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Appendix A - Jacobi Constant 

The lunar equation of motion with Earth’s oblateness and Sun’s influence treated 

as a disturbing potential, ℛ = −(Φ⊕ + Φ⊙), in the coordinate system centered on Earth 

is: 

   𝑟̈ = ∇(𝑈 + ℛ)                                            (A1) 

where 𝑈 ≈ 𝐺𝑀/𝑟  is the two-body Earth-Moon potential. Here the Moon’s mass is ignored, 

and the lunar inclination and terrestrial obliquity are assumed negligible (𝑧̈ = 0), hence: 

𝑥̈ =
𝜕

𝜕𝑥
(𝑈 + ℛ) = 𝐺𝑀

𝜕

𝜕𝑥
(

1

√𝑥2+𝑦2
) +

𝜕ℛ

𝜕𝑥
                            (A2a,b) 

𝑦̈ =
𝜕

𝜕𝑦
(𝑈 + ℛ) = 𝐺𝑀

𝜕

𝜕𝑦
(

1

√𝑥2+𝑦2
) +

𝜕ℛ

𝜕𝑦
  

This can be rearranged to (Brouwer and Clemence, 1961): 

𝑥̈ +
𝐺𝑀𝑥

𝑟3
=

𝜕ℛ

𝜕𝑥
(A3a, b) 

                                   𝑦̈ +
𝐺𝑀𝑦

𝑟3
=

𝜕ℛ

𝜕𝑦
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We switch to a rotating coordinate system (𝒳, 𝒴), where the 𝒳 axis is aligned along the 

Earth-Sun line (𝑟′) and the system rotates with an angular velocity of Ω⊙ (assuming that 

Earth’s orbit around the Sun is circular), with (Murray and Dermott, 1999) : 

                                                      𝑥 = 𝒳 cos Ω⊙𝑡 − 𝒴 sin Ω⊙𝑡                         (A4a,b,c,d) 

𝑦 = 𝒳 sin Ω⊙𝑡 + 𝒴 cos Ω⊙𝑡 

𝑥̈ = (𝒳̈ − 2Ω⊙𝒴̇ − Ω⊙
2 𝒳) cos Ω⊙𝑡 − (𝒴̈ + 2Ω⊙𝒳̇ − Ω⊙

2 𝒴) sin Ω⊙𝑡 

𝑦̈ = (𝒳̈ − 2Ω⊙𝒴̇ − Ω⊙
2 𝒳) sin Ω⊙𝑡 + (𝒴̈ + 2Ω⊙𝒳̇ − Ω⊙

2 𝒴) cos Ω⊙𝑡 

Substituting these relations into the equations of motion, multiplying (A.3a) by cos Ω⊙𝑡, 

and (A.3b) by sin Ω⊙𝑡, and adding the results gives 

                                                       𝒳̈ − 2Ω⊙𝒴 − Ω⊙
2 𝒳 +

𝐺𝑀𝒳

𝑟3 =
𝜕ℛ

𝜕𝒳
                                 (A5) 

where the LHS of the equation is given by the chain rule: 
𝜕ℛ

𝜕𝒳
=

𝜕ℛ

𝜕𝑥

𝜕𝑥

𝜕𝒳
+

𝜕ℛ

𝜕𝑦

𝜕𝑦

𝜕𝒳
=

𝜕ℛ

𝜕𝑥
cos Ω⊙𝑡 +

𝜕ℛ

𝜕𝑦
sin Ω⊙𝑡. Similarly, multiplying (A.3a) by −sin Ω⊙𝑡, and (A.3b) by 

cos Ω⊙𝑡, and adding the results: 

𝒴̈ + 2Ω⊙𝒳̇ − Ω⊙
2 𝒴 +

𝐺𝑀

𝑟3 =
𝜕ℛ

𝜕𝒴
                                     (A6) 

where the LHS of the equation is given by the chain rule: 
𝜕ℛ

𝜕𝒴
=

𝜕ℛ

𝜕𝑥

𝜕𝑥

𝜕𝒴
+

𝜕ℛ

𝜕𝑦

𝜕𝑦

𝜕𝒴
=

−
𝜕ℛ

𝜕𝑥
sin Ω⊙𝑡 +

𝜕ℛ

𝜕𝑦
cos Ω⊙𝑡. The last two expressions can be simplified by (Brouwer and 

Clemence, 1961):  

