

 

where 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟− are the biosensors with protonated and deprotonated chro-

mophores, respectively. At equilibrium, the balance among the concentrations of these species 

is described by the biosensor’s chromophore acid dissociation constant 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔: 

 

𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 =
[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−] × [𝐻𝐻𝐻𝐻+]

[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
 (2) 

 

𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔is determined by the local environment surrounding the chromophore and is therefore a prop-

erty of each biosensor. Solving for [𝐻𝐻𝐻𝐻+], we obtain the Henderson-Hasselbach equation: 

 

𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10
[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−]
[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]

 (3) 

 

In the section (7.1.3) we use this equation to calculate pH given knowledge of both the biosensor’s 

𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔and the fraction of deprotonated biosensors. 

 

(7.1.2) Deriving the map between a biosensor’s fluorescence ratio and the fraction of deproto-

nated biosensors 

The derivation of the map between 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−) builds on the framework developed for 

two-state ratiometric biosensors in Supplementary Note 1.2. For roGFPs, the A and B biosensor 

states refer to the oxidized and reduced biosensor species. Here, these two states refer to the 

deprotonated and protonated biosensor species. Starting with equation 12 from Supplementary 

Note 1.2, and substituting 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟− and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for the biosensor’s A and B states, we 

obtain the map between 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−): 

 

𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−) =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2(𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− − 𝑅𝑅𝑅𝑅)
 (4) 

 

(7.1.3) Deriving the map between a biosensor’s fluorescence ratio and pH 



The concentrations of protonated and deprotonated biosensor species are constrained by mass 

balance: 

[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] =  [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−] +  [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] (5) 

 

Substituting the Henderson-Hasselbach equation we obtain: 

 

𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10
1 − 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−)
𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−)  (6) 

 

Substituting the map between 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−) we obtain: 

 

𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10(𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

) (7) 

 

This is the map between a biosensor’s fluorescence ratio and the pH of the surrounding environ-

ment under equilibrium conditions. 

 

We note that this map has the same general form as that from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in roGFP biosensors 

(see Supplementary Note 1.3). In the next section, we extend this framework to ligand-binding 

biosensors. 

 

(7.2) Mapping R to ligand concentration in two-state ratiometric ligand-binding biosensors 
7.2.1. General chemistry of ligand-binding biosensors 

The protonation-deprotonation reaction of a pH-sensitive biosensor: 

 

[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−] + [𝐻𝐻𝐻𝐻+] ⇄ [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] (8) 

 

is a special case of the more general binding-unbinding reaction of a single ligand and a single 

biosensor: 

 

[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] + [𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] ⇄ [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] (9) 

 



where [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟], [𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿], and [𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] represent the concentrations of unbound 

free biosensor, unbound free ligand, and biosensor-ligand complex.  

 

At equilibrium, the balance among the concentrations of 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿, and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 species is described by the dissociation constant 𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟: 

 

𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 =
[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] × [𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿]
[𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿]

 (10) 

 

In section 7.2.2, we derive the map from a biosensor’s fluorescence ratio (R) to the concentration 

of its ligand for two-state ratiometric ligand-binding biosensors. 

 

(7.2.2) Deriving the map between a biosensor’s fluorescence ratio and ligand concentration 

Specific two-state ratiometric biosensors exist for many ligands, including Histidine, NAD+, NADH, 

and NADPH. The derivation of the map between 𝑅𝑅𝑅𝑅 and [𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] mirrors that between 𝑅𝑅𝑅𝑅 and pH 

in two-state ratiometric pH biosensors. Starting with equation 12 from Supplementary Note 1.2, 

and substituting 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 for the biosensor’s A and B states, we obtain 

the map between 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵): 

 

𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2(𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑅𝑅𝑅𝑅)
 (11) 

 

Solving for [𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] we obtain: 

 

[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] = 10−𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑+ 𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜10
1−𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)  (12) 

 

Substituting the map between 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) we obtain: 

 

[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] = 10
−𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑+ 𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜10(𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

)
 (13) 

 

This is the map between a biosensor’s fluorescence ratio and the free ligand concentration of the 

surrounding environment under equilibrium conditions.  



Supplementary Note 8 
In Supplementary Note 7, we derived the functions mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of two-

state biosensors to the pH in the environment surrounding those biosensors under equilibrium 

conditions. Because those maps have the same general form as those from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in roGFP 

biosensors (see Supplementary Note 1.3), they also have a similar dependence on biochemical 

and biophysical parameters quantifying the properties of the biosensors and the instrumentation 

used to measure their fluorescence (see Supplementary Note 5.1). Knowledge of those parame-

ters enabled us to model how the precision of 𝑅𝑅𝑅𝑅 measurements with a biosensor determines the 

range of 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 values that is possible to measure with that biosensor at a specific inaccuracy level 

(see Supplementary Note 5.2 and 5.3). In this note, we build on that scheme to model how the 

precision of 𝑅𝑅𝑅𝑅 measurements with a biosensor determines the range of pH values that is possible 

to measure with that biosensor at a given inaccuracy level. We (8.1) estimate the values of the 

minimal set of parameters and constraints between parameters needed to predict the influence 

of relative errors in 𝑅𝑅𝑅𝑅 on nine pH biosensors with known 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 and fluorescence spectra; and (8.2) 

determine the pH inaccuracy we would expect to observe with each of those biosensors if we 

selected optimal excitation or emission filters for each biosensor and measured 𝑅𝑅𝑅𝑅 at the same 

precision as our 𝑅𝑅𝑅𝑅 measurements in the feeding muscles of live C. elegans with roGFP-R12. In 

Supplementary Note 9 we extend this analysis to two-state ligand-binding ratiometric biosensors. 

 

(8.1) Obtaining the values of the parameters that map 𝑹𝑹𝑹𝑹 to pH for nine two-state ratiometric 
pH biosensors 
(8.1.1) Overall approach 

In Supplementary Note 7.1.3 we derived the function mapping a biosensor’s fluorescence ratio 

(𝑅𝑅𝑅𝑅) and the pH of the environment surrounding the biosensor under equilibrium conditions. 