𝒳̈ − 2Ω⊙𝒴̇ =
𝜕𝐹

𝜕𝒳
(A7a, b) 

                                   𝒴̈ + 2Ω⊙𝒳̇ =
𝜕𝐹

𝜕𝒴
 

where 𝐹 ≡
𝐺𝑀

𝑟
+

Ω2

2
(𝒳2 + 𝒴2) + ℛ. 

To get the Jacobi integral, we multiply (A.7a) by 𝒳̇, (A.7b) by 𝒴̇ and add them: 

𝒳̈𝒳̇ + 𝒴̈𝒴̇ =
𝜕𝐹

𝜕𝒳
𝒳̇ +

𝜕𝐹

𝜕𝒴
𝒴̇                                (A8) 

Integrating the last expression:  

1

2
𝒳̇2 +

1

2
𝒴̇2 = 𝐹 +

𝐽

𝑚
                                         (A9) 

where 𝐽 is the modified Jacobi constant (in energy units). 

                              
1

2
(𝒳̇2 + 𝒴̇2) −

𝐺𝑀

𝑟
−

Ω⊙
2

2
(𝒳2 + 𝒴2) − ℛ =

𝐽

𝑚
                              (A10) 
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We return to the non-rotating frame, centered on Earth, to express the Jacobi constant in 

terms of the Moon’s 𝑎 and 𝑒. We use the relation: 

                          𝒳̇2 + 𝒴̇2 = 𝑥̇2 + 𝑦̇2 + Ω⊙
2 (𝑥2 + 𝑦2) + 2Ω⊙(𝑥̇𝑦 − 𝑦̇𝑥)                     (A11) 

 (Note that 𝒳2 + 𝒴2 = 𝑥2 + 𝑦2, since distances are invariant under rotation 

transformations) to yield  

1

2
(𝑥̇2 + 𝑦̇2) + Ω⊙(𝑥̇𝑦 − 𝑦̇𝑥) −

𝐺𝑀

𝑟
− ℛ =

𝐽

𝑚
(A12) 

The kinetic energy can be replaced by (Murray and Dermott, 1999), 

        
1

2
(𝑥̇2 + 𝑦̇2) = 𝐺𝑀 (

1

𝑟
−

1

2𝑎
)                                 (A13) 

and we set 𝑦̇𝑥 − 𝑥̇𝑦 = 𝑟 ⋅ 𝑣⃗ = 𝐿𝑜𝑟𝑏/𝑚 = √𝐺𝑀𝑎(1 − 𝑒2). Substituting these into (A12) 

gives eqn. (2.5) in the main text,  

𝐽 = 𝑚 [−
𝐺𝑀

2𝑎
− ℛ − Ω⊙√𝐺𝑀𝑎(1 − 𝑒2)]  . 

 

Appendix B - Stationary States 

Tidal free states 

Denoting 𝛼̃ ≡ 2𝛼(1 − 5 cos 2𝜃), eqn. (2.15) is rearranged as, 𝜀 = 1 − 𝜂[1 −

𝛼̃(1 − 𝜀)1 2⁄ ]−1 2⁄ . In the limit 𝛼̃ → 0, 𝜀 → 1 − 𝜂.  For small 𝛼̃, we write 𝜀 = 1 − 𝜂 + Δ𝜀, 

to find 

                                                 Δ𝜀 = 𝜂{1 − [1 − 𝛼̃(𝜂 − Δ𝜀)1 2⁄ ]−1 2⁄ }                          (B1) 

To second order accuracy in 𝛼, the RHS is explicitly expanded to second order in 𝛼̃, 

                                                Δ𝜀 ≈ −𝜂{
1

2
𝛼̃(𝜂 − Δ𝜀)1 2⁄ +

3

8
𝛼̃2(𝜂 − Δ𝜀)] .                  (B2) 

Assuming Δ𝜀~𝒪(α) as well,  (𝜂 − Δ𝜀)1 2⁄ ≈ 𝜂1 2⁄ (1 − ∆𝜀 2⁄ 𝜂).  This leads to 

                Δ𝜀 ≈ −
1

2
𝛼̃𝜂3 2⁄ (1 +

3

4
𝛼̃𝜂1 2⁄ )/(1 −

1

4
𝛼̃𝜂1 2⁄ ) ≈ −

1

2
𝛼̃𝜂3 2⁄ (1 + 𝛼̃𝜂1 2⁄ ),      (B3) 

and accordingly, 𝜀 ≈ 1 − 𝜂 − 𝛼̃𝜂3 2⁄ 2⁄ − 𝛼̃2𝜂2 2⁄ .  To lowest order in 𝛼, this reduces to 

𝜀 ≈ 1 − 𝜂 − 𝛼(1 − 5 cos 2𝜃)𝜂3 2⁄ .  Solution of this equation at 𝜃 = 0,  yields the y-axis 

stationary point  value, 𝜀𝑠 ≈ 1 − 𝜂 + 4𝛼𝜂3 2⁄ , while the unstable stationary points at 𝜃 =  

/2 on the x-axis are located at 𝜀𝑠𝑥 ≈ 1 − 𝜂 − 6𝛼𝜂3 2⁄ .   Their average value is 𝜀∗ ≈ 1 −

𝜂 − 𝛼𝜂3 2⁄ . 

 We further simply by neglecting terms of order 𝛼𝜀; combining the above expression 

for 𝜀∗ with 𝜂 ≈  (1 − 𝜀) from eqn. (2.15) then gives 𝜀∗ ≈ 1 − 𝜂 − 𝛼(1 − )3 2⁄ ≈ 1 − 𝜂 −
𝛼, 𝜀𝑠 ≈ 1 − 𝜂 + 4𝛼 = 𝜀∗ + 5𝛼, and 𝜀𝑠𝑥 ≈ 1 − 𝜂 − 6𝛼 = 𝜀∗ − 5𝛼. 
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Tidal states   

 Because tides displace the stationary angle off the y-axis, there is a net average 

solar torque.  The solar torque at the stationary point from eqn. (3.2b) becomes  

          T′ = 10𝛾𝜒𝑎′1 2⁄ 𝛼𝜀𝑠 sin 2𝜃𝑠 = (𝛾 2⁄ )𝑎′1 2⁄
(𝜀𝑇̇ − 𝜀̇)  ,                       (B4) 

while the rate at which the system angular momentum must change is  𝐿̇𝑜𝑟𝑏 − 𝐿̇𝑜𝑟𝑏,𝑇, 

i.e.,(𝛾 2⁄ )𝑎′1 2⁄
(𝜀𝑇̇ − 𝜀𝑠̇)/(1 − 𝜀𝑠)1 2⁄ .  These agree if eqn. (5.8) is used to evaluate 

sin 2𝜃𝑠 =  (𝜀𝑇̇ − 𝜀𝑠̇) 20𝜒𝛼𝜀𝑠⁄ .  However, since the extreme value of 

sin 2𝜃𝑠 ≈ (𝜀𝑇̇ − 𝜀∗̇) 20𝜒𝛼𝜀∗⁄ → −1, the strongest possible torque is Τ′𝑚𝑎𝑥 =

−10𝜒𝛼𝛾𝑎′1 2⁄ 𝜀∗.  Accordingly, the resonance could not be maintained if  

                                 𝜒 ≡ Ω⨀𝑡𝑇 < − (𝜀𝑇̇ − 𝜀𝑠̇) 20𝛼𝜀∗(1 − 𝜀∗)⁄ ≡ 𝜒𝑐𝑟𝑖𝑡                       (B5) 

 

Appendix C - Mignard Tidal Model 

Mignard first derives the force due to a second-order tidal distortion raised on the 