 

𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10(𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− − 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

) (1) 

 

This map depends on biochemical and biophysical parameters. The biochemical parameter is the 

biosensor’s chromophore acid dissociation constant 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔. This parameter is often known from pub-

lished reports; however, in many cases the values reported do not represent true 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 values as 

they are extracted from pH-titrations of the biosensor’s fluorescence ratio, which do not neces-

sarily have a linear relationship with the fraction of protonated biosensors (see Supplementary 



Note 2). Therefore, we show how these reported effective 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 values can be corrected with 

knowledge of some of the biosensor’s biophysical parameters (section 8.1.2).  

 

The biophysical parameters required to map 𝑅𝑅𝑅𝑅 to pH include the biosensor’s dynamic range in 

the second wavelength 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, the ratiometric emission of an ensemble of protonated biosensors 

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and the ratiometric emission of an ensemble of deprotonated biosensors 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−. 

These three parameters can be determined empirically, but in most cases they are not known. 

The value of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 and the biosensor’s overall dynamic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 (equal to the 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−/

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ratio) can be determined from the fluorescence spectra of protonated and deproto-

nated biosensors, similar to the case of reduced and oxidized biosensor species (see Supple-

mentary Note 5.1.2). In the case of pH biosensors, however, published reports often underesti-

mate the biosensor’s dynamic range because these reports only include the spectra of biosensor 

species that are not fully protonated or fully deprotonated, often because the biosensors begin to 

unfold at pH > 10 [3]. We show how these published spectra and knowledge of the biosensor’s 

𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 value can be used to estimate the spectra of protonated and deprotonated biosensor species, 

leading to more accurate estimates of the biosensor’s dynamic range at each wavelength (section 

8.1.3). 

 

We then estimate the values of the minimal set of parameters and constraints between parame-

ters needed to predict the influence of relative errors in 𝑅𝑅𝑅𝑅 on nine pH biosensors with known 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 

and fluorescence spectra (section 8.1.4). As discussed in Supplementary Note 5.1.3 for the map 

from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, mapping the 𝑅𝑅𝑅𝑅 values obtained with a given instrument to pH requires knowledge 

of the values of both 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− in that instrument; however, when all other pa-

rameters are known, knowledge of the 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−/𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ratio is sufficient for modeling how 

relative errors in 𝑅𝑅𝑅𝑅 would influence the expected pH inaccuracy of different biosensors under 

otherwise identical microscopy conditions.  

 

(8.1.2) Obtaining the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 of a biosensor from a pH-titration of its fluorescence ratio 

The balance among the concentrations of protonated and deprotonated species of a pH biosensor 

is quantified by the biosensor’s chromophore acid dissociation constant 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔. Empirically, 𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 is 

often determined as the point in a pH titration where deprotonated and protonated biosensor spe-

cies have equal concentrations. However, studies often report the pH value where the biosensor’s 

fluorescence ratio is half-way between the values corresponding to protonated and deprotonated 



biosensors. These “effective 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔” (𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) values do not represent true 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 values as they 

are extracted from pH-titrations of the biosensor’s fluorescence ratio, and not of the concentration 

of specific biosensor species. To convert into 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 values the reported 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values, we sub-

stitute 𝑅𝑅𝑅𝑅 = (𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− + 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)/2 in equation 1: 

 

𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (2) 

 

where 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 is the biosensor’s dynamic range in the second wavelength used in the titration. There-

fore: 

𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 = 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 (3) 

 

(8.1.3) Obtaining 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 from the excitation spectra of pH biosensor species that are not fully 

protonated or deprotonated 

Published reports often only include the spectra of biosensor species that are not fully protonated 

or fully deprotonated and therefore underestimate the biosensor’s dynamic range. Here, we show 

how to estimate the biosensor’s dynamic range using published spectra obtained at two pH values 

and knowledge of the biosensor’s 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 value. 

 

In Supplementary Note 1.2.1, we showed that in a mixed population of biosensors the total ob-

served fluorescence intensity will be the weighted average of the intensities of populations of 

biosensors in each state: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 =  𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 + [1 − 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴)] 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 (4) 

 

Where 𝜆𝜆𝜆𝜆 represents an excitation- and emission-wavelength pair, A and B are the two biosensor 

states, 𝑟𝑟𝑟𝑟(𝐴𝐴𝐴𝐴) is the fraction of biosensors in state A, and 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐴𝐴𝐴𝐴 and 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵 are, respectively, the total 

observed intensities of ensembles of biosensors in states A and B. For pH biosensors, the A state 

corresponds to the deprotonated state and the B state corresponds to the protonated state.  

 

To obtain 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− and 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 from 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆 measurements at two different pH values, x and y, 

we first calculate 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−) at those pH values: 



 

𝐿𝐿𝐿𝐿 = 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−,𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑥𝑥𝑥𝑥) =
1

1 + 10(𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔−𝑜𝑜𝑜𝑜) (5) 

  

𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑟𝑟(𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−,𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 = 𝑦𝑦𝑦𝑦) =
1

1 + 10(𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔−𝑦𝑦𝑦𝑦) (6) 

 

Substituting equations 5 and 6 in equation 4, we obtain: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜 =  𝐿𝐿𝐿𝐿 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− + (1 − 𝐿𝐿𝐿𝐿) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (7) 

  

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑦𝑦𝑦𝑦 =  𝑏𝑏𝑏𝑏 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− + (1 − 𝑏𝑏𝑏𝑏) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (8) 

 

Therefore: 

 

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜 − 𝐿𝐿𝐿𝐿 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−

1 − 𝐿𝐿𝐿𝐿
=  
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑦𝑦𝑦𝑦 − 𝑏𝑏𝑏𝑏 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−

1 − 𝑏𝑏𝑏𝑏
 (9) 

  

𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜 − (1 − 𝐿𝐿𝐿𝐿) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐿𝐿𝐿𝐿
=  
𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑦𝑦𝑦𝑦 − (1 − 𝑏𝑏𝑏𝑏) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏
 

(10) 

 

Solving for 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− and  𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 

 

 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− =
(1 − 𝑏𝑏𝑏𝑏) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜 − (1 − 𝐿𝐿𝐿𝐿) 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑦𝑦𝑦𝑦

𝐿𝐿𝐿𝐿 − 𝑏𝑏𝑏𝑏
 (11) 

  

  𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑏𝑏𝑏𝑏 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑜𝑜𝑜𝑜 − 𝐿𝐿𝐿𝐿 𝐼𝐼𝐼𝐼𝜆𝜆𝜆𝜆,𝑦𝑦𝑦𝑦

𝑏𝑏𝑏𝑏 − 𝐿𝐿𝐿𝐿
 (12) 

 



(8.1.4) 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 parameter values for nine two-state ra-

tiometric pH biosensors 

For fifteen ratiometric two-state pH biosensors, we attempted to obtain the biosensor’s 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 value 

and the fluorescence excitation spectra of protonated and deprotonated biosensor species from 

published data (Table S8-1). Of the five biosensors where the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 was unknown, the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

was known for two, Sypher and Sypher3s. For these biosensors, we obtained an estimate of their 

𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 from pH-titrations of their fluorescence ratios, following the scheme described in section 8.1.2 

(Table S8-2). The fluorescence excitation spectra of protonated and deprotonated biosensor spe-

cies have not been reported for four of the fifteen pH biosensors (Table S8-1). 