Earth by the Moon in the vector form, 

  𝐹 = −3𝑘𝑇
𝐺𝑚2𝑅5

𝑟10 Δ𝑡[2(𝒓 ⋅ 𝒗)𝒓 + 𝑟2(𝒓 × 𝒔 + 𝒗)]        (C1) 

Where 𝑘𝑇 is the tidal Love number for the Earth, vectors 𝒓, 𝒗 are the position and velocity 

of the Moon of mass 𝑚, and 𝒔 is the Earth’s spin vector, which, for simplicity, we will 

assume is perpendicular to the lunar orbit plane. The radial, 𝐹𝑟, and tangential, 𝐹𝜃, force 

components are then substituted into Gauss’ form of the Lagrange equations (e.g., Brouwer 

and Clemence, 1961),   

 
𝑑𝑎

𝑑𝑡
=

2

𝑚𝑛(1−𝑒2)1/2 [𝐹𝑟𝑒 sin 𝜃 + 𝐹𝜃
𝑝

𝑟
];  

𝑑𝑒

𝑑𝑡
=

(1−𝑒2)
1/2

𝑚𝑎𝑛
[𝐹𝑟 sin 𝜃 + 𝐹𝜃

1

𝑒
(

𝑝

𝑟
−

𝑟

𝑎
)]

         

(C2a,b) 

where 𝑝 ≡ 𝑎(1 − 𝑒2) and the rates are then averaged over an orbit to give the tidal changes 

in semi-major-axis and eccentricity. 

 

Appendix D - Permanent Figure Torque 

 Consider a Moon with principal moments of inertia 𝐶𝑚 ≥ 𝐵𝑚 ≥ 𝐴𝑚, where 𝐶𝑚 is 

the moment about its spin axis, assumed to be normal to its orbit plane, and 𝐴𝑚 is the 

moment about the Moon’s long axis. The instantaneous value of the permanent figure (pf) 

torque is given by Danby (1992; see also Murray and Dermott, 1999),  

                    

                 𝛵𝑝𝑓 = −
3

2
(𝐵𝑚 − 𝐴𝑚)(𝐺𝑀 𝑟3⁄ ) 𝑠𝑖𝑛 2𝜓 = 𝐶𝑚

𝑑𝑠𝑚,𝑝𝑓 

𝑑𝑡
                     (D1) 

where r is the Earth-Moon distance, 𝜓 is the angle between the long axis of the Moon and 

the Earth-Moon line, i.e, 𝜓 =  𝜗 − 𝑓, where 𝜗 is the angular position of the Moon’s long 

axis with respect to the perigee, 𝜛, and 𝑓 is the true anomaly (e.g., Goldreich and Peale, 

1966a,b).  We set 𝜗 = 𝑠𝑚𝑡 + 𝜓𝑜, which for synchronous rotation is 𝜗 = 𝑛𝑡 + 𝜓𝑜, where 

𝜓𝑜 is the value of 𝜓 at perigee.  If T𝑝𝑓 is then averaged over an orbit, one obtains (e.g., 

Goldreich and Peale, 1966a,b), 

                                         〈T𝑝𝑓〉 = − 
3

2
𝑛2(𝐵𝑚 − 𝐴𝑚)𝐻(𝜀) sin 2𝜓𝑜                                       (D2) 

where 𝐻(𝜀) = 1 − 5𝜀 2⁄ + 13 𝜀2 16⁄  is a so-called Hansen polynomial. This torque leads 

to further contributions to semi-major axis and eccentricity variations, 𝑎̇′𝑝𝑓 and 𝜀𝑝̇𝑓.   

Analogous to eqn. (4.2), conservation of angular momentum requires  
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                                   𝑠̇′𝑚,𝑝𝑓 =  −
𝛾

2𝜅
𝑎′1 2⁄ (1 − 𝜀)1 2⁄ (

𝑎̇′
𝑝𝑓

𝑎′ −  
𝜀̇𝑝𝑓

1−𝜀
).                             (D3)

 This must (nearly) balance the tidal torque to ensure synchronous stability so that 𝑠̇′𝑚 +
𝑠̇′𝑚,𝑝𝑓 = 𝑛̇/Ω⊕, and the off-set angle 𝜓𝑜 adopts the value needed to accomplish this.   

A major difference between a torque on the permanent figure of the Moon and a 

torque on a tidal distortion is that the former is not accompanied by energy dissipation due 

to planetary flexing.  Accordingly, the combination of orbital energy and spin energy of 

the Moon is also conserved under its action, i.e., 𝑑(𝜅𝜆𝑠′𝑚
2 2⁄ − 𝜇 2𝑎′)/𝑑𝜏|𝑃𝐹 = 0⁄ .  Taking 

the derivatives and rearranging yields an additional condition,  

                                                   𝑠̇′𝑚,𝑝𝑓 = − 
𝛾

2𝜅

𝑎̇′
𝑝𝑓

𝑠′
𝑚𝑎′2 = − 

𝛾

2𝜅
𝑎′1 2⁄ 𝑎̇′

𝑝𝑓

𝑎′                       (D4) 

where the final expression sets 𝑠′𝑚 = 𝑛/Ω⊕ = 𝑎′−3/2 . 

             Approximating 𝑠̇𝑚
′ + 𝑠̇𝑚,𝑝𝑓

′ ≈ 0 due to the smallness of 𝑛̇ compared to either spin 

acceleration, we conclude that 

                                     (
𝑎̇′

𝑝𝑓

𝑎′ −  
𝜀̇𝑝𝑓

1−𝜀
) ≈ − (

𝑎̇′
𝑚

𝑎′ −  
𝜀̇𝑚

1−𝜀
)                                      (D5) 

However, one cannot simply assume equal but opposite values for 𝑎̇′𝑝𝑓 =  −𝑎̇′𝑚 and  

𝜀𝑝̇𝑓 =  −𝜀𝑚̇, because the permanent figure torque may partition its changes in a and 

𝜀 differently than do tides.  From eqns. (D3) and (D4) we get  

                                                       
[1−(1−𝜀)1 2⁄ ]

(1−𝜀)1 2⁄

𝑎̇′
𝑝𝑓

𝑎′ =  −
𝜀̇𝑝𝑓

1−𝜀
                                                   (D6) 

Using this to eliminate either 𝑎̇𝑝𝑓
′  or 𝜀𝑝̇𝑓 in eqn. (D5) leads to,   

                          
𝑎̇′

𝑝𝑓

𝑎′ =  −𝑓𝑝𝑓 (
𝑎̇𝑚

′

𝑎′ −  
𝜀̇𝑚

1−𝜀
)    ;  𝜀𝑝̇𝑓 =  𝑔𝑝𝑓 (

𝑎̇𝑚
′

𝑎′
−  

𝜀̇𝑚

1−𝜀
)                       (D7a,b) 

where 𝑓𝑝𝑓  ≡ (1 − 𝜀)1 2⁄  and 𝑔𝑝𝑓 = (1 − 𝜀)[1 − (1 − 𝜀)1 2⁄ ].   The total change rates for 

𝑎′ and 𝜀 due to both tides and Tpf for a Moon in synchronous rotation is then 

                                      
𝑎̇′

𝑎′
=

𝑎̇⨁
′

𝑎′
+ (1 − 𝑓𝑝𝑓)

𝑎̇𝑚
′

 𝑎′ + 𝑓𝑝𝑓
𝜀̇𝑚

1−𝜀 
                         (D8) 

                                       𝜀𝑇̇ = 𝜀⨁̇ + (1 −
𝑔𝑝𝑓

1−𝜀
) 𝜀𝑚̇ + 𝑔𝑝𝑓

𝑎̇𝑚
′

 𝑎′   ,                   (D9) 

where 𝑠′𝑚𝑎′3 2⁄ = 1, which in combination with (4.9a,b) gives 

               𝑎̇′𝑚 𝑎′⁄ = 𝐴[𝑓1(𝜀) − 𝑓2(𝜀)] 𝑎′8⁄      ;      𝜀𝑚̇ = 𝐴𝜀[𝑔1(𝜀) − 𝑔2(𝜀)]/𝑎′8  (D10a,b)   

The above rates are valid so long as synchronous rotation can be maintained.  