 

For the nine biosensors with available spectra and known or estimated 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔, spectra collected at 

different pH values were digitized with the WebPlotDigitizer software [10], and the spectra of fully 

protonated and fully deprotonated biosensor states were estimated following the scheme de-

scribed in section 8.1.3. In nine cases these spectra differed only slightly from the empirical meas-

urements (Figures S8-1,2,3), because these measurements had been obtained at pH values at 

least one pH unit above and one pH unit below the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 of the biosensor. The exception was 

SypHer, a biosensor where all spectra were collected at pH values below the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔. The estimate 

of this biosensor’s 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 were therefore considered of insufficient quality and the biosensor 

was not studied further. 

 

For each of the eight remaining pH biosensors, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 param-

eter values were collected from the estimated fluorescence intensity spectra of fully protonated 

and fully deprotonated biosensor states (Table S8-2). For each biosensor, we chose excitation- 

emission-wavelength pairs, 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2, seeking to maximize 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 and to match the wavelengths at 

which the biosensor’s fluorescence intensity peaked. We used fluorescence intensity signal av-

eraged over 20 nm intervals centered around 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2 to calculate 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅. The values of these parameters for each biosensor were determined as de-

scribed in (8.1). These parameters varied significantly between biosensors (Table S8-2 and Fig-

ures S8-1,2,3 second column). 

 

(8.2) Predicted pH inaccuracy of eight ratiometric two-state pH biosensors 
Using the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏− parameters obtained in (8.1), we mapped 𝑅𝑅𝑅𝑅 to pH 

for eight ratiometric two-state pH biosensors. We applied the SensorOverlord framework to 



determine the pH inaccuracy that we would expect to observe at each pH value with each bio-

sensor, given our empirical distribution of relative errors in 𝑅𝑅𝑅𝑅 when measuring 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in the feeding 

muscles of live C. elegans expressing roGFP-R12. This analysis was applied to dual-excitation 

red-fluorescent pH biosensors (Figure S8-1, third column), dual-excitation green-fluorescent pH 

biosensors (Figure S8-2, third column), and single-excitation dual-emission biosensors (Figure 

S8-3, third column). The E2GFP biosensor can be used in two different modalities, dual-excitation 

green-fluorescence and single-excitation dual-emission. The differences in the biosensor’s 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 

and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 parameter values in each imaging modality lead to differences in the predicted pH inac-

curacy of this biosensor under each imaging modality. 

  



Table S8-1: two-state ratiometric pH biosensors 
 

Biosensor  𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒂𝒂𝒂𝒂 𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓  Spectra? 

deGFP1 [3] 8.02  [3] Yes [3, 13] 

deGFP2 [3] 7.25  [3] No  

deGFP3 [3] 6.86  [3] No  

deGFP4 [3] 7.37  [3] Yes [3, 13] 

ClopHensor [22] 6.78  [22] Yes [22] 

E1GFP [23] No   No  

E2GFP [24] 
7.01 

6.78 
 [23, 24] Yes [24] 

ratiometric-

pHluorin 
[25] No   Yes [25] 

pHluorin2 [26] No   Yes [26] 

mCherryEA [27] 7.8  [27] Yes [27] 

pHRed [28] 7.8  [28] Yes [28] 

mKeima [28] 7.8  [28] Yes [28] 

SypHer3s [29] No 7.8 [29] Yes [29] 

SypHer-2 [30] 8.1  [30] No  

SypHer [31] No 8.71 [31] Yes [31] 

 

 

  



Table S8-2: Biosensor parameter values used for mapping 𝑹𝑹𝑹𝑹 to pH 
 

Biosensor 
Imaging 
modality 

𝝀𝝀𝝀𝝀𝟏𝟏𝟏𝟏 ± 𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀𝝀𝝀𝟐𝟐𝟐𝟐 ± 𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒂𝒂𝒂𝒂 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟏𝟏𝟏𝟏  𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟐𝟐𝟐𝟐  𝑹𝑹𝑹𝑹𝑩𝑩𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑩𝑩𝑩𝑩𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝑹𝑹𝑹𝑹𝑩𝑩𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑩𝑩𝑩𝑩𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐− 

mCherryEA dual excitation 455 585 7.8 9.87 3.16 0.32 0.30 2.96 

pHRed dual excitation 440 585 7.8 62.6 6.26 0.10 0.15 9.39 

mKeima dual excitation 440 560 7.8 21.3 2.13 0.10 0.95 20.2 

E2GFP dual excitation 480 440 6.78 15.7 1.26 0.08 0.32 5.02 

ClopHensor dual excitation 488 430 6.78 8.64 2.85 0.33 1.16 10.0 

SypHer3s dual excitation 495 410 8.5 * 414 53.9 0.13 0.19 78.7 

E2GFP dual emission 525 505 6.78 5.02 4.17 0.83 0.82 4.12 

deGFP4 dual emission 515 460 7.37 62.5 10.0 0.16 0.47 29.4 

deGFP1 dual emission 515 460 8.02 47.3 10.9 0.23 0.58 27.4 

 

* 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 derived from 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as described in section 8.1.4. 