However, | sin 2𝜓𝑜| has a maximum value of unity, and so from eqns. (4.2) and (D2) there 

is a minimum value required for (𝐵𝑚 − 𝐴𝑚)/𝐶𝑚, 

(𝐵𝑚 − 𝐴𝑚)

𝐶𝑚
> |

𝛾

3𝜅
(

𝑎′7 2⁄

Ω⊕𝜏𝑇
)

(1 − 𝜀)1 2⁄

𝐻(𝜀)
(

𝑎̇′
𝑚

𝑎′
−

𝜀𝑚̇

1 − 𝜀
)| 

                                               = |
𝛾

3𝜅
(

𝐴

Ω⊕𝜏𝑇
)

1

𝑎′9 2⁄

(1−𝜀)1 2⁄

𝐻(𝜀)
[𝑓1 − 𝑓2 −

𝜀

1−𝜀
(𝑔1 − 𝑔2)]| (D11a) 

where the final expression sets 𝑠𝑚
′ 𝑎′3/2 = 1.  This criterion reads 

                
(𝐵𝑚−𝐴𝑚)

𝐶𝑚
> 4 × 10−4 (

𝑘𝑚Δ𝑡𝑚

4 min
)

(1−𝜀)1 2⁄

𝐻(𝜀)
[𝑓1 − 𝑓2 −

𝜀

1−𝜀
(𝑔1 − 𝑔2)] (

7

𝑎′
)

9 2⁄

 (D11b) 

where 𝑘𝑚Δ𝑡𝑚 ≈ 4 min for the current Moon (Williams and Boggs, 2015).  If violated, the 

synchronous lock is broken.  

 The above estimate considers whether the permanent figure torque is sufficient to 

maintain synchronous rotation against the competing tidal torque. Goldreich (1966) 
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considered an initial rotation faster than n, and found that this rate would decrease, librate 

about synchronous rotation, and ultimately damp to the synchronous state if 

                             
(𝐵𝑚−𝐴𝑚)

𝐶𝑚
≳ 7.5𝜋2𝜀2       (D12) 

For a shape similar to that of the current Moon, with (𝐵𝑚 −
𝐴𝑚 ) 𝐶𝑚 = 2.28 × 10−4⁄ , eqn. (D11b) implies that synchronous lock could be maintained 

at the time the Moon encounters evection (i.e., 𝑎′ ∼ 7) for an initially low eccentricity (𝜀 <
0.095), but that non-synchronous rotation would ensue as 𝑒 became large. Eqn. (D12) 

implies that the (𝐵𝑚 − 𝐴𝑚 ) 𝐶𝑚⁄  of the current Moon would be sufficient to establish 

synchronous rotation for 𝜀 < 0.0018.  Of course, the current (𝐵𝑚 − 𝐴𝑚)/𝐶𝑚 value may 

not have pertained to the early Moon, and so it is prudent to consider both synchronous and 

non-synchronous cases.   

For the case of a non-synchronously rotating Moon without permanent figure 

torques, eqns. (6.10) and (6.12) in the main text provide the partial derivatives needed to 

evaluate whether the libration amplitude grows or damps.  Analogous expressions can be 

developed for synchronous lunar rotation maintained by a permanent figure torque, with 

𝜕(𝜀𝑇̇) 𝜕𝜀⁄  replaced by 𝜕(𝜀𝑇̇ + 𝜀𝑝̇𝑓) 𝜕𝜀⁄ , and 𝜕(𝑎̇′/𝑎′)/𝜕𝜀 replaced by 𝜕({𝑎̇′ +

𝑎̇𝑝𝑓
′ }/𝑎′)/𝜕𝜀 , with  𝜀𝑝̇𝑓 and  𝑎̇𝑝𝑓

′  given in (D7).  These are 

         
𝑎′8

𝐴

𝜕𝜀̇𝑝𝑓

𝜕𝜀
= (𝑓1 − 𝑓2)