  



m
C

he
rr

yE
A

pH
R

ed
m

K
ei

m
a

deprotonated

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

)

0.0

0.5

1.0

λ excitation (nm)
400 450 500 550 600

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

)

0.0

0.5

1.0

λ excitation (nm)
450 500

protonated

deprotonated

protonated

deprotonated
protonated

550 600

λ excitation (nm)
450 500 550

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

)

0.0

0.5

1.0

10%
5.0%

error in R

2.5%
1.0%
0.5%

10%
5.0%

error in R

2.5%
1.0%
0.5%

10%
5.0%

error in R

2.5%
1.0%
0.5%

1 3 14128 9 1052 1311764

pHTrue

1 3 14128 9 1052 1311764

pHTrue

1 3 14128 9 1052 1311764

pHTrue

0

in
ac

cu
ra

cy
 m

ax
. │

pH
O

bs
– 

pH
Tr

ue
│

0.20

0.15

0.10

0.05

0

0.20

0.15

0.10

0.05

0

0.20

0.15

0.10

0.05

in
ac

cu
ra

cy
 m

ax
. │

pH
O

bs
– 

pH
Tr

ue
│

in
ac

cu
ra

cy
 m

ax
. │

pH
O

bs
– 

pH
Tr

ue
│

δ λ (
dy

na
m

ic
 ra

ng
e 

at
 λ

)

1/4

1/2

2

4

8

1

δ λ (
dy

na
m

ic
 ra

ng
e 

at
 λ

)

1/4

1/8

1/16

1/2

1

16

8

2

4

δ λ (
dy

na
m

ic
 ra

ng
e 

at
 λ

)

1/4

1/16

1/8

1/32

1/2

2

4

1

λ excitation (nm)
400 500450 600550

λ excitation (nm)
420 520480 600

λ excitation (nm)
410 510460 560

Figure S8-1: Predicted pH inaccuracy of dual-excitation red-fluorescent pH biosensors 
In this analysis of three dual-excitation red-fluorescent pH biosensors, we show in each row a plot 

of the biosensor’s predicted emission when excited at a wavelength 𝜆𝜆𝜆𝜆 in the fully deprotonated 

and protonated states (solid lines, column 1) and the observed emissions of mostly deprotonated 

and mostly protonated biosensor mixtures (dotted lines, column 1); a plot of the biosensor’s dy-

namic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted ratio of the emissions of the fully deprotonated and protonated 

biosensor states (solid line, column 2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed 

emissions of mostly deprotonated and mostly protonated biosensor mixtures (dotted line, column 

2); and a plot of the predicted pH measurement inaccuracy with that biosensor at each wavelength 

𝜆𝜆𝜆𝜆 for different relative errors in 𝑅𝑅𝑅𝑅 values (column 3). 
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Figure S8-2: Predicted pH inaccuracy of dual-excitation green-fluorescent pH biosensors 
In this analysis of four dual-excitation green-fluorescent pH biosensors, we show in each row a 

plot of the biosensor’s predicted emission when excited at a wavelength 𝜆𝜆𝜆𝜆 in fully deprotonated 

and protonated states (solid lines, column 1) and the observed emissions mostly deprotonated 

and mostly protonated biosensor mixtures (dotted lines, column 1); a plot of the biosensor’s dy-

namic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted ratio of the emissions of fully deprotonated and protonated biosen-

sor states (solid line, column 2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed emis-

sions of mostly deprotonated and mostly protonated biosensor mixtures (dotted line, column 2); 

and a plot of the predicted pH measurement inaccuracy with that biosensor at each wavelength 

𝜆𝜆𝜆𝜆 for different relative errors in 𝑅𝑅𝑅𝑅 values (column 3). 

  



Figure S8-2: Predicted pH inaccuracy of dual-excitation green-fluorescent pH biosensors 
In this analysis of four dual-excitation green-fluorescent pH biosensors, we show in each row a 

plot of the biosensor’s predicted emission when excited at a wavelength 𝜆𝜆𝜆𝜆 in fully deprotonated 

and protonated states (solid lines, column 1) and the observed emissions mostly deprotonated 

and mostly protonated biosensor mixtures (dotted lines, column 1); a plot of the biosensor’s dy-

namic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted ratio of the emissions of fully deprotonated and protonated biosen-

sor states (solid line, column 2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed emis-

sions of mostly deprotonated and mostly protonated biosensor mixtures (dotted line, column 2); 
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𝜆𝜆𝜆𝜆 for different relative errors in 𝑅𝑅𝑅𝑅 values (column 3). 
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Figure S8-3: Predicted pH inaccuracy of single-excitation dual-emission pH biosensors 
In this analysis of three single-excitation dual-emission pH biosensors, we show in each row a 

plot of the biosensor’s predicted emission when excited at a wavelength 𝜆𝜆𝜆𝜆 in fully deprotonated 

and protonated states (solid lines, column 1) and the observed emissions mostly deprotonated 

and mostly protonated biosensor mixtures (dotted lines, column 1); a plot of the biosensor’s dy-

namic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted ratio of the emissions of fully deprotonated and protonated biosen-

sor states (solid line, column 2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed emis-

sions of mostly deprotonated and mostly protonated biosensor mixtures (dotted line, column 2); 

and a plot of the predicted pH measurement inaccuracy with that biosensor at each wavelength 

𝜆𝜆𝜆𝜆 for different relative errors in 𝑅𝑅𝑅𝑅 values (column 3). 

  



Supplementary Note 9 
In Supplementary Note 7, we derived the functions mapping the ratiometric emission (𝑅𝑅𝑅𝑅) of ligand-

binding two-state biosensors to their ligand concentration in their surrounding environment under 

equilibrium conditions. These maps follow the same form as those mapping 𝑅𝑅𝑅𝑅 to pH in two-state 

ratiometric pH biosensors. This enables us, in this note, to follow the scheme used in Supplemen-

tary Note 8, to model how the precision of 𝑅𝑅𝑅𝑅 measurements with a ligand-binding biosensor de-

termines the range of ligand concentration values that is possible to measure with that biosensor 

at a specific inaccuracy level. We (9.1) estimate the values of the minimal set of parameters and 

constraints between parameters needed to predict the influence of relative errors in 𝑅𝑅𝑅𝑅 on ligand-

binding biosensors with known 𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 and fluorescence spectra; and (9.2) determine the ligand-con-

centration inaccuracy we would expect to observe with each of those biosensors if we selected 

optimal excitation or emission filters for each biosensor and measured 𝑅𝑅𝑅𝑅 at the same precision 

as our 𝑅𝑅𝑅𝑅 measurements in the feeding muscles of live C. elegans with roGFP-R12. 

 

(9.1) Obtaining the values of the parameters that map 𝑹𝑹𝑹𝑹 to ligand concentration for ligand-
binding biosensors 
(9.1.1) Overall approach 

In Supplementary Note 7.2.2 we derived the function mapping a biosensor’s fluorescence ratio 

(𝑅𝑅𝑅𝑅) and the free ligand concentration in the environment surrounding the biosensor under equilib-

rium conditions. 

 

[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] = 10
−𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑+ 𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜10(𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔𝑔𝑔𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

)
 (1) 

 

which can be rewritten as: 

 

𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] =  𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10(𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
) (2) 

 

This function has the same form as the function mapping 𝑅𝑅𝑅𝑅 and pH (see Supplementary Note 

7.1.3) and therefore depends on equivalent biochemical and biophysical parameters. The bio-

chemical parameter is the biosensor’s dissociation constant 𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟. This parameter is often known 

from published reports; however, in many cases the values reported do not represent true 𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 

values as they are extracted from ligand-titrations of the biosensor’s fluorescence ratio, which do 



not necessarily have a linear relationship with the fraction of ligand-bound biosensors (see Sup-

plementary Note 2). Therefore, we corrected those effective 𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 values with knowledge of some 

of the biosensor’s biophysical parameters, following the scheme described for pH biosensors in 

Supplementary Note 8.1.2.  

 

Published reports often include the spectra only of biosensor species that are not fully ligand-

bound and therefore underestimate the biosensor’s dynamic range. We estimated biosensor dy-

namic range using published spectra obtained at two ligand concentrations and knowledge of the 

biosensor’s 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 value, following the scheme described for pH biosensors in Supplementary Note 

8.1.3. 

 

We estimated the values of the minimal set of parameters and constraints between parameters 

needed to predict the influence of relative errors in 𝑅𝑅𝑅𝑅 on six ligand-binding biosensors with known 

𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 and fluorescence spectra (section 9.1.2). The value of 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2 and the biosensor’s overall dy-

namic range 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 (equal to the 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ratio) was determined from the fluores-

cence spectra of ligand-bound and unbound biosensors. As discussed in Supplementary Note 

5.1.3 for the map from 𝑅𝑅𝑅𝑅 to 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, mapping the 𝑅𝑅𝑅𝑅 values obtained with a given instrument to 

𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] requires knowledge of the values of both 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in that instru-

ment; however, when all other parameters are known, knowledge of the 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ratio is sufficient for modeling how relative errors in 𝑅𝑅𝑅𝑅 would influence the ex-

pected 𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] inaccuracy of different biosensors, under otherwise identical microscopy con-

ditions.  

 

(9.1.2) 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 parameter values for six two-state 

ratiometric ligand-binding biosensors 

We attempted to obtain the biosensor’s 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 value and the fluorescence excitation spectra of lig-

and bound and unbound biosensor species from published data for two-state ratiometric ligand-

binding biosensors specific for histidine, NAD+, NADH, and NADPH (Table S9-1). Of the nine 

ratiometric two-state ligand-binding biosensors, four had known 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 values (Table S9-1) and one 

had a known 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from which we estimated 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟, following the scheme described in section 

8.1.2 (Table S9-2). The fluorescence spectra of ligand-bound and unbound biosensor species 

have not been reported for four of the five iNAP biosensors (Table S9-1), including the iNAP1-



mCherry biosensor. For that biosensor, we assumed iNAP1 NADPH binding affinity and fluores-

cence emission at 535 nm was unaffected by fusion to mCherry. 

 

For the five biosensors with available spectra and known or estimated 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟 (FHisJ, NAD+ Biosen-

sor, Frex, FrexH, iNAP1), spectra collected at different ligand concentrations were digitized with 

WebPlotDigitizer software [10], and the spectra of fully ligand-bound and fully unbound biosensor 

states were estimated following the scheme described in section 8.1.3. In all cases these spectra 

differed only slightly from the empirical measurements (Figure S9-1, first column).  

 

We note that because these five biosensors consist of fusions of ligand-binding domains to circu-

larly permuted fluorescent proteins (cpFPs), their spectral properties inherit the pH-dependence 

of their cpFPs domains. Typically, fluorescence in the first excitation band is pH-resistant, while 

fluorescence in the second excitation band is pH-sensitive (but with 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 insensitive to ligand bind-

ing). Parameter values were calculated from spectra acquired at a pH of 7.4 (Table S9-1). The 

iNAP1-mCherry biosensor allows ratiometric and pH-resistant measurement when using the pH-

resistant 420 nm excitation band of iNAP1 [32], since mCherry red fluorescence is pH-resistant 

over a broad range of pH values because it has a 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑔𝑔𝑔𝑔 of less than 4.5 [33]. 

 

Parameter values for 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 were collected from the esti-

mated fluorescence intensity spectra of fully ligand-bound and unbound biosensor states (Table 

S9-2). For each biosensor, we chose excitation- emission-wavelength pairs, 𝜆𝜆𝜆𝜆1 and 𝜆𝜆𝜆𝜆2, seeking 

to maximize 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 and to match the wavelengths at which biosensor fluorescence intensity peaked. 

We used biosensor fluorescence signals averaged over 20 nm intervals centered around 𝜆𝜆𝜆𝜆1 and 

𝜆𝜆𝜆𝜆2 to calculate 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆1, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 values. The values of these param-

eters of each biosensor were determined as described in (9.1.2). These parameters varied sig-

nificantly between biosensors (Table S9-2 and Figures S9-1 second column).  

 

(9.2) Predicted 𝒑𝒑𝒑𝒑[𝑳𝑳𝑳𝑳𝒆𝒆𝒆𝒆𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂] inaccuracy of six ratiometric two-state ligand-binding biosen-
sors 
Using the 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟, 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆2, 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 parameters obtained in (9.1.2), we mapped 

𝑅𝑅𝑅𝑅 to 𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] for six ratiometric two-state ligand-binding biosensors. We applied the Senso-

rOverlord framework to determine the 𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] inaccuracy that we would expect to observe at 

each 𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] value with each of those biosensors, given our empirical distribution of relative 



errors in 𝑅𝑅𝑅𝑅 when measuring 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in the feeding muscles of live C. elegans expressing roGFP-

R12 (Figure S9-1, third column).  



Table S9-1: Two-state ratiometric ligand-binding biosensors 
 

Ligand Biosensor  𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒓𝒓𝒓𝒓 𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒓𝒓𝒓𝒓  Spectra?  