𝜕𝑔𝑝𝑓

𝜕𝜀
+ (

𝜕𝑓1

𝜕𝜀
−

𝜕𝑓2

𝜕𝜀
) 𝑔𝑝𝑓 

                                         −(𝑔1 − 𝑔2) (
𝜕𝑔𝑝𝑓

𝜕𝜀

𝜀

1−𝜀
+

𝜀𝑔𝑝𝑓

(1−𝜀)2 +
𝑔𝑝𝑓

1−𝜀
) − (

𝜕𝑔1

𝜕𝜀
−

𝜕𝑔2

𝜕𝜀
)

𝜀𝑔𝑝𝑓

1−𝜀
      (D13)                                                       

and 

               
𝑎′8

𝐴

𝜕

𝜕𝜀
(

𝑎̇𝑝𝑓
′

𝑎′
) =

1

(1−𝜀)
1
2

                                                                                       (D14) 

                            [
𝑓1−𝑓2

2
+ (𝑔1 − 𝑔2) (1 +

𝜀

2(1−𝜀)
) + 𝜀 (

𝜕𝑔1

𝜕𝜀
−

𝜕𝑔2

𝜕𝜀
) + (

𝜕𝑓2

𝜕𝜀
−

𝜕𝑓1

𝜕𝜀
) (1 − 𝜀)] , 

where  
𝜕𝑔𝑝𝑓

𝜕𝜀
=

3

2
(1 − 𝜀)1/2 − 1.   

 

Appendix E - Additional Zero Libration Evolutions 

Here we show additional zero-libration evolutions as considered in Section 5.  Note 

that in these and the other evolutions in the main text we ignore the potential for tidal 

disruption when the lunar perigee is interior to the Roche limit, which can occur for low 𝐴 

cases. 

Figure A1 displays tracks for 𝐴 =  10 with different starting values of the system 

angular momentum, 𝐿0
′ , corresponding to varied initial Earth spin rates, 𝑠0

′ , following a 

lunar forming impact. Changing 𝐿0
′  alters the encounter distance for the resonance as in 

Figure 4.  For lower 𝐿0
′ , the resonance occurs closer to the Earth and the stall in the Moon’s 

orbital expansion occurs at smaller 𝑎𝑐
′  and 𝑐 .  However, all cases eventually converge on 

the same end state in the limiting case that the Moon remains in resonance throughout its 

whole evolution (which as we show in Section 6 is unlikely to occur, as much earlier 

resonance escape is predicted). Accordingly, the higher the starting 𝐿0
′ , the greater the 

angular momentum decay, Δ𝐿′ =  𝐿0
′ − 𝐿𝑓

′ , and evolutionary tracks for high 𝐿0
′  are 

reminiscent of those shown in CS12. 
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 Figure A2 compares evolutionary tracks with 𝐿0 = 2𝐿𝐸𝑀 for other values of A. As 

𝐴 increases, the stationary state eccentricity is suppressed by progressively stronger lunar 

tides. This in turn weakens the tidal torque (due to the larger lunar periapsis), prolonging 

the evolutionary time scale.  Figure A3 displays a synchronous evolution with 𝐴 =  10, 

𝐿0 =  2 𝐿𝐸𝑀 contrasted to the non-synchronous evolution shown in Figure 4 in the main 

text, shown in grey.  Here we have set  𝑠′𝑚𝑎′3 2⁄ = 1, and modified the expressions for 

tidal changes in 𝑎 and   to include the permanent figure torques as in eqns. (D8) and (D9).  

The non-synchronous track acquires higher maximum values for a and 𝜀 but these then 

decrease somewhat more rapidly than in the synchronous case.    
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Figure A1.  System evolution with A =10 for various values of 𝑳𝒐, assuming a Moon in 

non-synchronous rotation. 
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Fig. A2.  System evolution for various values of A  with 𝐿𝑜 = 2𝐿𝐸𝑀, assuming a Moon in 

non-synchronous rotation. 
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Fig. A3.  System evolution for a Moon with synchronous rotation maintained by a 

permanent figure torque with 𝐿𝑜 = 2𝐿𝐸𝑀 and 𝐴 = 10 (grey), with non-synchronous 

rotation case from Figure 4 in the main text shown for comparison (black). 

 