Histidine FHisJ [34] 4.66  [34] Yes [34] 

NAD+ NAD+ Biosensor [35] 4.19  [35] Yes [35] 

NADH Frex [36]  5.43 [36] Yes [36] 

NADH FrexH [36] 7.40  [36] Yes [36] 

NADPH iNAP1 [32] 5.70  [32] Yes [32] 

NADPH iNAP2 [32] 5.22  [32] No  

NADPH iNAP3 [32] 4.60  [32] No  

NADPH iNAP4 [32] 3.92  [32] No  

NADPH iNAP1-mCherry [32] 5.70 *  [32] Inferred † [32] 

 

* We assumed iNAP1 NADPH binding affinity was unaffected by fusion to mCherry. 

† We assumed iNAP1 flurescence emission at 535 nm was unaffected by fusion to mCherry. 

  



Table S9-2: Biosensor parameter values used for mapping 𝑹𝑹𝑹𝑹 to ligand concentration 
 

Biosensor 
Imaging 
modality 

𝝀𝝀𝝀𝝀𝟏𝟏𝟏𝟏 ± 𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝝀𝝀𝝀𝝀𝟐𝟐𝟐𝟐 ± 𝟏𝟏𝟏𝟏𝟒𝟒𝟒𝟒 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒑𝒑𝒑𝒑𝑲𝑲𝑲𝑲𝒓𝒓𝒓𝒓 𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟏𝟏𝟏𝟏  𝜹𝜹𝜹𝜹𝝀𝝀𝝀𝝀𝟐𝟐𝟐𝟐  𝑹𝑹𝑹𝑹𝑩𝑩𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝑩𝑩𝑩𝑩−𝑳𝑳𝑳𝑳𝒆𝒆𝒆𝒆𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝑹𝑹𝑹𝑹𝑩𝑩𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑩𝑩𝑩𝑩𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 

FHisJ dual excitation 415 485 4.66 6.05 2.06 0.34 0.32 1.93 

NAD+ Bio-
sensor dual excitation 500 425 4.19 1.84 1.86 1.01 2.04 3.76 

Frex dual excitation 410 500 5.45 4.84 0.93 0.19 0.15 0.73 

FrexH dual excitation 500 410 7.40 1.65 2.00 1.22 0.92 1.51 

iNAP1 dual excitation 500 420 5.70 7.45 2.13 0.29 0.26 1.93 

iNAP1-
mCherry 

dual excitation 
/ dual emission 560 / 630 420 / 535 5.70 * 3.5 † 1 † 0.29 † 1 † 0.29 † 

 

* We assumed iNAP1 NADPH binding affinity was unaffected by fusion to mCherry. 

† We assumed iNAP1 flurescence emission at 535 nm was unaffected by fusion to mCherry. 
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Figure S9-1: Predicted 𝒑𝒑𝒑𝒑[𝑳𝑳𝑳𝑳𝒆𝒆𝒆𝒆𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂] inaccuracy of ratiometric two-state ligand-binding bio-
sensors 
In this analysis of five dual-excitation ligand-binding biosensors, and one dual-excitation dual-

emission ligand-binding biosensor, we show in each row a plot of the biosensor’s predicted emis-

sion when excited at a wavelength 𝜆𝜆𝜆𝜆 in the fully ligand-bound and unbound biosensor states (solid 

lines, column 1) and the observed emissions of mostly ligand-bound and mostly unbound biosen-

sor mixtures (dotted lines, column 1); a plot of the biosensor’s dynamic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted 

ratio of the emissions of the fully ligand-bound and unbound biosensor states (solid line, column 

2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed emissions of mostly ligand-bound 

and mostly unbound biosensor mixtures (dotted line, column 2); and a plot of the predicted 

𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] measurement inaccuracy with that biosensor at each wavelength 𝜆𝜆𝜆𝜆 for different relative 

errors in 𝑅𝑅𝑅𝑅 values (column 3). 
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Figure S9-1: Predicted 𝒑𝒑𝒑𝒑[𝑳𝑳𝑳𝑳𝒆𝒆𝒆𝒆𝑳𝑳𝑳𝑳𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂] inaccuracy of ratiometric two-state ligand-binding bio-
sensors 
In this analysis of five dual-excitation ligand-binding biosensors, and one dual-excitation dual-

emission ligand-binding biosensor, we show in each row a plot of the biosensor’s predicted emis-

sion when excited at a wavelength 𝜆𝜆𝜆𝜆 in the fully ligand-bound and unbound biosensor states (solid 

lines, column 1) and the observed emissions of mostly ligand-bound and mostly unbound biosen-

sor mixtures (dotted lines, column 1); a plot of the biosensor’s dynamic range 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆, the predicted 

ratio of the emissions of the fully ligand-bound and unbound biosensor states (solid line, column 

2) and the apparent 𝛿𝛿𝛿𝛿𝜆𝜆𝜆𝜆 derived from the ratio of the observed emissions of mostly ligand-bound 

and mostly unbound biosensor mixtures (dotted line, column 2); and a plot of the predicted 

𝑝𝑝𝑝𝑝[𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿] measurement inaccuracy with that biosensor at each wavelength 𝜆𝜆𝜆𝜆 for different relative 

errors in 𝑅𝑅𝑅𝑅 values (column 3). 

  



Supplementary Note 10 
In this note we provide a brief user guide to the SensorOverlord R package and web application. 

We (10.1) provide instructions for installing the R package, (10.2) explain how to obtain each of 

the parameters required to run the analysis, (10.3) give an example of a use-case for running the 

SensorOverlord model via the R package, and (10.4) give an example of the use-case for running 

the SensorOverlord model via the web application. Much of the information provided in this Sup-

plementary Note is also available as vignettes within the SensorOverlord documentation, located 

at http://apfeldlab.github.io/SensorOverlord/articles. 

 

(10.1) Installing the SensorOverlord R package 
We have built an R package, named `sensorOverlord`, that is available on GitHub. 

   

You can install `sensorOverlord` in R via the `devtools` package. To install `devtools`: 
 

install.packages("devtools")  
 

Then, to install the most recent version of `sensorOverlord` from GitHub: 
 

devtools::install_github("apfeldlab/sensorOverlord")  
 

To confirm the version of your installation: 

 
packageVersion("sensorOverlord") 
#> [1] '0.2.0'  
 

(10.2) Obtaining requisite parameters 
The SensorOverlord framework requires biochemical and biophysical parameters of the rati-

ometric sensor for which it predicts accuracy. It also requires an empirically-determined error in 

R. In this section, we give an overview of the different methods by which you can obtain these 

requisite parameters.  

 

(10.2.1) Biochemical parameters 

To use the SensorOverlord framework, you need to have access to a midpoint potential for your 

sensor. For redox biosensors, the midpoint potential is E0’. For pH biosensors, the pKa is used 

instead of a midpoint potential. For ligand-binding biosensors, the pKd is used instead of a 



midpoint potential. The value of this parameter is almost always reported in the paper in which 

the sensor of interest was first published. 

 

Note that, for ligand-binding sensors, papers often report Kd. 𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = −𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙𝑙𝑙10(𝐾𝐾𝐾𝐾𝑟𝑟𝑟𝑟) so, to convert Kd 

to pKd, use the `log10` function in R: 

 
kD <- 5*10e-6 
pKd <- -log10(kD)  
 

(10.2.2) Biophysical parameters 

The SensorOverlord framework requires the following biophysical parameters: 

 

(i) RA: The ratio measurement of the sensor in State A. We also assume that State A is 

the state in which you have the lowest ratio measurement, so this is sometimes also 

called Rmin. 

(ii) RB: The ratio measurement of the sensor in State B. Sometimes also called Rmax. 

(iii) δλ2: The dynamic range in the second wavelength. This can be derived from the ratio 

of spectra of the sensor in each state. 

 

You can obtain these parameters in one of three ways: 

 

(i) Upload a digitized spectrum. `sensorOverlord` can programmatically obtain these in-

put values from a digitized spectrum. 

(ii) Use a provided spectrum. We have created a MongoDB database containing the spec-

tra of many published redox, pH, and ligand-binding sensors. 

(iii) Provide the parameters directly. These parameters can be measured empirically, as 

described previously [6]. 

 

In the following sections, we elaborate on each of these three options. 

 

(10.2.2.1) Option 1: upload a digitized spectrum 

If you have obtained excitation-emission spectrum data for each of your sensor’s two states, you 

can upload those into R. 

 



For example, you can provide a .csv file with three columns: 

 

• lambda: The wavelength of the excitation or emission. 

• values_A: The intensity value of the sensor’s output in state A. 

• values_B: The intensity value of the sensor’s output in state B. 

 

Oftentimes with digitized spectra, the λ values recorded in states A and B are not identical. In that 

case, you can use a .csv file with four columns: 

 

• lambda_A: The wavelengths recorded in state A. 

• values_A: The intensity value of the sensor’s output in state A. 

• lambda_B: The wavelengths recorded in state B. 

• values_B: The intensity value of the sensor’s output in state B. 

 

Once you have uploaded your spectra, you can use the `sensorOverlord::spectraMa-

trixFromValues` function to create a Spectra object: 

 
spectra <- read.csv("my_spectra.csv") 
 
# Option 1 
spectra_object <- spectraMatrixFromValues( 
  lambdas_minimum = spectra$lambda, 
  values_minimum = spectra$values_A, 
  lambdas_maximum = spectra$lambda, 
  values_maximum = spectra$values_B 
) 
 
# Option 2 
spectra_object <- spectraMatrixFromValues( 
  lambdas_minimum = spectra$lambda_A, 
  values_minimum = spectra$values_A, 
  lambdas_maximum = spectra$lambda_B, 
  values_maximum = spectra$values_B 
)  
 

You can use the `newSensorFromSpectra()` function to turn the Spectra object into a Sensor 

object at a certain ratiometric wavelength pair: 

 
sensor_object <- newSensorFromSpectra(spectra_object, 
  c(510, 520), c(455, 465))  
 



That sensor object will now contain estimates for the three required parameters: 

 
Ra <- sensor_object@Rmin 
Rb <- sensor_object@Rmax 
delta2 <- sensor_object@delta  
 

(10.2.2.2) Option 2: use a provided spectrum 

You can access all sensor information from the database with `sensorOverlord::getDb()$find()`, 

which accepts JSON search queries. For more information, see the associated vignette, located 

at http://apfeldlab.github.io/SensorOverlord/articles/accessing-database.html. For example: 

 
deGFP1_information <- getDb()$find('{"sensor_name" : "deGFP1"}') 
print(deGFP1_information$sensor_readout) 
#> [[1]] 
#> [1] "emission ratiometric" 
print(deGFP1_information$sensor_midpoint) 
#> [[1]] 
#> [1] 8.02 
print(deGFP1_information$lambda1_recommended) 
#> [1] 515 
print(deGFP1_information$lambda2_recommended) 
#> [1] 460  
 

The actual spectra information is in a list form, so you can use the `apply` and `unlist` functions 

to obtain the spectra: 

 
library(data.table) 
deGFP1_spectra_information <- data.table( 
  apply( 
    deGFP1_information[c("lambda_min", "values_min",  
                        "lambda_max", "values_max")], 
    2, function(x) unlist(x)) 
  )  
 

Then, follow the same instructions as if you had provided the spectra yourself: create a Spectra 

object, create a Sensor object at a specific wavelength pair, and then extract the relevant param-

eters: 

 



deGFP_spectra <- spectraMatrixFromValues( 
        deGFP1_spectra_information$lambda_min, 
        deGFP1_spectra_information$values_min, 
        deGFP1_spectra_information$lambda_max, 
        deGFP1_spectra_information$values_max 
    ) 
 
sensor_object <- newSensorFromSpectra(deGFP_spectra, 
                                     c(510, 520), c(455, 465)) 
 
Ra <- sensor_object@Rmin 
Rb <- sensor_object@Rmax 
delta2 <- sensor_object@delta 
 
print(Ra) 
#> [1] 0.3330232 
print(Rb) 
#> [1] 0.6447556 
print(delta2) 
#> [1] 0.9611258  
 

(10.2.2.3) Option 3: provide parameters directly 

If you conducted the appropriate microscopy experiments, you may have also obtained exact 

values of Ra, Rb, and δλ2. 

 

If that is the case, you can use them to directly make a Sensor object: 

 
R_reduced <- 0.6 
R_oxidized <- 5.2 
delta2 <- 0.171 
 
sensor_object <- new( 
            "Sensor", 
            Rmax = R_reduced, 
            Rmin = R_oxidized, 
            delta = delta2 
        )  
 

(10.2.3) Estimating microscopy error 

In order to use the SensorOverlord framework, you need to provide an estimate of the error of 

your R measurements in your system of interest. There are various ways to accomplish this, as 

we demonstrate in Supplementary Note 3. 

 



In C. elegans, we found that our errors in R were relative—that is, 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟  × (1 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)—

, were invariant over the range of all possible 𝑅𝑅𝑅𝑅 values, and varied between experiments. (Sup-

plementary Note 3). 

 

SensorOverlord can accommodate any error model that you find in your system. For example: 

 
# Relative error of 2.8%, or 0.028*R 
error_relative <- function(x) x*0.028 
 
# Absolute error of +/- 0.028  
error_absolute <- function(x) 0.028 
 
# Quadratic error 
error_other <- function(x) 0.0001*x^2 + 0.028*x + 0.5  
 

For more information about incorporating different error models, see the “Customizing Error 

Model” vignette. For now, this tutorial will assume that you are using a relative error. 

 

(10.3) Running the SensorOverlord model 
After obtaining the requisite parameters, you should have access to a Sensor object and an error 

model. For example: 

 
sensor_object <- new( 
            "Sensor", 
            Rmax = R_reduced, 
            Rmin = R_oxidized, 
            delta = delta2 
        ) 
 
my_error <- function(x) x*0.028  
 

To run the SensorOverlord model, you’ll need to turn your generic Sensor object into a specific 

redox, pH, or ligand-binding sensor, using the sensor’s midpoint potential. For example: 

 
redox_sensor_object <- 
  new( 
    "redoxSensor", 
    sensor_object, 
    e0 = -265 
  )  
 

 



(10.3.1) Generating a table of predicted errors 

Use the `error_df()` method, defined on redoxSensor, pHSensor, and ligandSensor objects, to 

generate a table of the inaccuracy of the biosensor at different values of redox potential, pH, or 

p[Ligand]. For example: 

 
redox_sensor_error <- error_df( 
  redox_sensor_object, 
  c(0.028), 
  Emin = -300, 
  Emax = -150 
) 
 
summary(redox_sensor_error) 
#>        E              Error          Inaccuracy            Rmin           
#>  Min.   :-300.0   Min.   : 0.7329   Length:15001       Length:15001       
#>  1st Qu.:-262.5   1st Qu.: 1.1032   Class :character   Class :character   
#>  Median :-225.0   Median : 3.4355   Mode  :character   Mode  :character   
#>  Mean   :-225.0   Mean   :    Inf                                         
#>  3rd Qu.:-187.5   3rd Qu.:31.3965                                         
#>  Max.   :-150.0   Max.   :    Inf                                         
#>      Rmax               Name           
#>  Length:15001       Length:15001       
#>  Class :character   Class :character   
#>  Mode  :character   Mode  :character   
#>                                        
#>                                        
#>  
 
library(ggplot2) 
ggplot(redox_sensor_error, aes(x = E, y = Error)) + 
  geom_line() + 
  ylim(c(0, 10))  
 

For more information, see the “Sensor Methods” reference section in the online documentation. 

 

(10.3.2) Computing suitable ranges 

`sensorOverlord` can also compute the ranges of redox potential, pH, or ligand concentration that 

a biosensor can measure to different accuracy thresholds. For example: 

 



# The redox potentials this sensor can measure, with an error in R of  
# 2% or 3%, to an accuracy of 1mV or 2mV 
accurate_ranges <- ranges_df(redox_sensor_object, 
                                  inaccuracies = c(0.02, 0.03), 
                                  thresholds = c(1, 2)) 
 
accurate_ranges 
#>   Sensor_Name Minimum Maximum Inaccuracy error_thresh 
#> 1 Sensor_0.02 -252.89 -205.11       0.02            1 
#> 2 Sensor_0.02 -264.09 -200.00       0.02            2 
#> 3 Sensor_0.03 -243.66 -214.85       0.03            1 
#> 4 Sensor_0.03 -257.68 -200.44       0.03            2  
 

(10.3.3) Plotting results 

The `plotProperty()` method will plot R vs the property of interest. For redox biosensors in equi-

librium with the glutathione couple, this will be R vs EGSH (the half-cell reduction potential of the 

glutathione couple) [6]. 

 
plotProperty(redox_sensor_object)  
 

The `rangePlot()` method will plot the range of values a biosensor can measure to a certain ac-

curacy. 

 
rangePlot(redox_sensor_object, ranges = accurate_ranges)  
 

For more information on plotting methods, see the “Sensor Methods” section in the documentation 

reference. 

 
(10.4) Using the SensorOverlord web application 
The SensorOverlord web application can be accessed at http://www.sensoroverlord.org. It has 

been tested on Firefox version 79 and Chrome version 84.0.4147.105 on Windows 10 and Ub-

untu 20.04. 

 

The “Home” tab provides some background on the purpose of the application, as well as basic 

instructions for the application’s use. 

 

The “Main Analysis” tab contains the main application functionality. To analyze a sensor, either 

(i) choose a sensor from the database in the dropdown menu under “Select a sensor”, (ii) 



upload a .csv file containing spectra information by using the “Upload Spectra” tab near the bot-

tom of the page, or (iii) input custom biophysical parameters by using the “Input Characteristics” 

tab, also near the bottom of the page. 

 

If you are using spectra, you can also select dual-excitation or dual-emission wavelengths near 

the middle of the page, under the “What wavelengths are you using to make your measure-

ments?” heading. In this section, you can also specify the size of the excitation or emission 

bands for each wavelength: for example, a “First Wavelength” of “410” and a “Band Size (1st 

Wavelength)” of “20” will consider all λ1 between 400 nm and 420 nm. 

 

After choosing a sensor, you will also need to input (i) the accuracy in your measurements of R, 

under the “Relative Microscopy Imprecision” header, and (ii) the accuracy or accuracies at 

which you wish to make measurements, separated by commas under the “Accuracy (comma-

separated)” header. For example, to analyze a redox sensor at 2% microscopy precision to an 

accuracy of 0.5 mV and 1.0 mV, you would enter “0.02” and “0.5,1.0” into fields (i) and (ii), re-

spectively. 

 

When you are satisfied with your inputted parameters, press the “Run/Update Analysis” button 

to generate the two figures that display the suitable ranges and the phase diagram of selected 

sensor in the rightmost panel. 
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